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The thermodynamic properties of the small-polaron model are studied by means of a

discrete version of the Feynman path-integral representation of the partition function. This

lattice model describes a fermion interacting with a boson field. The bosons are treated

analytically, the fermion contribution is calculated using a Monte Carlo method. We

analyze the thermodynamic functions for the case of one-, two-, and three-dimensional po-

laron motion. We present strong evidence that the polaron becomes superlocalized if the in-

teraction strength is greater than a critical value.

I. INTRODUCTION

Phase transitions and phase diagrams of the
ground state of quantum systems are essential for
the characterization of the general behavior of these
models. A special class of interesting problems is
the coupled fermion-boson system. In this paper we
want to discuss a lattice model in which one fermion
is coupled to a boson field, a polaron. In solids and
liquids the polaron is a fundamental concept. The
polaron is an electron which is coupled to lattice vi-
brations, the bare electron is dressed by phonons.
Here we report the results of an extensive Monte
Carlo study of the thermodynamics of a small pola-
ron. ' This polaron is described by the Holstein
Hamiltonian [see (2.1)], a lattice model originating
from a tight-binding Hamiltonian. There have
been many speculations about a possible phase tran-
sition connected with localization of the electron as
a function of the electron-phonon coupling constant
in continuum polaron models. s However, for the
most interesting continuum model, the Frohlich po-
laron, Feynman, using his path-integral formalism,
has given a superior solution for the ground-state
energy which does not exhibit any discontinuities.
The value for the coupling constant where the
Frohlich polaron is supposed to change the charac-
ter of its ground state occurs at values where the
continuum picuture is expected to break down for
real systems. Localization is also possible for the
small polaron. For small values of the coupling
constant the motion of this polaron is bandlike,
whereas for large values of the coupling constant the
polaron exhibits hoppinglike motion. As a matter of

fact, usually only the latter regime is referred to as
the small polaron, but we will use the notion of
small polaron in the more general context. In most
cases the term localization is restricted to phenome-
na occurring in random systems where it concerns
the character of the wave function as a function of
some randomness parameter. In random systems
there is no symmetry and localization is not con-
nected with symmetry breaking. In uniform lattice
models such as the polaron model the translational
symmetry can be broken, in principle. There is no
evidence that this will happen for this one-body
problem, and we are concerned with localization ef-
fects which conserve translational symmetry. These
effects are described by correlation functions which
measure the spatial extent of the lattice distortion
caused by the electron.

Our method uses the generalized Trotter formula
to generate a discrete version of the Feynman path
integral. With the use of this particular path in-

tegral the dispersionless phonons can be integrated
out and we are left with a (d + 1)-dimensional classi-
cal system. This system is simulated with the help
of the standard Monte Carlo technique.

Our results point to substantially enhanced fluc-
tuations in the neighborhood of a critical value of
the coupling constant for all lattice dimensionalities
(1, 2, and 3). The fluctuations are found in correla-
tions which are sensitive to the localized character
of the polaron. We have monitored operators which
could serve as order parameters since the expecta-
tion value of these observables is drastically reduced
once the strong-coupling regime is entered.

The paper is organized as follows. In Sec. II we
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present the underlying theory and we derive expres-
sions for the observable quantities in terms of path
integrals. In Sec. III we discuss the computational
technique used to calculate the path integral and we
also compare our approach with others. A discus-
sion of the simulation data for the polaron is given
in Sec. IV. The conclusions drawn from these calcu-
lations can be found in Sec. V.

II. THEORY

H =HP+H 1+H2,
N

i=1
Mn' N

Q x; +A, g xic; ci
2 i=1 i=1

(2.1a)

(2.1b)

(2.1c)

We assume that the fermion moves in a d-
dimensional hypercube of linear size N and that
there is only one boson degree of freedom per site.
We will take an Einstein model for the lattice vibra-
tions. In principle, the theory given below can be
extended to the case of phonons with dispersion. In
the analytic manipulations only a few slight rnodifi-
cations in the notations would be required, but ow-

ing to dependence on the spatial dimensionality, ad-
ditional numerical calculations of integrals over the
Brillouin zone would be necessary. We prefer to
study the more simple dispersionless polaron model
because the emphasis of this work is on the calcula-
tional method of the thermodynamic properties.
For simplicity of notation we will now formulate the
theory in one space dimension. The formulas for
two-dimensional (2D) and three-dimensional (3D)
systems can be derived by means of the same tech-
nique but we will not present them here. The model
Hamiltonian reads

H2 ———t ~ c; c;+1+c;+lc; . (2.1d)

The mass M will usually been taken to be 1, 0 is the
angular frequency of the Einstein oscillator, A, is the
fermion-boson coupling strength, and t is the kinetic
energy associated with the nearest-neighbor hopping
motion of the fermion. The momentum and coordi-
nate of the ith boson are denoted by p; and x;, c;
creates a fermion at site i, c; removes a fermion
from site i

The Hamiltonian (2.1) describes an electron cou-
pled linearly to the phonon field of the site where
the electron resides. The phonons are dispersionless
and consequently the only intersite communication
is through the electron. Physical realizations of the
d-dimensional model could be found in molecular
crystals. One needs a molecular unit compatible
with the lattice symmetry and having a nondegen-
erate internal mode, for instance, the breathing
mode.

To derive a path-integral representation of the
partition function we use the Trotter formula' and
obtain

Z:—Tre ~ = lim Z~, (2.2a)

(2.2b)

where r=Plm The H.amiltonians Ho and Hz
describe free particles and can be diagonalized by in-
spection. Furthermore, Hl is diagonal in the coor-
dinate representation of the boson field and fermion
position. Substituting the spectral representation of
these operators in (2.2) and working out all resulting
matrix elements, we can evaluate the integrals over
all boson and fermion momenta analytically. We
obtain

m N m

Z =cr ~ g f P g dx„e gI(2' y —y +)
fy&I j=l n =1 j=1

(2.3a)

where

m N 1S = g g (x„j—x„j+,)
j=l n=1 2v

+ x„q+rAx„j5„y . (2.3b)
2

Here c& is an unimportant constant factor and y.
denotes the position of the fermion on the jth replica
of the original chain. The index j labels the number
of complete sets of states that have been inserted in

2s'n
Xexp —z cos (2.4)

I

(2.2b) and plays the same role as the imaginary-time
variable appearing in the path integral. '" The
model has been formulated on a lattice and hence
the fermion kinetic energy is not represented by a
Gaussian but by a Fourier-transformed imaginary-
tirne lattice propagator

I(z, l)=—g cos
1 2m. ln

N„, N
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m —I

xnj P U «nexp
m k=0

and obtain

(2.5a}

N m —1 —tt« I
U « I

n =1 k=0

roon«27tjk+ ~ g Bny exp
m j 1

'J m

where

2mk r 0
ak ——1—cos +

m 2

(2.5b)

(2.5c)

is the inverse of the free-boson propagator. In-
tegrating out all the U„k yields

B F
Zm =c2ZmZm

m —1

Z = ffa«''
k=0

Zm= g p(yJ),
bg)

'N
(2.6a}

(2.6b)

(2.6c)

In the limit N~ co this function is nothing but the
modified Bessel function of the first kind of order l.
For consistency we use the discrete lattice sum in-
stead of the Bessel function.

Because S is quadratic in the boson coordinates
we can carry out the integration over all x„j. Here
we will first diagonalize the quadratic boson action
by means of a discrete Fourier transformation with
respect to the variable j. Alternatively one could
start from the continuum limit of the boson action,
but this is inconsistent with the discretization pro-
cedure used for the fermion. We have chosen a sim-
ple Einstein model for the bosons and therefore it is
possible to integrate out each boson degree of free-
dom separately. We set

p(y )= ff I(2«,y —yi+i}

m m

Xexp g g F(i —j}5„.&i=lj =1

F(l)= r A, y' ) 2nkl

4mk 0m
(2.6d}

(2.6e)

All unimportant numerical factors have been ab-

sorbed in c2. The approximant Z to the partition
function of the free-boson system can be calculated
exactly. A detailed discussion is given in Appendix
A. The calculation of the fermion contribution Z
is a nontrivial problem because the density function

p(yJ ) describes a peculiar 2D classical system of tti

particles at the positions yj interacting with each
other. The first factor in (2.6d) represents an effec-
tive nearest-neighbor interaction, the second ac-
counts for the retarded long-range interactions
caused by the fermion-boson coupling. In each row
the real-space direction contains one electron in-

teracting with the electrons in other rows.
Obviously, (2.6c) will reproduce the exact free-

fermion results for any value of m if the fermion-
boson coupling A, =O. In general, it can be shown
that Z & Z +i &Z. ' Therefore, the approach
used here will give us lower bounds on the free ener-

gy instead of the upper bounds obtained by conven-
tional variational methods.

The function Z itself is not useful; more relevant
are the approximants to the

energy,
specific heat,

and derivatives of the free energy F =—(1/P)lnZ
with respect to the coupling A, . To simplify the no-
tation a little bit, we will denote the expectation
value of a quantity A taken in the ensemble defined

by the density function p(yJ ) by

(A)—= gp(y )A(y ) . (2.7)
Zm Iyj I

We have

p 8
m (2.8a}

(2.8c)

KF y ~ J J+ & J J+m I(2«y y+i 1)+I(2«—,y y—+i+1)—
(2.8b)m I(2«y J yJ + i)—

tti f i i 8r'
where Km and V stand for kinetic and interaction energy. The fermion contribution to the specific heat is
given by

C =—P E =2«P (13E~) ++[((e )'—)+(c )],2 ~
8

(2.9a)
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Fe

F&m=

I(2',yj y—i+1 1—)+I(2' y —y +1+1) ~ ~ BF(i j)—
I(2',yj —yj+1} i =1j=1

~ J t Jm I(2' yj y.+—1 2)+—I(2',y —yj+1+2)
I (2rt yj—yj+ 1 }

(2.9b}

I(2',yj —yj+1—1 }+I(2',yj —yj+1+ 1)

I(2~t,yj yj—+1)

2
m m B2F(i j)+XX

i =1j=1
I

(2.9c)

/

Here we used the recursion relation
2BI(z,l)/Bz ~I(z, l —1)+I(z,/+1}. Straightfor-
ward algebra yields

BF 2 m m

=C(0)—=— g g F(i —j)(5„.
M,

C(/)—=— g F(i —j)&5(1,, 1,, (,t& (2.12b}
1&j=1

if /&0. For / =0 we should use expression (2.10a).
It is convenient to introduce the normalized
fermion-boson correlation function

and

BF~ N Tre ~ c;c;x;
lim

m-~ BA, , Tre-t'~

(2.10a)

(2.10b)

C(l)—:C(/)/C(0) . (2.12c)

Studying C(l) as a function of the coupling A, will
give us direct information about the way the fer-
mion distorts its surrounding.

III. CALCULATIONS

The formalism presented in the preceding section
is of little use unless we can calculate the quantities
(2.8}—(2.12} for different values of m, P, t, and A,

(for convenience we have chosen units such that
0=1). Although in a strict sense the density func-
tion (2.7) is not a density function of a genuine 2D
classical model, we can still use the standard classi-
cal Monte Carlo method to estimate the expecta-
tion values within a certain statistical accuracy. By
doing so we avoid approximations such as perturba-
tion expansions or variational procedures. Of
course, perturbation expansions and variational
methods are very useful to calibrate the simulation
data. Therefore, we calculated the first nontrivial
weak coupling correction to the fermion energy (see
Appendix B) and we will also compare our data with
the strong coupling results.

It should be clear that one fundamental approxi-
mation has already been made by keeping m finite.
Therefore, it is necessary to study the convergence
of the results as a function of m. For the boson con-
tribution Z the convergence can be studied
rigorously as is shown in Appendix A. From this
study we can deduce a minimum value of m such
that for each inverse temperature P the exact results
of the boson system are reproduced within a speci-
fied error. The actual value of m used in the simu-
lations depends on the value of p, t, and j1, and is
determined such that within the statistical errors of
the simulations, the results remain the same if m in-
creases any further.

We now summarize some technical details of the

x&a, .,„.5,,„, &

1 BF' BE' '
A BA

+
M,

(2.10c)

The first derivative of the free energy (2.10a) is re-
lated to the expectation value of the operator

g,.x;c;c;, the second derivative (2.10c} is propor-
tional to the static susceptibility of this quantity. It
will turn out that it is more interesting to study the
fluctuations of BF /M, and, therefore, it is useful to
introduce the function

(2.11)

A discontinuity in BE /M. or M as a function of
l1, means that the free energy is not an analytic func-
tion of the coupling l1, and, in analogy with the
theory of phase transitions, this indicates that the
system undergoes a transition.

In order to gain additional insight in the proper-
ties of the model it is useful to consider fermion-
boson correlation functions. After some algebraic
manipulations we find

Tre c; c x;+1tiHt-
lim C(1)= Tre-t'~ (2.12a)

where

BzE~ g m m m m

g g g g E(i j)E(i' j—')—
P~ i=i j=ll =1j =1
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simulation. To check our program we reproduced
the exact results for 1D, 2D, and 3D noninteracting
systems of different sizes and several values of P, t,
and m. In our opinion this should always be done
first. It gives some indication that the phase space
is sampled correctly. Any Monte Carlo method that
fails to pass this simple but essential test can not be
trusted. In our final simulations, we chose N =32 (a
variation of the linear dimension N only has a very
small effect on the results} and 2000m single-particle
steps were discarded before taking samples. Most of
the data presented here have been obtained from
runs of 50000 samples each. The number of single-
particle steps between two successive samples is rn.
Occasionally longer runs have been made to con-
vince ourselves that there were no systematic errors.
The choice of the initial configuration has a negligi-
ble effect on the results. It turns out that the specif-
ic heat is the most difficult quantity to sample, espe-
cially at low temperature. The statistical errors on
the specific heat are somewhat larger than those on
the other quantities but there is the additional prob-
lem that it is also more sensitive to the choice of m.
The same problem also occurs in other models. For
the harmonic oscillator the exact analysis of Appen-
dix A demonstrates that the convergence of
C~ as a function of m is much slower than that of
E (see Table I}. The same behavior has been ob-
served in exact short-chain calculations for 1D fer-
inion systems. ' Therefore, it might well be that it

is a general property of the Trotter formula which
makes the calculation of the specific heat at low

temperatures more difficult. The main source of
statistical fluctuations comes from quantities related
to the kinetic energy Hz. This could be expected be-

cause we are simulating a quantum model in real
space instead of in momentum space. A typical run

(d =1, p=5, N =32, m =32, r =1, and A, =3) takes
40 minutes of CPU (central processing unit) time on
a Digital Equipment Corporation VAX11/780 com-

puter.
We close this section by comparing our method'

with other attempts to use Monte Carlo simulations
to study fermion-boson models. ' The analytic elim-

ination of the boson degrees of freedom simplifies
considerably the problem of calculating the thermo-

dynamic properties. In the first place, we have for-
inulated the fermion-boson problem in such a way
that the fermion contribution can be calculated
separately. Therefore, we are able to study the fer-
mion properties quantitatively. This is in sharp con-
trast to another formulation' in which not only the
fermion but also the boson properties are calculated
simultaneously by some simulation technique. In
such an approach the polaron contribution is hidden
in the statistical noise of the bosons because in the
approximation to the functional integral there are
mN" boson variables while there are only md fer-
mion degrees of freedom. Furthermore, in that
method the number of variables grows exponentially

TABLE I. Comparison between two approximations to the path integral of a harmonic os-
cillator. Exact results correspond to m = oo. Energy E~ and specific heat C have been cal-
culated using the simplest discretization procedure of the path integral. Continuum form of
the path integral and a trigonometric approximation have been used to calculate the energy e
and specific heat c . Oscillator frequency 0= 1 and the temperature is very low (P=5).

2
3
4
5
6
7
8

9
10
12
14
16
18
20
24
28
32

EB

0.321 95
0.392 31
0.431 62
0.45455
0.468 71
0.47794
0.48424
0.488 72
0.49200
0.496 37
0.49907
0.50085
0.50207
0.50296
0.504 12
0.504 82
0.505 28
0.50678

gB

1.13379
0.963 02
0.769 18
0.61983
0.51342
0.438 03
0.383 77
0.343 87
0.31387
0.272 87
0.24703
0.22979
0.21775
0.20902
0.19751
0.19049
0.18591
0.17074

0.264 85
0.342 39
0.374 69
0.40203
0.41S38
0.431 53
0.44078
0.448 39
0.45424
0.463 18
0.469 54
0.47429
0,477 96
0.48090
0.485 28
0.488 40
0.49072
0.50678

0.88603
0.798 96
0.74225
0.64293
0.585 08
0.52799
0.48904
0.453 86
0.42749
0.385 32
0.354 82
0.33179
0.31383
0.29944
0.277 84
0.26242
0.250 87
0.17074
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with the spatial dimension d. Consequently it can-
not be used to simulate the system of the linear size
N =32 (which was the value of N used in most of
our simulations) unless d =1 or the temperature is
high (if P= 5, m should be larger than 20 in order to
have accurate results). An important advantage of
our approach is that it combines analytic and nu-
merical techniques in such a way that the simulation
itself is very efficient. If we had not used the fact
that the Hamiltonian is quadratic in x„j., the number
of variables in the partition function (2.6a) would be
m (N +1). Now, however, we can evaluate Z~ ex-
actly and the number of variables in the sum Z~ is
only m. In practice this implies that the computer
time for the simulation only grows quadratic with m
and linear with d. This allows us to make a sys-
tematic study of the convergence of the approxi-
mants as a function of m, rather than using intuition
for choosing a particular value for m. ' To summa-
rize, it is now obvious that in our approach no addi-
tional numerical procedure is necessary to extract
the relevant polaron properties from noisy data, it is
very efficient from the point of view of computer
time, and it is possible to study the model in all spa-
tial dimensions.

clear that although the temperature is very low (see
also the discussion in Appendix A), the convergence
is rather good and a linear extrapolation scheme
would give us an accurate estimate of the exact re-
sults m~ oo. Keeping m and P constant and vary-
ing A, we obtain the data depicted in Fig. 2. For
comparison we also show the weak coupling (B6)
and strong coupling results for the energy. There is
good agreement between the simulation data and the
weak coupling theory as long as A, &2 and a similar
conclusion holds for strong coupling A, & 3. In the
intermediate coupling regime 2 & A, & 3 the curvature
of dF /M, is very weak and 8 F /BA, has a max-
imum. Of course, it is impossible to rule out that
there is a discontinuity in the first derivative by
means of a numerical calculation, but in this case we
do not have other evidence that might support this
hypothesis. A more detailed picture of what is go-
ing on in this region is obtained by plotting the fluc-
uation dd . In Fig. 3 we compare the data of dd

for different t and P. For t =1 (which was also the
value of t in the previous figures) the maximum of

is located at A, =2.6. As the temperature in-

IV. RESULTS

In Fig. . 1 we plot the energy E~ and dd'~ as a
function of I/m for P=5, A, =3, and t =1. It is

0.7

9 — 1 dimension

=5 t =1 m=32

2
A

2

0.6

0.5

0.4

nsion

P=5 t 1 X3

0.3

0.2

0.1

l I I I I I I I

I I

1 2 3 4 5
1 1 1 1

32 10 6 4 3
1/m

FIG. 1. Energy E and fluctuation dd' at low tem-
perature and constant coupling as a function of 1/m. In
all figures solid lines are guides to the eye only.

FIG. 2. Energy, the first derivative of the free energy
with respect to A, , and the second derivative of the free en-

ergy with respect to A, as a function of the coupling A,.
Also shown are the results of weak and strong coupling
theories.
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1.0

0.9

dimension
o P=1 t=l

m=10

~ P=5 t=1

m=32

1 dimension
~ P=5 t=1 m=32

0.7
P =5 t =1.5

rYl= 32

0.6
~ P=5 t=0.5

m=20

0.5
LL E

0.4—

0.3

FIG. 4. Kinetic energy as a function of the coupling A, .

0.2

0.1

1 2 3 4

FIG. 3. Coupling dependence of the fluctuation bS'
for several temperatures and hopping energies t.

creases this maximum decreases rapidly but the peak
position remains the same. If we keep the tempera-
ture constant (P=5) and vary the hopping energy t
we see that the peak position and the peak height in-
crease with increasing t. We observe that to a good
approximation, the peak position A,, can be found by
equating the weak and strong coupling expansions
of the ground-state energy. Converting the sum in
(B7) into an integral we find

A,,=4t [1—(1+4t) ' ] (4.1)

The plots of the fluctuations seem to be symmetrical
in the vicinity of A,„but because A, rather than A,

sets the scale of the coupling energy this behavior is
not related to a physical property of the model. In
Fig. 4. we show the kinetic energy as a function of A,

at low and intermediate temperature. In the critical
region where A, =A,, the absolute value of the kinetic
energy decreases rapidly with increasing A,. The sta-

tistical errors increase if A, approaches its critical
values, an effect which is also observed in Monte
Carlo simulations of phase transitions. To illus-
trate the high degree of accuracy that can be ob-
tained by the technique used here, we also show (see
Fig. 5) a comparison between the weak and (zero-
temperature) strong coupling results and the simula-
tion data of the energy E at intermediate tempera-
ture (P= 1). The higher the temperature, the less is
the value m (and computation time) that is needed
to obtain the correct answers. This is an intrinsic
property of the approximation (2.2b) as is also illus-
trated by comparing the data of Tables I and II. We
see that, except for Fig. 1, the value of m used in the
simulations is large enough to guarantee that the ap-
proximation (2.6b) for the bosons is very accurate.

A typical plot of the m dependence of E and
in the case of 2D fermion motion is shown in

Fig. 6. As in the 1D case, the rate of convergence of
the approximants is quite good. In Fig. 7 we com-
pare simulation data obtained at low temperature
(P=5) for the energy of the 2D and 3D models with
two types of ground-state energy calculations:
second-order perturbation theory and a strong cou-
pling approach. Results on dd'm for 2D and 3D fer-
mion motion are given in Fig. 8. At low tempera-
ture P=5 we find a very sharp large peak in dd'~
(note that there is a difference in scale between 2D
and 3D data). The fluctuations ~ are much
larger than in the 1D case. In contrast to the 1D
case, the most important contribution to 8 F jBA,
[see (2.10c)] in the critical region is not BF /BA, but
dd ~. The fluctuation on the first derivative of the
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TABLE II. Same as for Table I but here P= l.

2
3
4
5
6
7
8
9

10
12
14
16
18
20
24
28
32

1.0588
1.0714
1.0760
1.0781
1.0793
1.0800
1.0805
1.0808
1.0810
1.0813
1.0815
1.0816
1.0817
1.0817
1.0818
1.0819
1.0819
1.0820

C

0.9481
0.9336
0.9281
0.9255
0.9240
0.9231
0.9225
0.9221
0.9219
0.9215
0.9213
0.9211
0.9210
0.9209
0.9208
0.9208
0.9207
0.9206

em

1.0188
1.0435
1.0535
1.0598
1.0637
1.0665
1.0685
1.0701
1.0713
1.0732
1.0745
1.0754
1.0762
1.0768
1.0777
1.0783
1.0788
1.0820

0.9818
0.9583
0.9489
0.9427
0.9389
0.9361
0.9341
0.9325
0.9313
0.9294
0.9281
0.9272
0.9264
0.9258
0.9249
0.9243
0.9238
0.9206

free energy with respect to the coupling A, has a very
pronounced maximum at a certain value of the in-
teraction parameter A, and this indicates that the sys-
tem switches from one state to another if the cou-
pling A, passes its critical value. As in the ID
model, these effects disappear as the temperature in-
creases. In Fig. 9 we show the data for —d 'K~

1 dimension
/

/

I
2

perturbation

theory

F-Em

1O — (=1 t=1 m=10

3

EF

~ hF„

I

2
1 1 1 1 1

32 10 6 4 3
llm

2

FIG. S. Comparison between the weak and strong cou-
pling theories and the simulation data for E at inter-
mediate temperature P= l.

FIG. 6. Energy E" and fluctuation dd at low tem-
perature and constant coupling as a function of 1/m.
Fermion moves on a two-dimensional square lattice.
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10

P =5, m=32
F

~ —Em, 2-D

2.0 =5 t 1 rn 32
II

1.8
~ cl= 2

d=3

l.2

).0

1 2 3 0.8

FIG. 7. Comparison between the ground-state energy
(dashed line, 2D model; dash-dot line, 3D model) obtained
from second-order perturbation theory, the energy in the
strong coupling regime (solid line) and simulation data for
E~ (solid dots, 2D model; solid squares, 3D model). Plot
shows that in our units (t =1 and 0=1) the inverse tem-
perature P=5 corresponds to a very low temperature for
these systems.

0.6

0.2

and as in the 1D model we observe a rapid decrease
of the kinetic energy as the coupling A, increases. In
the critical region the kinetic energy of the 2D and
3D models drops more rapidly than in the 1D case.
This is consistent with the observation that the tran-
sition in two and three dimensions is more abrupt
than in one dimension.

In Fig. 10 we compare the normalized nearest-
neighbor fermion-boson correlation functions (2.12)
for 1D, 2D, and 3D polaron motion. We see that in
all cases C(h) (6 stands for a unit vector of the d-
dimensional hypercube) decreases rapidly if the cou-
pling A, increases toward its critical value. We have
also calculated the more-distant correlation func-
tions. We find that they display a similar behavior
but the actual values decrease fast with distance.
This, of course, is just the same as saying that the
polaron is small.

V. DISCUSSION

The general picture is quite clear. As the cou-
pling grows, the polaron loses kinetic energy and it
gains potential energy. This is a general charasteris-
tic behavior for particles which become more and
more localized. It is also clear from the results that
there is a critical line in the (t,i.) plane. The critical

FIG. 8. Coupling dependence of the fluctuation dd
at low temperature. Fermion moves on a 2D square lat-
tice (dots) and on a 3D cubic lattice (squares). Note that
the 3D results for hI' are shown on a different scale.

points are recognized through a large growth of
fluctuations. The observable connected with the
coupling energy shows enhanced fluctuations and, in
addition, there is the sharp drop in the order-
parameter-type observable.

Several limits of the polaron model can be at-
tacked with analytic tools. These limits are the
weak coupling regime (A, &&t,Q), the adiabatic re-
gime (M~ ao, MQ finite), and the small-
bandwidth limit (t~0).~ The weak coupling cal-
culation is straightforward (see Appendix B). One
must be very careful with the adiabatic limit because
it introduces a possible spurious breaking of the
translational symmetry. A finite-body problem does
not allow any symmetry breaking to occur. This
can easily be seen by assuming the opposite. If we
had prepared the system in a broken-symmetry
state, other equivalent states could be generated by
applying all the symmetry operations of the Hamil-
tonian. The probability for a transition from these
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FIG. 9. Kinetic energy as a function of the coupling A,

in the case of 2D and 3D fermion motion.

states to the broken-symmetry state is nonzero.
Therefore, the latter can not be the ground state
since the particle can tunnel to other states. A very
large tunnel barrier would imply a very long life-
time, but this is not a critical effect. In an infinite-
body theory the broken-symmetry state can be stable
because its lifetime depends on macroscopic tunnel-
ing. However, a finite-body system can have order
parameters which are not connected with any loss of
symmetry.

The adiabatic limit has much in common with the
one-impurity level in a tight-binding Hamiltonian
treated in detail by Economou. ' When A, & 4tMQ
a bound state can be pulled out of the 1D continu-
um. The nonadiabatic corrections will restore the
translational symmetry because the localized wave
functions will become the local building blocks of
Bloch-type wave functions. However, it is still very
likely that the character of the wave function
changes in the neighborhood of A, =4tMQ . This
becomes even more apparent in the small-t limit.
Holstein has obtained the highly nonadiabatic solu-
tions in that case. The wave functions are superlo-
calized in the sense that any operator measuring the
correlation between the electron and a phonon van-
ishes unless the correlation is measured on the same
site. Nevertheless, the wave functions transform ac-
cording to irreducible representations of the transla-
tion group. Holstein's result for the 1D case is

E(k)= — 2t cosk exp— (5.1)
2MQ 2MQ

showing the reduction of the bandwidth with the ex-

f 2 3 4 5

FIG. 10. Normalized nearest-neighbor fermion-boson
correlation functions for 1D, 2D, and 3D polaron motion
as a function of the coupling A, .

ponential Huang-Rhys factor. Of course, if the
translational symmetry would be broken we would
end up with a perfectly localized adiabatic solution.
The hopping motion does not contribute to the ener-

gy in a significant way in the strong coupling re-
gime, and that is why our strong coupling results in
Figs. 2 and 5 are essentially the contribution
A, /2MQ . In the weak coupling limit and in the
adiabatic limit the size of the polaron extends over
many sites with an exponential decay of correlation
between the electron and the phonons. In the
strong coupling regime the polaron is superlocalized
and the extension of the polaron is over one site
only. It is this transition that we are observing in
our Monte Carlo experiments.

So far we have only discussed the ground-state
properties. At finite temperatures all states become
thermally available and all the effects discussed so
far will flatten out. This is precisely what we ob-
serve in our simulations. In the strong coupling re-
gime there is supposed to be an interesting change of
transport properties as a function of temperature.
At a suitable temperature the electron can hop over
the barrier due to its thermal energy. Unfortunate-
ly, these dynamic phenomena are not directly
measurable by the techniques used in the present
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work. These dynamic effects have no drastic influ-
ence on the thermodynamic properties discussed in
this paper.

In the preceding discussion we have implicitly as-
sumed that we were dealing with the 1D case. In
two and three dimensions we find the same features
as for the 1D polaron. In the strong coupling limit
the small polaron behaves, effectively, as a zero-
dimensional system, and the behavior of the system
is insensitive to the lattice dimensionality. The gen-
eral tendency seems to be that the critical region be-
comes smaller and the transition is more abrupt.
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APPENDIX A

In this section we examine the approximant Zm to
the partition function of a free-boson system in
more detail. This will enable us to choose a
minimum value of m such that we get accurate nu-
merical results. We also investigate the alternative
approach where one starts from the continuum bo-
son action and uses a trigonometric expansion of the
coordinates to perform the integral over the
imaginary-time variable. We compare the rate of
convergence of the corresponding energies and
specific heats and show that the first formulation is
superior for the numerical calculation of the path
integral.

In the discrete formulation the partition function
of the free-boson system is given by

m —1

Z„'= ll a„-'"
k=0

'N

(Al)

(rQ) '
z (rQ}2 ™

k=O k=o
(A3}

In the continuum limit we start from the action

S=—, f, dt[x'(t)+Q'x'(t)],

use the ansatz

(A4a)

~ktx(t)=bp+ g bksin
k=1

and integrate over t. The functional integral over all
paths x(t) is now replaced by an integral over all
possible values of bk. Because the action S is qua-
dratic in bk it is straightforward to obtain'6

z~ = f e &x = [det(d;1 )]
' —N/2K —1

(1 D) g dkk— (ASa)

where

D= g
k=1 d00dkk

dm ——(nk)z+ (PQ)z(1+5k o),

dok =dko=2«Q)'
km.

(Asb)

(A5c)

(A5d)

and all other elements are zero. The energy and
specific heat per site read

where ak is given by (2.5c}. The energy and specific
heat per site are written as

(A2)
2m k 0

and

(A6)

(A7)

e =—(pQ) g' dkk (1+5k p) —Dz(1 D)—
k=o

K —1 K —1

c~ =2(pQ) g dkk (1+5k o) —(pQ) g dkk'(I+5k o)+2(Dz) (1 D) +(1—D) —[Dz —4(pQ) D3]
k=0 k=0

with

(kook)
Dn=

k i doo(dkk)"
(AS)

Because a free-boson model can be solved exactly,

we are in the unusual situation where we can take
the limit X~ 00 analytically. In the case of a more
complex system this is not possible and we may re-
gard the expansion (A4b) as an approximation.
Then it is reasonable to set E=m such that the
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number of variables in the functional integrals is the
same. Now we can compare these different approxi-
mations to the path integral of the free-boson model

by calculating the energies (A2) and (A6} and specif-
ic heats (A3) and (A7) as a function of E =m and P
(Q=1 in our numerical calculations). The results
for P=5 are given in Table I. The exact results cor-
responds to m = 00. Comparing the exact energy

1
with the exact ground-state energy equal to —, we

may conclude that P=5 corresponds to a very low
temperature. It is clear that the continuum formula-
tion is inferior to the discrete formulation with re-
gard to the rate of convergence. Because of the na-
ture of the approximations we might expect that
convergence is faster if the temperature is higher.
This is illustrated in Table II where we give the re-
sults for P= 1. Note also that, in this case, both ap-
proximations to the path integral yield lower bounds
to the energy.

%e conclude that although the trigonometric an-
satz is very well suited to approximate the integral
over the imaginary time t, it is not as good as the
simple trapezium rule if the additional functional
integral over all possible paths has to be performed.

where ek ——2t cosk. The interaction is given by

g «-k+ak)pk
})

2Q
(82)

Z(A, ) =Zo+ —Zg,
2

—pHO
Zo =Tr

(x —p)H

0

(83a)

(83c)

The first-order term is zero because H) changes the
total number of bosons. We now evaluate Z2/Zo by
standard techniques and obtain

2 —1 p(ek —e +0)
AQ 1 ~ pre ~ —1

e@'—1 Zo kp ~k —~p+

(84a}

where pk denotes the Fourier-transformed fermion
density. To second order in A, the Taylor expansion
of the partition function reads

APPENDIX B
F ~f4 (84b)

Here we consider the case where the fermion-
boson coupling is weak and calculate the energy by
means of perturbation theory We .present the for-
malism in a notation appropriate for the 1D case,
the extension to higher dimensionality is trivial.
The Hamiltonian of the noninteracting system is

Ho= —g ekckck+Q g akak (81)
k k

1 8 Z2

2 BP Zo
(85}

is the interaction energy. Using (84a) we find

is the partition function of the free fermion. The
thermal energy is given by E(A, )=EO+Eo+Ez
where Eo is the free-boson energy, Eo is the free-
fermion energy, and

g2Q —) PQ 1
. P(&k —&P+n)

1 ~
P(Ek EP+0)—

2 ge 1

(86)

In general, the summations over k and p have to be done numerically. In the ground state (p~ao) (86)
reduces to

E2 ——— g(eo —e +Q)20 P

a result which could have been written down directly by using the lattice Green's functions. '
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