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Self-consistent electronic structure of FeA1
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A self-consistent band structure of FeAl is obtained by the linearized muffin-tin orbitals
method. The Fermi surface, positron localization, and the imaginary part [e2(to)] of the

dielectric constant are calculated. A comparison is made vrith other theoretical and experi-

mental results.

I. INTRODUCTION

The transition-metal aluminides (TAl) in general
and FeA1 in particular have been extensively studied
for their soft-x-ray emission' (i.e., TM23 TL3,
T KP2 „AlLz 3, and Al KP„) and absorption (i.e.,
TL3 and AIL2s ) properties. The single crystals of
FeAl have been subjected to positron-annihilation
experiments to determine the localization of posi-
trons. The positron-annihilation experiments on
FeA1 were also performed by Sob and from these
experiments the Cornpton profile was deduced. To
understand these experimental data there are a few
band-structure (BS) calculations of B2 ordered al-
loys. " Unfortunately, most of these are either
non-self-consistent or only quasi-self-consistent.
The self-consistent (SC) BS are obtained by the
augmented-plane-wave " (APW) method, but to
compute the physical properties, Eibler and Neckel
had to regenerate the BS in a hybridized nearly-

free-electron tight-binding (H-NFE-TB) interpola-

tion scheme.
The aim of the present work is to present a SC BS

for FeA1 and then to use these eigenvalues and
eigenvectors to calculate other physical quantities
such as the density of states, Fermi surface, positron
localization, and the imaginary part of the dielectric
constant. In the following we shall present a very
short description of the linearized muffin-tin orbi-

gals (LMTO) method (Sec. II) and then the results

and discussion (Sec. III). Section IV will contain the

conclusion.

II. METHOD

The LMTO method' is a standard technique
these days for a SC BS calculation for ordered com-
pounds. ' ' A brief account of this method for
CsC1 structure has been already given by one of us. '

Here we will just recall the main features.

Di„t(E)+l ~1
Pit =2(21 + 1)

Du(E) l—
where

(2)

Dxt(E) =RMT 4g/(E, r)0' 0

@i„t(E,r) dr r =RM

(3)

i.e., it is a logarithmic derivative on the muffin-tin
(MT) sphere (r =RMr) of the radial solution

@it(E,r) of the Schrodinger equation in the poten-
tial V~ centered at a A,-type atom.

The simplest procedure to include the interstitial
region is to approximate the MT sphere to an atom-
ic sphere (RMr ——R, ). This is the so-called atomic-
sphere approximation' (ASA). For FeA1 we have
considered the same radii for iron and aluminum
(i.e., R =2.706 a.u. ). First, a SC canonical electronic
band structure is obtained in which each type of
atomic site forms a block and in each block there
are independent subblocks of s, p, and d symmetries.
The iteration was continued until we obtained the
variation of the eigenenergies between two succes-
sive iterations less than 1 mRy. Once the SC canon-
ical BS was obtained the hybridization between dif-
ferent atomic spheres and different symmetries was

The eigenenergies of the conduction states for or-
dered systems with many atoms per unit cell are ob-
tained from the secular equation

I Si;c,u, Pit«—+t ~&cI. l

=o

where A, and o are the site and spin indices, respec-
tively. The index L is for the two quantum numbers
l and m. We consider only the case when l & 2. Ac-
cording to this limitation we have 4s, 3d, and 4p for
iron and 3s, 3p, and 3d for aluminum as the conduc-
tion states. S~I ~~ is the structure matrix. ' We
also have
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switched on. The intersite charge transfer gives an
ionic character. to atomic sites. This additional
Coulomb (Madelung) contribution to the potential
was calculated by the method of Janak. ' The ex-
change and correlation contributions to the potential
are taken care of by the local-density-functional for-
malism. '

The hybridized SC BS was obtained after nine
iterations when the overall eigenvalue differences be-
tween two successive iterations was less than 1 mR .
The total and local partial densities of states were
calculated by the hnear tetrahedron method. ' For
e2(co) we adapted the tetrahedron technique to make
the summation over two states (i.e., occupied and
unoccupied).

III. RESULTS AND DISCUSSION

A. Band structure and density of states

et al. obtain M5 below M1. A comparison of
present calculations with other SC and non-SC re-
sults is tentatively made and presented in Table III.
One will notice that the total width of the occupied
band &E—and (EF Er—

, ) in our case is larger than those of
Podloucky et al. and Pechter et al. ,

" but on the
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The SC BS of FeA1 is presented in Fig. 1. The
eigenvalues (in the limit of 1 Ry) at some high-

symmetry points are given in Table I. With the use
of this BS the total and local densities of states are
calculated and presented in Fig. 2. We have also
calculated the partial densities of states on each site
and the main results are given in Table II. The —th48

of the Brillouin zone (BZ) of FeA1 was divided into
1728 tetrahedrons (i.e., I —X=12 units in length).
The densities of states are calculated with an energ
interval of 2 mRy.

energy

The present SC energy levels resemble other SC
8, 10, 11results. ' ' As in these calculations, at high-

symmetry point M below the Fermi level, we also

obtain M1 below M5, whereas Sob and Muller
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FIG. 1. SC energy bands in FeA1 along some symme-

try directions.
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FIG. 2. (a) Total density of states of FeA1 in units per
FeRh molecules per Ry, (b) local density of states at an Fe
site, and (c) local density of states at an Al site.
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TABLE I. Present energy values (in rydbergs) at some high-symmetry points. The symme-

try representations are enclosed in brackets.

—0.037
(1)

0.564
(12)

0.718
(25')

X 0.250
(4I )

0.281
(1)

0.628
(2)

0.653
(5)

0.724
(3)

0.798
(1)

0.357
(3)

0.547
(1)

0.565
(5')

0.660
(5)

0.771
(2)

0.930
(1)

0.465
(25')

0.773
(12)

0.917
(15)

other hand, we have Ez, —E~ smaller than theirs.
Fzs

The small differences in dispersion curves from one
calculation to another may partially arise from the
different approximations for exchange and correla-
tion potential: Hedin-Lundqvist' in the present
case and the Slater Xa exchange with different
values of a in the case of others. ' "

The overall features of the density of states are
similar to those in Refs. 6, 7, and 9. From Table I
and Fig. 2 it is evident that at the Fermi level the
physical properties are mainly controlled by the "d"
electrons of iron. The only specific-heat measure-

ments e of FeA1 gives the number of states at the
Fermi level [n (E~)] as 31.3. Our value
n(EF)=4 01 is much greater than that observed.
Eibler and Neckel obtained n (EF )=32.05, but later
on they found that this value was in error due to the
fact that it was not properly normalized in the unit
cell.2' The correct value2' is n (Ez)=42.9 which is
even higher than ours. Here we should mention the
fact that the theoretical n (EF)'s for FeAl are greater
than the experimental one, whereas usually the mea-
sured n (EF)'s are much bigger than the theoretical

values2~ because the measured specific heat is al-

ready enhanced due to the electron-phonon interac-
tion. From theoretical point of view, since the Fer-
mi level falls in a sharp slope [Fig. 2(a)], it is possi-
ble to obtain an important change in n (EF) by shift-
ing the E~ by a few mRy. In our scheme if we shift
the E+——0.711 Ry to E+ ——0.720 Ry, we do obtain
n( E~)=30, but we have to content ourselves with
11.3 instead of 11.0 electrons in the occupied band.
By shifting the Fermi level we also change the na-
ture of the Fermi surface, particularly at the center
of. the BZ, which we shall discuss in the next sec-
tion. Considering all these facts, may we suggest
that further specific-heat measurements be made to
check the only existing data.

Table II shows a small charge transfer -0.27e
from Al to Fe. The magnitude of the charge
transfer is difficult to assess in APW calcula-
tions. " The measured charge transfer is 0.65e.
from Al to Fe.7 Hence the trend of the theoretical
charge transfer is in agreement with the experimen-
tal observation and also with the electronegativities
of 1.5 and 1.8 for Al and Fe, respectively.

TABLE II. Partial (n) densities of states and integrated number (N) of electrons at the Fer-
mi level of different site A, (=Fe,A1) origin and symmetry l (=s,p, d) for a given spin 0. Den-
sities of states are in units of per FeA1 molecule per Ry.

ng(Ep)
n, (EF) n, (S,) I2s g nf (EF) g nl (Ep)

Fe
Al

0.10
0.017

NO

0.89
0.49

~O
P

14.96
0.92

gO

2.67
0.008

18.62
1.43

QNp
I

37.25
2.87

1,O

Fe
Al

0.292
0.455

0.384
0.701

3.459
0.210

4.135
1.366

8,27
2.73
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TABLE III. Comparison between different calculations. Method used is indicated by
"type, " the exchange and correlation potential is denoted by "exch." Except for the results of
Muller et al. (Ref. 7), the rest of the calculations presented in this table are SC.

Type
Exch.

EF—Er
1

EF—E,
~2S

EF—Er
12

E, —Er
12

E~ —E,
R2S

This work
LMTO-ASA

Hedin-Lundqvist

0.745

—0.007

0.147

0.154

0.333

Refs. 8 and 11
APW
X

0.716
—0.018

0.151

0.169

0.312

Ref. 10
APW
X

0.171

Ref. 7
H-NFE-TB

0.765

0.169

-0.312

B. Fermi surface

While calculating the density of states by the
tetrahedron method one looks for all the surfaces of
a given constant energy in all the tetrahedrons. Out
of 1728 tetrahedrons, 798 contained the Fermi sur-
face of energy 0.711 Ry. Thus we could obtain a
limited number of Fermi k vectors. In Fig. 3 we
present the Fermi surface cuts in four symmetry
planes (i.e., I -X-M, I'-X-R, I -M-R, and X-M R). -

The total area of the Fermi surface is 4.812 in units

of (2'jtt), where a=5.497 a.u. Looking at the en-

ergy levels in Fig. 1, we notice that at I and R there
are only three occupied states whereas at other
high-symmetry points and directions there are al-

ways more than three which give the hole Fermi
surfaces as I and R. The hole surface at R is much
larger than that at I (Fig. 3). Pechter et al. " have
also presented the intersection of the Fermi surface,
but unfortunately, only in the I -X-M plane. They

do point out the existence of the holes around I in
the sheets corresponding to the fourth and fifth
bands.

As mentioned earlier, the Fermi surface is very
sensitive to EF', we have also traced the Fermi-
surface intersection (by dashed lines in Fig. 3), when

Er 0.720 Ry——instead of 0.711 Ry. One will notice
that by increasing E~ by 9 mRy makes the hole
pockets around I disappear altogether. The hole
pockets around R become smaller in size and the
rest of the Fermi-surface intersections have been
shifted en bloc. The total area of the Fermi surface
becomes somewhat smaller [i.e., 3.335(2n /a ) ].

To our knowledge there is no experimental data
concerning the magnetothermal oscillations or de
Hass —van Alphen effect in FeA1. But the different
energy-level intersections with the Fermi level are
indeed reflected in the dicontinuity in momentum-
density curves observed by positron annihilation. A
direct measurement of the Fermi surface will cer-
tainly help to fix the Fermi level correctly.

C. Positron localization

One can estimate the localization of positrons at
different sites in ordered or disordered compounds
as a function of concentration by positron-
annihilation experiments. In FeA1 we could calcu-
late the probability Pj+ of finding the positron (+ )

on a site A, after obtaining the proper positron func-
tions 4'~ . Since each atom of one type is surround-
ed by eight first neighbors of the other type, it is
easy to construct the fundamental state of the posi-
tron in FeAl. At a given site A, the positron wave
function 'k~ is obtained by solving the Schrodinger
equation

FIG. 3. Fermi-surface cross sections of FeAl in the
symmetry planes I -X-M, I-X-E, I -M-R, and X-M-A.

when EF——0.711 Ry and ———when EF——0.720
Ry.

——+ Vq+ (r) 0't+„(r)=E+ II&+(r),
2

where V~ (r) is the potential at the site A, experi-
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enced by a positron. It is mainly the image at r axis
of the one-electron Coulomb potential in FeAl. The
functions %F+,(r) and %z~(r) are constrained to satis-

fy the continuity condition at the surface of the
Wigner-Seitz (WS) spheres (Rws ——2.706 a.u. ),

+Al(R ws ) = PF (Rws )

and

d+A+&(r)

~ws "ws

(5)

We find that the two sites have the same probability:

PF,——0.502 and Pz~ ——0.498. Since the wave func-
tion has a very flat slope at Rws, the probabilities
Iix+ of finding the positron in the inscribed spheres
centered on each site are also nearly equal:
IIF+,——0.318, II&~——0.316, and

II,+„,=1—(IIF+,+II~))=0.365 .

This SC result confirms our previous calculations25

using Herman-Skillman potentials on each site.
While calculating the positron charge distribution

I

The last condition determines the positron ground-
state energy in the alloy. Once the %x+(r) are prop-
erly determined, the probability P~+ of localization
of the positron in the WS sphere centered on site k
is given by

f I%'&+(r)
I

d r

f I
%F+,(r)

I
d r+ f I

%A+~(r)
I

d r

in FeA1 Sob found that it is proportional to iron
and aluminum MT spheres, and hence there is no
preference for a particular site. As for the experi-
mental situation, positron localization has not been

confirmed in pure FeA1, but on other binary alloys

such as CdMg and AgAl (Ref. 24) no localization is
observed. So our theoretical observation is con-
sistent with other works. ' ' If any localization in
FeA1 is ever observed experimentally, it will be due
to the presence of vacancies or defects in the alloy.

D. Optical absorption

The optical absorption is proportional to the ima-
ginary part of the dielectric function e(q, co) with
q=0 in the optical range. The imaginary part E2(co)
of e(co) arises from two distinct contributions: (i)
Drude's term which is due to free charge carriers or
free electrons, and then (ii) the interband transitions
giving rise to structures in the optical-absorption
curves,

e,(co) =e,(co)+e,'(co),

where the free-electron part ez(co) is

4~/f e
ep(co) =

m co(1+co r )

Here E~ is the number of free charge carriers per
unit volume, and m* is the optical effective mass
which can be determined from the energy bands
the relaxation time ~ is determined from experimen-
tal measurements.

The interband part e2(co) (in a.u.) at 0 K is written
as"

dSk
(9)

I

the occupied and empty states.
The Bloch functions are constructed as a sum of

functions at different sites A, ,

et(~)=, g g f, IP- (k)
I

'
2@co „„s

I
P'qco„„(k)

I

occupied unoccupied

n and n' are occupied [En(k) (E~] and unoccupied
[E„(k))E~] levels. E„(k) is the nth energy level
at a given k vector and Ez is the Fermi level,

S=tk: E„(k)—E„(k)=co„„(k)=coI, (10)
I

k ) = y ( )'CI""x@ ( ) Y (" ),
l, m, A,

where co is the photon frequency (or energy, since
A'=1). P„„(k)is the dipole matrix element. For nu-
merical calculation we have adapted the tetrahedron
method' to take into account the double sum over

where the C's are the normalization factors, 4I is
the radial part, and FI is the angular part. Since
the basis functions on each site in LMTO, vanish
identically out of the atom. ic spheres, we obtain,
therefore, the following expression at a given site:

(nk I P In k)= g i Cl~ Cc~ (4((r)YI (r) I PI@I(r)YI~ (r)) .
l, m, I', m'

In the case of cubic crystals the dipole matrix will be isotropic for all the rectilinear directions, hence it suffices
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sin8 8
ae '

we obtain

to calculate only one of the three components. It is an easy matter to calculate ( nk
I P, I

ii'k') if we make use
of the Wigner-Eckart theorem for the gradient formula. Using

8 8=Vo——cos8 (13)
Bz dr

I l l+1

~haik
I VoI ii k~= gi"+" -'Ci, mCi+i m( —1) ' . '

(,'lOI VOI 1+1 0~
l, m l & I+i

0 0 0

(14)

where

(I,O
I
Vo

I
1+1,0) =(P((r)Yio(&)

I Vo I
%+i(")Yl+i, o(&) &

Thus, the dipole matrix finally contains only the radial integration. We have

Ji J2 J3

m) m2 m3

the so-called 3-j symbol of Wigner. The other two components (i.e., (nk
I
P„ I

n'k) and (nk
I P„ I

n' k)) are
easily obtained from the general expression

(I',m'
I V„ I

I,m ) =(—1)

l
—m u m

' (I',0
I Vo I 1,0), u =+1,

/' 1 I

000
(16)

1 8 . 8 1 8
vp 8 ay

' ' vZ
(17)

Thus we calculate the dipole matrix elements at the
four corners of each tetrahedron; in between they are
linearized. In the present case we have used all the
occupied states and all those empty states which lie

0.10
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0 Q.1 0.2
( (Ry)

0.3 Q4

FIG. 4. Imaginary part e2(co) of the optical dielectric
function vs energy m (in Ry).

I

in the range 0.5 Ry from EF. So, all the possible
band-to-band transitions in the range of 0.4 Ry are
properly included. Figure 4 shows E2(co) vs r0. 'In
this figure there are two important peaks at about
0.11 (A) and 0.16 (B) Ry. They are due to the tran-
sitions from nonadjacent high-density peaks [Fig.
2(a)] just below the Fermi level to the first high-
density region above EF. There is a very broad peak
(C) at about 0.36 Ry. In the low-energy range there
is a very intense absorption at -0.04 Ry (D) and
also a significant peak at -0.02 Ry (P). This last
peak (F) will perhaps not be observed due to high
free-electron contribution at low energies. So it will
be excluded from any further discussion. Between
peaks 8 and C there is a broad dip (E) centered at
-0.29 Ry. Besides the four main peaks there are a
number of other structures which will most prob-
ably be smoothed due to the relaxation v. Unfor-
tunately, there is no absorption-experiment data in
the optical range, but the four peaks that we have
mentioned above will certainly find their way in fu-
ture experimental observation.

e2(co) has been also calculated by Eibler and Neck-
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el. They have calculated the SC BS by the APW
method, but they had to interpolate this BS in the
H-NFE-TB scheme to obtain the wave functions for
computation of ez(to). They do not obtain the ab-
sorption peaks as pronounced as we do, but they do
have some structures at about 1.4, 2.1, and 4.7 eV,
which roughly correspond to the 0.11-, 0.16-, and
0.36-Ry peaks in our case. They also obtain a broad
dip at 3.5 eV as we do at 0.29 Ry. So the overall
agreement is excellent.

IV. CONCLUSION

A SC BS for FeAl is obtained by the LMTO
method in the ASA. The outcome of this SC BS is
used to calculate the density of states, Fermi surface,
positron localization, and the imaginary part of the
dielectric constant. Agreement of the density of
states at the Fermi level with other theoretical calcu-
lations is found to be excellent. Experimentally,
there is only one source of available data and in
comparison our value appears to be rather big. It is

possible that the FeAl sample under study con-
tained, perhaps, some vacancies which lowered the
measured specific heat. Our e2(to) curve compares
very well with those of Ref. 9, but we obtain many
small structures besides the four main peaks. As for
the Fermi surface it is the first time that it has been
calculated in four principal symmetry planes. A
previous calculation, " in the k, =0 plane, does
predict, as does the present work, the presence of the
hole pockets at I . We have also calculated the Fer-
mi surface when the Fermi level is raised by 9 mRy
which eliminates the I hole pockets. The validity
of the Fermi-surface intersection as presented here
has to be confirmed by experimental studies. We-

hope this will be done in the near future.
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