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A simple unitary-transformation formalism, successfully applied to the bulk polaron
problem, is used in order to investigate the ground-state properties of an electron near a sur-
face of a semi-infinite material and interacting with the surface optical modes. The method
has the advantage of being applicable to the whole range of the electron —surface-phonon
coupling. A first-order phase-transition —like behavior from the quasifree to the self-

trapping electron state as the coupling constant exceeds a certain critical value is observed.
The characteristic features of this phase transition such as rapid changes of the ground-state
energy, the effective mass, the mean number of surface phonons in the cloud around the
electron, and the spatial localization of the electron perpendicular to the surface at the criti-
cal coupling constant, are seen. In the present calculation, the coupling of the electron to
the bulk excitation modes is not treated.

I. INTRODUCTION

The possibility of an electron to form a bound
state, in which it becomes trapped near the surface
of a semi-infinite material by virtue of the
electron —surface-optical-phonon interaction, has
been the subject of renewed interest in recent
years. ' The case where an electron interacts with
the surface plasmon has proved to be a reasonable
model in describing the positron surface states on
simple metals. ' In addition, the electron localiza-
tion in inversion layers in Si has also been studied in
terms of the electron —surface-acoustic-phonon in-
teraction model.

Investigations into the surface-polaron ground
state have been presented in the weak- and
intermediate-coupling constant limits by Evans and
Mills using a Lee-Low-Pines' variational pro-
cedure and at almost the same time by Sak in terms
of perturbation theory. The strong-coupling interac-
tion limit, on the other hand, was also worked out
by Sak within the product anzatz of Pekar. "

In order to evaluate the ground-state energy and
the effective mass of the surface polaron over the
entire range of the coupling constant, Clark' used a
variational formalism applied earlier by Larsen' to
the problem of a bulk polaron trapped in a Coulomb
potential. He found a discontinuous change in the
slope of the ground-state energy curve as the cou-
pling constant exceeds a certain critical value. This
discontinuity has the characteristics of a first-order
phase transition in which the surface polaron

transforms from a mobile state to a self-trapped
state.

Recently, two different approaches, namely, the
Feynman path-integral formalism and a modified
variational scheme of the Lee-Low-Pines theory,
have been applied, respectively, by Huybrechts' and
Hipolito" to investigate the surface-polaron ground
state for the entire range of the coupling constant.
However, these calculations have not explicitly
presented such a phase transition between a nearly-
free and self-trapping electron. Farias, Studart, and
Hipolito, on the other hand, using a formalism
based on a generalized path-integral method applied
to the bulk polaron by Luttinger and Lu, ' have
shown the existence of the discontinuity
phenomenon at a critical value of the coupling con-
stant. Whether or not the surface-polaron phase
transition is merely a consequence of the approxima-
tions that were made rather than a property of the
general type is still an unanswered question.

Over the last few years, many authors' ' con-
jectured about the existence of a phase transition of
bulk polarons. Toyozawa' first pointed out that the
phase transition is caused by the short-range nature
of the interaction between the electron and the pho-
non but not by the long-range interaction potential.
In such a way only the acoustic polaron, in which
the interaction between electron and acoustic pho-
non is of short range, undergoes a phase transition.
Later, several investigations into the polaron ground
state described the phase transition in terms of the
spontaneous symmetry-breaking methods. The po-
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laron ground-state wave function is postulated to be
the product of a function of electron coordinate only
and the coherent virtual-phonon state. This polaron
state does not preserve the translational invariance
of the Hamiltonian. In such a symmetry-breaking
situation the polaron ground state has lower symme-
try than the total Hamiltonian. This leads to a
phase transition from a nearly-free-polaron state to
a self-trapped one.

As was pointed out by Toyozawa, ' "the word
self-trapped should not be taken so literally and the
problem of the possibility of the self-trapping should
be replaced by the discussion of the magnitudes of
the effective mass of this polaron. "

The purpose of this paper is to investigate the
surface-polaron ground state based on a variational
formalism recently proposed by Huybrechts. This
method, which is valid for the whole range of the
coupling constant, has been successfully applied to
the study of the phase-transition-like behavior of
different types of bulk polarons by Shoji and Toku-
da. ' %'e have adapted this formahsm to evaluate
the ground-state energy, the effective mass, the
mean number of surface phonons in the cloud
around the electron, and the spatial localization of
the electron perpendicular to the surface as func-
tions of the electron —surface-phonon coupling con-
stant. %e have considered the case when the elec-
tron lies entirely outside the material, which corre-
sponds to neglecting the effect of coupling of the
electron to the bulk phonons. It will be shown that
a first-order phase-transition behavior will occur at
a certain critical value of the coupling constant.

The outline of this paper is as follows. In Sec. II
we define the model Hamiltonian for the surface op-
tical polaron. The general expressions for the
ground-state energy, effective mass, the mean num-
ber of surface phonons in the cloud around the elec-
tron, and the spatial localization of the electron per-
pendicular to the surface are obtained within a vari-
ational formalism. In Sec. III we have applied the
model for the two cases where the electron is local-
ized at a given distance near the surface and when
the electron wave function perpendicular to the sur-
face penetrates the crystal. The numerical results
revealing the phase-transition behavior in both cases
are discussed. Finally, some concluding remarks are
presented in Sec. IV.

II. THE VARIATIONAL MODEL

Let us consider an electron having charge e, free
mass m, and band-structure effective mass m* locat-
ed at a distance z from the surface of a semi-infinite
material that has the bottom of the conduction band
above the vacuum level. The material is assumed to

have its surface in the plane xy, occupying the upper
half-space z &0 and being described by a dielectric
response function e(co), which depends only upon
frequency as

&S —&w
e(~) =e„+

1 —co /cor
(2.1)

where e, and e„are the static and optical dielectric
constant of the crystal, respectively, and co& is the
transverse optical-phonon frequency. By assuming

that the electron couples only with the surface opti-
cal phonons, the Hamiltonian of the system may be
written as

H= f(z)P + p,f(z)p, +P (z)

+g fM)~a ~~ a g

+g(V"-e ' '
a +H c)e

K

where@=
~

K
~

and
(2.2)

f (z) =8(z)+(m*/m)8( —z) . (2.3)

The electron position and momentum operators are

r=(R,z) and p=(P,p, ), respectively. ag and a ~
are the annihilation and creation operators of a sur-
face excitation with wave number K parallel to the
surface. The frequency of the surface mode is ob-
tained by the well-known condition

e(co, )= —1,
which gives

os+1
sos =

e„+1COy

(2.4)

(2.5}

Vg = 2mi(Pie 5/2A—co, )'~ ( I/v IC ), (2.7)

where A is the surface area, is dependent on the
parameter 5, which has different values for each
type of surface excitation. For plasmons, for exam-
ple, it is

&(z) is the one-particle potential representing the
Hartree field of ions and electrons acting on the
electron when it is inside the crystal. Such a band-
structure effect is described here by a simple poten-
tial step at the surface z =0 with step height P 0,
that is,

(2.6}

The Fourier coefficient of the electron —surface-
mode interaction Vg, given by
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8=cog /2',
and for phonons it is

2
S S ooN 6' —1 6' —1

277 E's+ 1 P + 1

(2.8)

(2.9)

representation of translation group. For this reason
the minimization of the energy should be performed
by constraining the total momentum operator P, .
We will do the variation in the following way:

5(t/i
I
(H —p P, )

I g) =0, (2.12)

where p is introduced as a Lagrange multiplier to
keep the expected value of the total momentum a
constant. It turns out to be identified as the velocity
of the surface polaron.

The technique introduced by Huybrechts is to
employ a modified Lee-Low-Pines' canonical
transformation S, defined as

~'

By analogy with the bulk-polaron problem we intro-
duce the traditional dimensionless electron—
surface-excitation coupling constant a, as

cc, =(2ire 5/co, )(m/2' co, )' (2.10)

The Hamiltonian, Eq. (2.2), is invariant under
translations, and the total momentum parallel to the
surface, that is, the sum of electron momentum P
and surface optical-phonon momenta

P, =P+Q iiiKaiga g (2.11)
K

S =exp ii)g—K.Ra xa K
K

(2.13)

where q is a variational parameter to be determined
upon miniinizing the ground-state energy of the sys-
tern. We now proceed in a similar fashion, by sub-
jecting the Hamiltonian

(2.14)

to the unitary transformation S. We find

is conserved, i.e., [H,P, ]=0. As stated above, the
surface-polaron state

I
itj) will be postulated to be a

product of an electron wave function and a coherent
phonon state. Consequently this surface-polaron A=H —p P,
state is not an eigenstate of the total momentum
operator P, and therefore does not belong in any

I

4 '=S PS= p f(z)p, +P (z)+ P —i)+iiiKa ~ax +g(fm, —iiip K)ajax
1 f(z) '-

K K

—p P—i)gfiKa ~a ~ +g [Vz exp[ i(1——ri)K R]a & +H.c. Ie
K K

(2.15)

It should be interesting to note that this expression recovers the Lee-Low-Pines weak-coupling interaction re-
sults for the two-dimensional system in the case when i) = 1. On the other hand, in limit i)~0 we obtain the
strong-coupling approximation recently discussed by Hipolito. '

Under the second Lee-Low-Pines canonical transformation,

U =exp g (g-a —g'- a - ) (2.16)
K

where g ~ is a variational function, the Hamiltonian A, Eq. (2.15), transforms as
'2

,p.f(z)p. +~(z)+, P —ng&KICK I' I P —ng&K—I(K I'
K K

2 g 2

fici), + f(z) tip, K-
K

+g I V~gexp[ i(1—i))K R]g'K—+H.c. ]e (2.17)

where A i' contains terms of no consequence for the
calculation of the ground-state properties in which
we are interested.

Following Huybrechts we introduce the creation

and annihilation operators B& and Bz by
1/2

I'J —— mAA,

2
(Bi +Bi+Poi), (2.18a)
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2m',

' 1/2

(BJ B—J ), (2.18b)

and
~
0) is the surface-phonon ground state, which

is obtained from

where the index j stands for the electron coordinate
parallel to the surface and A, and Po are variational
parameters. These expressions for Pz and RJ are
then substituted into Eq. (2.17) to obtain a new rep-
resentation for 4 ', namely 4 '". Next we will
evaluate the expectation value of this new Hamil-
tonian A " for the ground-state wave function of
the system, given as a product anzatz trial function
by

(2.19)

where P(z) is a normalized function of electron coor-
dinate only, as long as

f dz i/(z) i
=1, (2.20)

I

' 1/2

F(i),A, ,(g,Po, p, )= w + w Po+iris', RA, q m iris',

2

+g(V"-g-'+ Vgg-)exp

a x ~

0}=0, B/~ 0) =0,
(0 [0}=1.

(2.21)

Taking into account the total momentum conser-
vation, that is,

p U 'S ' F+QRKaKaK SU p)=D,
K

(2.22)

we obtain the expression for the expectation value,

F(i),A, ,(x,P0, P)—:(1(i
~

4 "'
~

i( }, (2.23)

AK
& p+g e +wq' rI K-

K

(1 n)eC M(K)
4m',

which after some algebraic manipulation turns out
to be

+ f dz P ~(z) p,f (z)p, + P"(z) P(z), (2.24)

where

W=(m/ m)f dz f(z)
~
P(z)

~

and

(2.25)

V&M(K)exp[ —(1—i)) fiK /4m', ]

%co, +S'g fi K /2m —Ap. K

(2.28)

M(k)= f dzy*(z)exp( K~z
~

)P(z) .—(2.26)

The variational function g x and the parameter Po

are determined by performing the minimization of
Eq. (2.24} with respect to both g x and Po,

and

Pp ——

1/2
2m p
iriit, 8' (2.29)

5F M

SP,

We then find that

(2.27) By substituting these expressions for gx and Po

back into F [Eq. (2.24}], and up to second order in

the surface-polaron velocity p, , we find

~ Vic ~

'M'(&)exp[ —(1—il)'AK'/2m', ]F(g, A, , p, ) = ff'
2 ,+ g fiK /2m

I
V x ~

'M'(K. )K'exp[ —(1—il )'iriK'/2m A, ]
2 W m g (fico, + Ail'R'K'/2m)'

oo

+f „dz4'(z) 2,p,f(z}p,+~(z) p(z). (2.30)
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We finally obtain the general expressions for the ground-state energy Eo, the surface-polaron effective mass
m,~, and the mean number of surface phonons N in the cloud around the electron:

~ Vg ~

M (K)exp[ —(1—il) fiK /2m', ]
E =W —g +f dzP~(z)[p, f(z)p, +~(z)]P(z),

2 r s+ e'q'X'Z'r'2m 00

(2.31)

msp 1 +
m 8' m-

K

~
Vg

~

M (K)E exp[ —(1—i)) fiK /2m', ]
(fico, + Wi} A' K /2m )

(2.32)

~ Vg
~

M (K)exp[ —(1—rl)~fiKi/2m', ]N= U-'S-' aKaKSU =
K

'=
2 2 2 2

K K K S

(2.33)

It should be noted that in the weak-coupling limit,
that is, g=1, Evans and Mills presented a very il-
luminating discussion about the general features of
these expressions. For large coupling constants,
iI~0, a few remarks were presented by one of us."
We will explore here the results of this model calcu-
lation by assuming two distinct forms for the varia-
tional wave function of the electron in the next sec-
tion.

III. APPLICATION OF THE MODEL

A. Electron localized in its z coordinate

As our first application of the present method we
will study the ground state of an electron located in
the z-coordinate system at a fixed distance z=zo
from the surface of a material; as a consequence we
take for the density

~

P(z)
~

the 5 function 5(z+zo)
with zo&0. In this case it is a straightforward
matter of calculation to find an expression for the
ground-state energy. We obtain

exp[ —(1—rl) x /A, —2xzo]
Ep ————a, dx

2 1+g x

(3.1)

From here on we adopt units in which energy is
taken in units of the optical-surface-phonon energy
Ace„k in units of the frequency co„and lengths in
units of the average distance of the electron from
the surface, z, =(fi/2mco, )'~ . The se:ond term in

Eq. (3.1), which is the shift in energy of the electron
arising from the interaction with the surface modes,
is in this case the so-called image potential. For
large values of zo the interaction term, V(zo) reduces
to the familiar classical image potential result, that
1S,

2m')s
V(zo) =-

s

' 1/2
e, —1

e, +1
—1

e„+1 4zp

as

2zp
(3.2)

5Ep 5Ep=0, — -=0,
5g

' 5l,
(3.3)

we have obtained the ground-state energy of the sur-
face polaron as a function of the coupling constant
a, for the cases zp ——0 and 0.1. As can be seen from
Fig. 1, the energy has two distinct branches. The
first branch is a straight line that corresponds to the
weak-coupling limit and terminates at the point a,f.
The second branch is a curved line asymptotically

When the electron is close enough to the surface, say
zo &1, the classical image potential V(zo) is greatly
modified. Therefore it does not diverge at zo=o as
in the classical case. Thus, as zp~0 the interaction
potential energy remains finite:

1

V(zo~O) = ——,ma,

in the weak-coupling regime, and

2v(, -o)= ——, a,

in the strong-coupling regime. It is interesting to
note that this rounding off of the divergence in the
classical image potential was described earlier by
Sak and Evans and Mills in the weak-coupling
limit. Recently, Hipolito' presented the same re-
sults as ours in both weak- and strong-coupling re-
gimes.

In general, the expression for the ground-state en-

ergy given by Eq. (3.1) must be minimized with
respect to both variational parameters q and k for
each value of zo and the coupling constant a, .
Hence, with the optimum values of i) and A, numeri-
cally determined from the equations
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-I5,0
o=O.I

With q and A, being the best parameters for
minimizing the energy, we are able to compute the
effective mass of the surface polaron as well as the
mean number of surface phonons around the elec-
tron. Thus Eqs. (2.32) and (2.33) reduce in this case
to

-l0.0

m, z exp[ —(1—g) x /A, —2xzo]"=1+2a, dx
(I+rl x )

(3.4)

exp[ —(1—g) xi/A, —2xzo]%=a, dx
0 (I+rfx )

(3.5)

-5.0

0.0
&sc&sc 5,O

If,
Ioo as

expressed in a quadratic form that begins at the
point a„and corresponds to the strong-coupling re-
gime. The crossing point a~ of the two branches
gives the first-order phase-transition point. At this
critical point the surface-polaron state changes from
a nearly-free-type state to a self-trapped one. There
is also a third energy branch corresponding to the
maximum, which is related to the unstable solution
of Eq. (3.3).

In Fig. 2 we plot the best value of the parameter g
that minimizes the ground-state energy as a function
of the coupling constant. As can be seen, an abrupt
change in q occurs at the critical point a, =a„. For
each curve, the thick solid line corresponds to the
stable solution with lower energy, the dotted line
corresponds to the maximum energy, and the thin
solid line corresponds to a metastable solution.

FIG. 1. Ground-state energy in units of fico, of the sur-
face polaron as function of the coupling constant a, for
two values of zo, the distance of the electron from the sur-
face. The thick solid part of each curve corresponds to a
stable solution with lower energy. The thin solid line cor-
responds to the second-lowest solution representing a
metastable state which is the self-trapping state or the
nearly-free state according to whether a, &a„or a, &a„.
The dotted line corresponds to the maximum representing
the unstable solution.

The numerical calculation of Eqs. (3.4) and (3.5)
was performed, and the results as a function of the
coupling constant for the cases z0=0 and 0.1 are
displayed in Figs. 3 and 4. The first-order phase-
transition behavior is most clearly seen by a discon-
tinuous change of the mass and the mean number of
surface phonons at the critical coupling constant
asc.

Let us now discuss the characteristic behaviors of
the surface-polaron ground-state energy, the effec-
tive mass, and the mean number of surface phonons
around the electron in both limits of weak and
strong coupling for the case where the electron
motion is restricted to the surface, that is, zo =0. As
stated before, in the weak-coupling theory we have
small a, and g=1. Then in this limit it is clear
from Eq. (3.1) that a minimum of Eo occurs at
A, =O. In this case a straightforward calculation
leads to the following expression for the ground-
state energy (which actually is the interaction poten-
tial energy):

1Eo= ——,was

For the effective mass we obtain

(3.6)

~sp =1+
8

m'as,
7tl

and for the mean number of surface phonons
1N= 4@a,

(3.7)

(3.8}

In the strong-coupling regime, which corresponds
to large values of a„we have iI =0, resulting then
for the energy Eo,

Ep ————,va, . (3.9}

The best-fit value of the variational parameter A, was
found to be A, = 4 ma, . In this strong-coupling limit
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FIG. 2. Variational parameter g, which minimizes the ground-state energy as function of the surface-polaron coupling
constant a, for two values of zo„ the distance of the electron from the surface. The curves are described in the same way as
in Fig. 1.
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FIG. 3. Effective mass of the surface polaron as func-
tion of the coupling constant a, for two values of zp, the
distance of the electron from the surface.

sc sc5„00.0 IO.O

FIG. 4. Mean number of surface phonons in the cloud
around the electron as function of the coupling constant

a, for two values of zo, the electron distance from the sur-
face.
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we obtain for the effective mass

NlsP ) 2 4

Pl
=1+—o' a (3.10)

energy [Eq. (2.31)], the effective mass [Eq. (2.32)],
and the mean number of the surface phonons
around the electron [Eq. (2.33}], may easily be
rewritten as

and for the mass number of surface phonons

2X= 4mas . (3.11}

B. Variational wave function

The results are in both regimes of weak- and
strong-coupling constants the same as those ob-
tained earlier from different approaches. ' ' '

Finally, it should be interesting to note that in the
two limiting cases the principal contribution to the
ground-state energy of the surface polaron came
from the self-induced potential. At small coupling-
constant values the surface polaron is quasifree and
becomes trapped by the self-induced potential as the
coupling constant exceeds the critical value a„.

r

P m 1

m ~ (y+ p)2

M (x)exp[ —(1—g) x /A, ]+8"——a, dx
1+Wg x

Ep —— 1+2yP 1—
r+2

and

N =a, dx
M (x)exp[ —(1—rl)zx2/A, ]

0 (1+We] x }

(3.14)

~p 1 " x M (x)exp[ —(1—q)2x~/A, ]+2as dx
m 8' (1+Wg x )

(3.15)

The first variational calculation allowing the elec-
tron wave to penetrate the crystal but restricting it
to the weak or intermediate-coupling constant re-
gime is that of Evans and Mills. Here, we will fol-
low their calculation by choosing a two-parameter
trial wave function P(z), which has the form

Ae ~, z&0
P(z) = (3.12)B(z+z')e~', z&0.

where

W= 1 —2P 1—

and

Ptl 1

(y+ 2p)(y+ p)'

(3.16)

(3.17)

In the case where P"0 is large compared to the
surface-polaron ground-state energy, the parameter

y, which measures the depth of penetration of the
wave function into the medium, may be taken as a
fixed Parameter and given by y=(2m*X"o/iri)'~ . In
general, y must be treated as a variational parame-
ter.

By imposing the requirement that P(z) be continu-
ous at the surface with slopes in the vacuum and in
the material fitted at the surface and the normaliza-
tion condition, we find for the values of the parame-
terse, B, andz'

' 1/2
4yp

y+2P
1

r+p '

1/2
4yp3

y+2P
(3.13)

1

y+p
In the calculation we perform below, with the

parameter y controlled by P p, the wave function of
the electron perpendicular to the surface turns out to
have only a simple remaining variational parameter
p. In this model, the surface-polaron ground-state

M(x) = 2P
y+2p x +2p

3

x +2p (x +2p) (x +y+ p)
y+p (x+2y)(y+p)'

(3.18)

As before, the energy is expressed in units of fico„A,
in units of co„and the lengths in units of
z, =(A'/2m', )'~, the average distance of the elec-
tron from the surface. The parameters g, A, , and p
must be determined by minimizing Eq. (3.14)
through the extremum point conditions:

5Eo 5Eo 5Eo

5v] M, 5p
(3.19)

We have carried out all the calculations with the as-
sumption that m =m*.

In Fig. 5 we plot the surface-polaron ground-state
energy as a function of the coupling constant a, for
the cases y=10 and ao (no penetration of the elec-
tron wave function into the crystal). As can be seen,
we found an energy that has two distinct branches.
The first branch corresponds to the weak-coupling
approximation appropriate for a small coupling con-
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50 l0.0 ~sc 2QO Ds

FIG. 5. Ground-state energy as function of the surface-polaron coupling constant a, for two values of y, the inverse of
the depth of penetration of the wave function into the material. The notations a„,a,a,f as well as We curves are
described in the text.
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FIG. 6. Variational parameter g, which minimizes the ground-state energy as function of the surface-polaron coupling

constant a, for two values of y, the inverse of the depth of penetration of the electron wave function into the material.

The curves are described in the same way as in Fig. 1.
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FIG. 7. Effective mass of the surface polaron as func-
tion of the coupling constant a, for two values of y, the
inverse of the depth of the penetration of the electron
wave function into the material.

I

5Q IQO 150 2'
Dsc &sc S

FIG. 8. Mean number of the surface phonons in the
cloud around the electron as function of the coupling con-
stant a, for two values of y, the inverse of the depth of
the penetration of the electron wave function into the ma-

terial.

FIG. 9. Spatial localization of the electron perpendicular to the surface as function of the coupling constant a, for two
values of y, the inverse of the depth of the electron wave function into the material.
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stant a, and presented by Evans and Mills within
the Lee-Low-Pines theory. This branch crosses the
second one at a critical point a, =a„and terminates
at O.,f. The second branch beginning at the point a„.
corresponds to the strong-coupling approximation as
discussed in an earlier paper by Hipolito. ' The sur-
face polaron undergoes a first-order phase transition
from a nearly-free-type state to a self-trapping one
at the crossing point of these branches. This transi-
tion is accompanied by a discontinuous change of
the parameter g as shown in Fig. 6, where the values
of s) that minimize the ground-state energy are plot-
ted as a function of the surface-polaron coupling
constant a, . The solid lines correspond to the mini-
ma of the ground-state energy, while the dotted line
corresponds to the maximum. As the parameter y
decreases, that is, when the electron wave penetrates
more deeply into the material and consequently the
wave function becomes more compacted to the sur-
face, the value of the transition point a„shifts to a
small one. In such a way the electron can be
trapped most easily by the surface modes.

The first-order phase-transition behavior from a
quasifree surface-polaron state to a self-trapped one
is even more dramatically seen in the effigy:tive mass,
the mean number of surface phonons around the
electron, and the spatial localization of the electron
perpendicular to the surface, as is shown in Figs.
7—9. A very rapid change in these physical quanti-
ties occurs as the coupling constant exceeds the criti-
cal value a„.

IV. CONCLUSIONS

In this paper we have applied a simple unitary-
transformation method to investigate the ground-

state properties of a surface polaron. We have con-
sidered the case where the electron lies outside the
crystal and, as a consequence, interacts with the sur-
face phonons only. The numerical results have
shown the occurrence of an abrupt change in the
ground-state energy, the effective mass, the mean
number of surface phonons in the cloud around the
electron, and the spatial localization of the electron
perpendicular to the surface at a certain critical
value of the coupling constant. In such a first-order
phase-transition behavior the surface polaron
changes at this critical value of a, from a nearly-
free-state type to a self-trapped state. We feel that
the results presented here give a good picture of
some qualitative aspects of an electron self-trapped
by the surface modes. We also hope that our
theoretical predictions can be experimentally con-
firmed in the near future.
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