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Atoms embedded in an electron gas: Phase shifts and cross sections
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The Fermi-level scattering phase shifts and the transport cross sections are reported for
atoms embedded in a homogeneous electron gas. The applications of the results are dis-

cussed, using the electronic stopping power for slow ions and impurity resistivity as exam-

ples.

I. INTRODUCTION

We have recently reported calculations of the elec-
tronic structure of atoms embedded in a homogene
0us electron gas. ' The calculations are based on the
density-functional method. The main focus of Ref.
1 was the energy of the embedded atom, a quantity
which forms the basis of the effective-medium or
quasiatom approach to chemical binding. Other as-
pects of such calculations are also highly interesting.
The kinetic energy shifts of electrons ejected in
core-level photoemission and Auger processes from
fry atoms and condensed phases can be obtained.
The local density of states can be correlated with the
spectral response of the embedded atom. 's The
response of ion cores in metals to static and dynamic
electric fields, i.e., the condensed-phase core polari-
zability, can also be calculated by this approach.

In this paper we report results for yet another use-
ful property of the embedded atoms: the scattering
cross section they provide for Fermi-surface elec-
trons. This quantity is expressible in terms of the
scattering phase shifts in a well-known manner. In
turn the (transport) cross section is closely related to
numerous interesting physical quantities, e.g., the
electron-phonon coupling constant, ' the electronic
stopping power of slow ions, ' and the impurity
resistivity. Moreover, Persson and Hellsing" have
recently pointed out a relation between the cross sec-
tion and the damping rate of a vibrating atom.

We calculate the phase shifts using the single-
particle wave functions arising in the density-
functional method. These wave functions are used
to calculate the ground-state density of the electron
system but their use in other contexts is not formally
justified in the density-functional theory. However,
as we shall show in this paper, the density-
functional wave functions provide useful phase
shifts in the sense that they give at least reasonable

agreement with experiment. The situation is similar
to the calculations in which the excited-state proper-
ties of an electronic system are determined: For ex-

ample, the calculation of the properties of atoms
with core holes is justified by the accuracy of the ob-

tained core-level binding energies or ionization po-
tentials.

An important theme in the theory of various
atomic and electronic processes in metallic con-
densed matter is that of local response. This means

that the properties of the embedded atom can be cal-
culated in terms of the local unperturbed host elec-
tron density around the site of the nucleus of the
atom in question. For example, Persson and Hells-
ing" have shown that this scheme is sufficient to ex-

plain the systematics of the damping rate of a vi-

brating atom on metal surfaces. Similar obervations
have been made for a variety of static and dynamic
processes. ' All this underlines the usefulness of
having available the phase-shift and cross-section
values for atoms embedded in a homogeneous elec-
tron gas.

II. RESULTS

The basic theory and numerical details in the cal-
culations have been discussed in our earlier paper. '

We embed a nucleus of charge Z into a homogene-
ous electron gas of density n =3/4mr, , where r, is3

the density parameter in atomic Bohr units. We
solve the Kohn-Sham density-functional equations
by self-consistent iteration. The local-density ap-
proximation' is invoked for exchange and correla-
tion. In the present case, only spin-compensated
systems are dealt with, although the results can be
generated in a straightforward manner for magnetic
systems as well.

The self-consistent solution yields the scattering
phase shifts 5t(e) for the conduction band as a func-
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55I(e)
dd)(e)= —g (21+1) .

77 t dt
(2)

bD(e) is responsible for the impurity-induced opti-
cal properties in metals and its Fermi-level value in-
fluences electron transport quantities such as elec-
tronic specific heat. We have reported some ED(e)
curves in Refs. 1 and 5.

The calculated 5)(E+) values for Z= 1 through
Z=18 and r, =1.5 through r, =5 are given in
Tables I—V. For r, =2 the Z values are extended up
to 40. Partial waves up to l =5 are included in the
tables; in the actual calculations components up to
l =10 were used, but the phase shifts for /& 5 are
very small. The Friedel sum values [Eq. (1)] are also
shown in the tables and they agree within 0.02 elec-
trons (except for some cases with r, =1.5 or 2) with
the nuclear charge indicating a good consistency.
However, in the case of Z =1 (H) with r, =2 and

tion of energy. A number of the physical quantities
can be expressed in terms of the Fermi-level phase
shifts 5)(ez), which obey, due to the complete
screening of the nuclear charge Z, the Friedel sum
rule

—g (21 + 1)5t(ep) =Z .2

7T

Also the energy derivatives of phase shifts are im-
portant, because they determine the change of densi-

ty of states &&7 (e) in the conduction band:

Z =11 (Na) with r, =5 a very shallow bound s state
appears in the self-consistent calculations. The spa-
tial extent of these states is comparable with the
matching radius used in the calculation to fit the
near-region solution to the asymptotic one. This is
reflected as a slight dependence on the matching ra-
dius in the calculated phase shifts. Therefore, the
phase shifts represented for these cases in the tables
are not from actual self-consistent calculations but
they are obtained by interpolating between the re-
sults with r, values, for which this s state is either
not bound or is strongly bound. The omissions in
Tables I—V correspond to cases where we could not
find a satisfactory self-consistent solution. The
reason for the lack of the self-consistency in these
cases is a very pronounced resonance peak in the
density of states. This peak may move across the
Fermi level in successive iteractions or it may some-
times form a bound state below the bottom of the
band. All this means strong fluctuations in the
screening cloud and achieving convergence is diffi-
cult.

Figure 1 shows in the case r, =2 the decomposi-
tion of screening charge to different I components
according to the definition

Zz is in the whole range from Z =1 to Z =40 less
than the number of bound s electrons in the corre-
sponding free atoms, ZI follows more closely the

TABLE I. Phase shifts at Fermi level 5I(er) and Friedel sums [Eq. (1)] for atoms embedded in an electron gas with
r, =1.5. Q is proportional to the electron transport cross section at the Fermi level [Fq. (4)].

&I«F ~

F][iedel

1

2
3
4
5

6
7
8

9
10
11
12
13
14
15
16
17

1=0

0.8528
1.6902
2,3418
2.8823
3.3630
3.7903
4.1660
4.5021
4.8158
5.1240
5.4342
5.7470
6.0570
6.3565
6.6418
6.9065
7.1514

0.1495
0.3112
0.5354
0.8148
1.1293
1.4644
1.8065
2.1432
2.4642
2.7692
3.0614
3.3477
3.6334
3.9193
4.2056
4.4829
4.7457

0.0347
0.0705
0.1060
0.1330
0.1514
0.1677
0.1886
0.2196
0.2627
0.3189
0.3846
0.4557
0.5294
0.6046
0.6878
0.7794
0.8874

1=3

0.0091
0.0177
0.0251
0.0308
0.0356
0.0407
0.0468
0.0543
0.0623
0.0706
0.0780
0.0837
0.0878
0.0907
0.0947
0.0978
0.1007

0.0025
0.0049
0.0070
0.0085
0.0095
0.0106
0.0119
0.0136
0.0154
0.0174
0.0191
0.0206
0.0216
0.0222
0.0235
0.0242
0.0250

1=5

0.0008
0.0015
0.0019
0.0020
0.0020
0.0023
0.0028
0.0036
0.0043
0.0052
0.0058
0.0061
0.0061
0.0060
0.0065
0.0067
0.0070

sum

0.999
2.012
3.016
4.014
5.007
6.002
6.999
8.003
9.004

10.017
11.028
12.037
13.038
14.030
15.052
16.061
17.082

(1/a() )

0.310
0.755
0.912
1 ~ 112
1.417
1.692
1.777
1.631
1.346
1.047
0.815
0.690
0.697
0.850
1.146
1.539
1.975



ATOMS EMBEDDED IN AN ELECTRON GAS: PHASE SHIFTS. . . 6123

TABLE II. Phase shifts at Fermi level 5I(eF) for atoms embedded in an electron gas with r, =2.
Table I.

See also the caption of

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
30
31
32
33
34
35
36
37
38
39
40

l=o

1.0783
1.9814
2.6636
3.2526
3.7710
4.1990
4.5485
4.8558
5.1590
5.4860
5.8398
6.2060
6.5617
6.8921
7.1907
7.4621
7.7136
7.9455
8.1526
8.3292
8.4753
8.5970
8.7028
8.8002
8.8962
8.9991
9.1193
9.2695
9.6742
9,9036

10.1287
10.3451
10.5469
10.7480
10.9327
11.1020
11.2529
11.3850
11.5011

0.1213
0.2791
0.5310
0.8434
1.1934
1.5678
1.9498
2.3187
2.6588
2.9754
3.2829
3.5968
3.9232
4.2619
4.5982
4.9172
5.2073
5.4585
5.6659
5.8290
5,9532
6.0488
6.1262
6.1941
6.2601
6.3329
6.4233
6.5459
6.9249
7.1721
7.4352
7.7005
7.9494
8, 1889
8.3973
8.5770
8.7283
8.8542
8.9602

l =2

0.0210
0.0491
0.0699
0.0754
0.0733
0.0733
0.0830
0.1073
0.1468
0.1978
0.2509
0.2997
0.3418
0.3840
0.4316
0.4940
0.5835
0.7052
0.8635
1.0581
1.2821
1.5244
1.7768
2.0328
2.2852
2.5290
2.7542
2.9491
3.2330
3.3407
3.4391
3.5397
3.6438
3.7811
3.9349
4.1140
4.3175
4.5407
4.7771

0.0034
0.0085
0.0108
0.0121
0.0135
0.0156
0.0191
0.0240
0.0296
0.0345
0.0375
0.0391
0.0400
0.0425
0.0453
0.0481
0.0503
0.0488
0.0438
0.0363
0.0286
0.0224
0.0183
0.0167
0.0173
0.0203
0.0257
0.0338
0.0519
0.0610
0.0687
0.0756
0.0779
0.0848
0.0851
0.0820
0.0762
0.0695
0.0637

l=4

0.0004
0.0018
0.0024
0.0026
0.0028
0.0030
0.0035
0.0041
0.0051
0.0060
0.0065
0.0069
0.0070
0.0076
0.0079
0.0080
0.0083
0.0079
0.0073
0.0064
0.0056
0.0050
0.0047
0.0047
0.0050
0.0055
0.0062
0.0077
0.0100
0.0115
0.0123
0.0130
0.0116
0.0136
0.0135
0.0131
0.0127
0.0123
0.0122

l=5

0.0000
0.0004
0.0002
0.0001
0.0001
0.0002
0.0005
0.0008
0.0013
0.0015
0.0015
0.0014
0.0012
0.0014
0.0014
0.0017
0.0021
0.0023
0.0024
0.0023
0.0021
0.0019
0.0016
0.0013
0.0012
0.0011
0.0009
0.0012
0.0014
0.0018
0.0020
0.0022
0.0014
0.0029
0.0032
0.0034
0.0035
0.0034
0.0033

Friedel
sum

1.002
2.002
2.996
3.991
4.990
5.989
6.992
7.997
9.000

10.003
11.001
11.998
12.985
13.992
14.990
15.986
17.000
18.007
19.014
20.018
21.021
22.019
23.016
24.013
25.008
26.004
26.996
27.993
29.974
30.987
31.986
32.987
33.919
34.994
36.002
37.008
38.014
39.016
40.017

( I/co)

0.269
0.427
0.439
0.557
0.749
0.874
0.825
0.637
0.428
0.267
0.183
0.199
0.338
0.580
0.846
1.062
1.219
1.364
1.549
1.773
1.971
2.044
1.927
1.624
1.209
0.788
0.460
0.276
0.276
0.405
0.583
0.780
0.970
1.163
1.365
1.581
1.781
1.903
1.884

free-atom curve being sometimes less and sometimes
more than the number of p electrons in the free
atoms. The Z2 component starts to grow after
Z&10 and it is for all atoms for Z=l through
Z =40 larger than the number of d electrons in the
free atoms. Figure 2 shows the decomposition in
the case r, =5, i.e., corresponding to a low-density

electron gas. Zo and Z~ are now closer to the free-
atom counterparts than in the case r, =2. Z2 is very
small and is not shown. It is interesting to note that
Zo and Z~ values for Ne and Ar are very near the
free-atom values. This reflects the very inert nature
of the bound levels of the inert gas atoms even in the
electron gas. Stott and Zaremba' have recently
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TABLE III. Phase shifts at Fermi level 5I(e~) for atoms embedded in an electron gas with r, =3.
of Table I.

See also the caption

1

2
3
4
5

6
7
8
9

10
11
12
13
14
15
17
18

I =0

1.3693
2.3648
3.1277
3.8338
4.3627
4.7014
4.9350
5.1541

5.8577
6.3520
6.8343
7.2352
7.5495
7.8130
8.3492
8.6576

0.0534
0.2168
0.5005
0.8229
1.2016
1.6266
2.0616
2.4719
2.8217
3.1384
3.4603
3.8137
4.2089
4.6252
5.0310
5.7218
6.0004

l =2

0.0073
0.0247
0.0183

—0.0040
—0.0211
—0.0304
—0.0266
—0.0039

0.0355
0.0768
0.1010
0.1063
0.1023
0.0999
0.1127
0.2160
0.3101

l=3
0.0013
0.0006

—0.0018
—0.0037
—0.0029
—0.0021

0.0000
0.0037
0.0069
0.0074
0.0057
0.0044
0.0051
0.0074
0.0113
0.0164
0.0118

l=4
0.0001
0.0002
0.0001

—0.0003
0.0002
0.0001
0.0001
0.0001
0.0003
0.0002
0.0001
0.0001
0.0004
0.0004
0.0003

—0.0003
—0.0012

l=5
0.0000
0.0000
0.0000
0.0000

—0.0004
—0.0004
—0.0003

0.0000
0.0002
0.0001

—0.0001
—0.0002
—0.0004
—0.0004
—0.0003

0.0002
0.0004

Friedel
sum

1.003
2.002
2.998
3.981
4.991
5.991
6.993
8.007
9.002

10.002
10,999
11.992
12.992
13.990
14.991
17.003
18.007

(1/ao')

0.163
0.135
0.117
0.191
0.307
0.346
0.275
0.167
0.085
0.034
0.032
0.108
0.242
0.348
0.360
0.234
0.191

published the Zi decomposition for atoms of the
first two rows (Z = 1, . . . , 10) in electron gas with

r, =3. Their results agree with ours.

3 00

Q= 3 g (l+1)sin [&l(&r)—&!i&(eF)],
kF&.

'
I =o

III. DISCUSSION

A widely useful expression derived from the phase
shifts is

where kF is the Fermi wave vector. This Q is the
Fermi-surface value for the electron transport cross
section multiplied by nk~ For a .small density of

TABLE IV. Phase shifts at Fermi level 5I(e~) for atoms embedded in an electron gas with r, =4.
of Table I.

See also the caption

1

2
3

5

6
7
8
9

10
11
12
13
14
17
18

l =0

1.5978
2.5916
3.4902
4.2874
4.7299
4.9413
5.0632
5.1937
5.4858
6.0327
6.7111
7.2815
7.6486
7.5495
8.5732
9.0069

—0.0164
0.1683
0.4382
0.7306
1.1372
1.6006
2.0715
2.5126
2.8711
3.1744
3.4786
3.8389
4.2735
4.6252
5.9136
6.2122

0.0030
0.0121

—0.0134
—0.0377
—0.0553
—0.0634
—0.0590
—0.0383

0.0024
0.0307
0.0301
0.0143

—0.0084
0.0999
0.0710
0.1285

l=3
0.0015

—0.0021
—0.0047
—0.0044
—0.0037
—0.0023
—0.0001

0.0027
0.0038
0.0003

—0.0027
—0.0037
—0.0032

0.0074
0.0064
0.0008

l =4

0.0000
0.0001
0.0005
0.0009
0.0011
0.0009
0.0007
0.0004
0.0007

—0.0003
—0.0002

0.0004
0.0007
0.0004

—0.0010
—0.0017

l =5

0.0000
0.0000

—0.0002
—0.0002
—0.0004
—0.0004
—0.0003

0.0000
0.0000
0.0000

—0.0001
—0.0002
—0.0004
—0.0004

0.0001
0.0002

Friedel
sum

1.002
2.001
2.997
3.989
4.994
5.993
6.993
7.998
9.004

10.001
10.998
11.997
12.991
13.990
17.002
18.003

(1/ao)

0.098
0.047
0.038
0.111
0.188
0.199
0.144
0.080
0.039
0.008
0.019
0.087
0.167
0.196
0.058
0.024
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TABLE V. Phase shifts at Fermi level 5I(eF) for atoms embedded in an electron gas with r, =5. See also the caption of
Table I.

5I(eF )

Friedel

1

2
3

5

6
7
8

9
10
11
12
13
14
17
18

1=0

1.7551
2.7348
3.8081
4.6237
4.9415
5.0499
5.0978
5.1581
5.4408
6.1308
7.0283
7.6202
7.9047
8.0284
8.6060
9.1841

—0.0738
0.1332
0.3522
0.6288
1.0695
1.5561
2.0498
2.5161
2.8910
3.1755
3.4284
3.7878
4.2585
4.7577
5.9851
6.2796

1=2

0.0048
0.0052

—0.0280
—0.0455
—0.0619
—0.0659
—0.0590
—0.0412
—0.0016

0.0120
—0.0063
—0.0038
—0.0525
—0.0669

0.0231
0.0550

1=3

0.0027
—0.0028
—0.0033
—0.0018

0.0001
0.0021
0.0043
0.0065
0.0049

—0.0012
—0.0020
—0.0038
—0.0024

0.0005
0.0049

—0.0023

1=4
—0.0003

0.0004
0.0011
0.0018
0.0021
0.0014
0.0008
0.0006

—0.0002
—0.0001

0.0003
0.0014
0.0019
0.0015

—0.0008
—0.0009

1=5

0.0000
0.0001

—0.0001
—0.0003
—0.0005
—0.0007
—0.0006

0.0000
0.0001
0.0001
0.0000

—0.0002
—0.0006
—0.0009

0.0001
0.0002

sum

1.002
2.002
2.999
4.000
5.000
5.990
6.992
7.990
9.001

10.001
10.995
11.999
12.994
13.989
17.001
18.001

(1/a 0 )

0.059
0.019
0.023
0.085
0.131
0.133
0.094
0.053
0.027
0.002
0.023
0.074
0.121
0.125
0.028
0.004

embedded atoms, Eq. (4) gives the impurity resistivi-
ty dy when multiplied by ficq /e nZs
=(c~ /nZ~ )(4109 0), where cz is the impurity con-
centration in at. %%uoan dZ I, is th enumbe rof valence
electrons per host ion. When multiplied by A'Ui,

where vI is the velocity of an ion slowly moving
through the electron gas, the expression (4) gives the

15—

electronic contribution' to the stopping power
d W/dr. The damping width 1 due to electronic ex-
citations for a nucleus vibrating in an electron gas is
obtained from Eq. (4) by multiplying by R /M,
where M is the nuclear mass. " Furthermore, the
electron-phonon coupling constant g in supercon-
ductivity theory reduces to a closely related form.

The values of Q for atoms from H to Ar embed-
ded in an electron gas with r, parameter varying
from 1.5 to 5 are listed in Tables I—V. Figures 3
and 4 (and also Fig. 6 for r, =2 and Z =1, . . . , 40)
show these values as a function of Z for different r,
values. The prominent feature of the curves is the
oscillations as a function of Z. The origin of these

15

r =5

10—

20
Z

30 40

FIG. 1. Decomposition of the screening charge of
atoms in electron gas to angular momentum components
according to Eq. (3). The density parameter of the elec-
tron gas is r, =2. The dash-dotted line shows the number
of s electrons and the dashed lines show the numbers of p
and d electrons in free atoms, respectively.

l0
Z

15

FIG. 2. Same as Fig. 1 but for r, =5.

20
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2.0—

g1.5-
O

O

6)

Al host

1.0—

0.5—

i

10
Z

I

15

FIG. 3. Electron transport cross section at Fermi level

defined via Eq. (4) for atoms in an electron gas with the
density parameter r, =1.5, 2, and 3. For r, =2, see also

Fig. 4. The dashed part of the r, =3 curve corresponds to
atoms for which we did not find fully converged solu-

tions.

0
4—

U

2
CI

~ ~
I

15 3525 30
Z

FIG. 5. Residual resistivity due to 3d impurities. The
solid line corresponds to a calculation, in which the phase
shifts are due to atoms in an electron gas with r, =2. The
dashed line gives results obtained using the spherical solid

model (Ref. 5). Experimental values (Ref. 15) denoted by
dots correspond to substitutional impurities in Al.

Si =-m'(Z —4)/6,

Q is given by the formula

15 . 2 Z —4Q-=z sin ir
k~r,3

(5)

(6)

This equation predicts a maximum for Q at Z =7.
Similar arguments predict peaks between Z = 11 and

0.2-

@4 O

0.1—

5 10 15
z

FIG. 4. Electron transport cross section at Fermi level

defined via Eq. (4) for atoms in an electron gas with the

density parameter r, =4 and 5. The dashed parts of the

curves correspond to atoms for which we did not find ful-

ly converged solutions.

is the filling of a resonance peak in the conduction
band. The oscillations can be understood by the fol-
lowing simple model.

The 2p level is not bound for Z=5, . . . , 8, and
the missing electrons fill a p resonance in order to
satisfy complete screening. If only the resonant p
phase shifts are taken into account and if they are
approximated from the Friedel sum rule as

Z =18, between Z =19 and Z =39, and between
Z =30 and Z =36 arising from resonant 3p, 3d, and

4p phase shifts, respectively. %hen r, (2, the peaks
due to the d-phase shifts overlap with the preceding

p peak and we see (Fig. 5) only a shoulder at Z =17
and the Q curve is sinooth at Z =35. The large con-
tribution of the d-phase shifts already before the d
electrons become bound in free atoms is clearly seen

in Fig. 1: ZI exceeds the number of d electrons in

free atoms by -3 when Z=18 or Z=36. When

r, & 3, there are minima in Q curves when Z =3 and
Z =18. These minima appear because the screening
clouds approach the free-atom electron structures
when the density of the electron gas decreases (see

Fig. 2). Therefore, the domination of the resonant

phase shift in Eq. (4) becomes clear and limited in

the Z regions where the conduction-band resonance
in question is filling up. This, in turn, justifies the
use of the model of Eqs. (5) and (6), which predicts
clearly separated oscillations.

The oscillations are seen experimentally in the im-

purity residual resistivity measurements and in the

stopping power data for well-channeled slow ions.
In Fig. 5 the experimental residual resistivity
values' due to the 3d transition-metal impurities in
Al are compared with those obtained from Eq. (4)
with the phase shifts corresponding r, =2. In the
experiment the impurities are substitutional whereas
our phase shifts would describe interstitial impuri-
ties. The main effect of this difference is to shift
the theoretical values toward smaller Z by the
aluminum valence 3. When this shift is taken into
account, the calculated values reproduce the experi-
mental behavior. The experimental values are some-
what larger, which can at least partly be explained

by the lattice distortion effects which have been ig-
nored in the calculation. The dashed line in Fig. 5
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corresponds to values obtained in the spherical solid
model which describes a substitutional impurity.
The results of these calculations are, apart from the
shift, very similar to the present ones.

Experimentally it is observed that for a fixed (me-
tallic) target material, the stopping power for slow
ions shows nonmonotonic behavior as a function of
the projectile nuclear charge Zi. The periodicity of
the "Zi oscillations" is nearly independent of target
material. These oscillations were observed already
about two decades ago, but their origin has been
somewhat unclear until recently. A comparison of
the experimental' ' stopping-power values
(1/ut }(dW/dr} with the theoretical ones is given in
Fig. 6. The target material in the experiment is car-
bon and the velocity of the ions is vl ——9)& 10 cm/s
which is equal to 0 43UF(r., =2). The experimental
results with carbon target in Fig. 6 are scaled by a
constant factor to give a good overall fit with
theory, because the relevant atomic and electronic
densities for amorphous carbon are not uniquely de-
fined. The theoretical values are obtained from the
phase shifts corresponding to r, =2. The experi-
mental and theoretical curves have clearly the same
structure: The minima at Z=11 and 30 and the
maxima at Z=7, 20, and 38 are reproduced by the
theory. One interesting detail is the "plateau" be-
tween He and Li; it is seen in the experiments and it
is predicted by the theory, too. However, the experi-
mental values tend to increase more rapidly as Z in-
creases. The increasing trend is very clear in the ex-
periment with metallic targets. ' The increase can
be due to several effects. The ionic radius increases
with Z and therefore heavier channeling iona see a
larger effective electron density than the lighter
ones.

As seen from Fig. 3 the decrease of the r, parame-
ter causes a strong increase in Q and a filling of the
minima. Evidently the increase of ionic radius also
makes important slowing processes other than
conduction-electron damping. One important no-
tion also is that the velocities of ions in the experi-
ments are usually relatively large, comparable to the
Fermi velocities. The use of expression (4) becomes
more justified for velocities well below U~. Also in
the experiments it is noted that the oscillations show
up stronger the smaller the incident ion velocity is. '

Pathak' has calculated the stopping power for
ions with a method somewhat similar to ours. He
uses phase-shift values for electrons scattered by

2.0—

1.0—

0.5—

I I I I I I I

5 10 15 20 25 30 35 40
Z

FIG. 6. Stopping power for well-channeled slow ions.
Solid line gives the theoretical values obtained via Eq. (4)
using phase shifts for r, =2. Open circles and full dots
denote experimental values for carbon (Refs. 16 and 17)
and the aluminium (Ref. 16) targets, respectively. The ex-
perimental values with carbon target are scaled by a con-
stant factor to give a good overall fit.

atoms, which are calculated in the Thomas-Fermi
approximation, and he is able to reproduce the ZI
oscillations. However, in his approach the phase
shifts are calculated at a wave-vector value corre-
sponding to the velocity of the incident atom. We
believe that this choice of scattering wave vector is
incorrect. Pathak's results are, however, similar to
ours, because he uses an incident velocity very near
the Fermi velocity for r, =2.

IV. SUMMARY

Values for the Fermi-level scattering phase shifts
and the related transport cross sections have been
calculated for atoms embedded in a homogeneous
electron gas. These results are useful in analyzing
the trends in a number of interesting physical quan-
tities, such as the electronic stopping power for slow
ions and the electron-phonon coupling constant.
%within the approximation of local or quasilocal '

response (the density where the atom is embedded is
some weighted average over the host density profile)
the numbers can be directly applied to calculations
which otherwise would be exceedingly difficult.
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