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Quantization of particle transport
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The integrated particle current produced by a slow periodic variation of the potential of a
Schrodinger equation is evaluated. It is shown that in a finite torus the integral of the

current over a period can vary continuously, but in an infinite periodic system with full

bands it must have an integer value. This quantization of particle transport is used to clas-

sify the energy gaps in a one-dimensional system with competing or incommensurate

periods. It is also used to rederive Prange's results for the fractional charge of a soliton.

I. INTRODUCTION

In this paper the effect of an adiabatic change of
the potential on an electron or a system of electrons
is considered. The question that is posed is "If the
potential is changed slowly in such a way that it re-
turns to its starting value in time T, is the integrated
current of eltx:trons across a boundary quantized?"
This question, which is formulated in Sec. II, is
answered negatively for electrons in a finite torus in
Sec. III. In Sec. IV it is shown that for electrons in
filled bands in an infinite periodic system the parti-
cle transport is quantized. This result is closely re-
lated to our earlier work on the quantized Hall ef-
fect in a periodic potential. ' The result may be
applicable to problems of sliding charge-density
waves in a solid, but that application is not con-
sidered here. In Sec. V the result is used to classify
the gaps in a system with competing or incommens-
urate periodicities. In Sec. VI the problem of one-
dimensional solitons is considered. ' It is shown
how the quantization of charge transport leads to
Prange's theorem for soliton charge.

II. ADIABATIC TRANSPORT
BY A POTENTIAL

In this paper the motion of particles which satisfy
the Schrodinger equation with a slowly varying
time-dependent potential V(r, t) is considered. The
potential is taken to be periodic both in time t with

period T and in one of the space variables x with
I

period L. For example, we could consider a poten-
tial of the form

V(r, t)= Vp(r)+ Vi(x vt y—,z), (2.l)

g(x +L,y,z) =P(x,y,z) (2.2)

for all times, while in the second case the system is
taken to be infinite in x. In both cases the potential
is taken to confine the particles close to the x axis,
so the first case is equivalent to a torus of cir-
cumference L, while the second case gives an infin-

ite one-dimensional periodic system whose unit cell
is of length L

Since the potential is slowly varying the adiabatic
approximation is used for the wave functions —in
fact the validity of the adiabatic approximation is
the criterion for how slow the potential variation
must be. Expansion of the wave functions in terms
of the instantaneous normalized eigenfunctions

g~(t), with eigenvalues a1(t), gives the solution close
to Pp(t) as'

where V0 and V~ have the common period L and v

is small. In this case L Iv must be a multiple of T.
The particle current integrated over the period T
gives the total number of particles transported in a
period.

Two versions of the problem are examined. In the
first case the system is supposed to have periodic
boundary conditions in x, so that the solutions satis-
fy

t
I
P(t)&=exp —(i/fi) f 6p(t )dt

I Vp(t) &+'& g I PJ(t) &(&q
—&p) '&l(tJ'(t)

I fp(t) &

j+0
(2.3)

to first order in the time derivatives, where the phase of l(p(t) is chosen in such a way that its time derivative gp
is orthogonal to gp. To the same order the particle current density produced by the moving potential is

27 6083 1983 The American Physical Society



6084 D. J. THOULESS

2m .+p (ej —ep)
(~' I ~ & ~: 8„' - B. ~ +(il ~i& ~: B. + 8,

' 6 (2.4)

For the problem of a torus (periodic boundary conditions) this can be integrated over all space to get the
current as

r

&0= ~ X —«, IPo&('~ &,
)
—«,OI&,J&«,j

rP Wp ~ ~

mL Bx
(ep —H) '

l
1(&p&+ (1(&p

l
(ep —H)

Bx
(2.5)

After some manipulation this can be written in terms of the Green function as

f dE f dx f dx' G(x,x';E) G(x'—,x;E),8, 8
2mmL

(2.6)

where the contour goes round the eigenvalue E'p.

For an infinite periodic system with filled bands Eq. (2.6) remains valid if the integration over x is restricted
to one period and if the integration over E surrounds the energies of the filled bands only. Equation (2.5) can
be replaced by

f2 f»(1 —f~ } &}6kg fdk, ", , y„,&&y„. l y..&+(y..l y„,&(y„.
p

(2.7)

where k is the Bloch wave number, A, and p are band
indices, f» is unity for full bands and zero for empty
bands, and the Bloch wave functions 1(»k are nor-
malized in a unit cell.

gives the particle transfer as

Cp (A /——m) g 4(mA/+fan) 2m (L/2mnA)
n =1

III. TRANSFER AROUND A TORUS =(mAL lfP)z/45 . (3.4)

If the wave functions in Eq. (2.5) satisfy the
periodic boundary conditions (2.2) the integral of the
current is a continuously variable quantity. This
can be shown by evaluation of the integral for spe-
cial cases. For example, in a pure one-dimensional
problem with a potential of the form

For the other states the degeneracy is broken by
the potential, so that they come in pairs separated by
an energy 2A /L The integr. al of the gradient of one
function multiplied by the other is

(4n.n IL }f s—in (2m.nx/L)dx = 2mn/L, — .

V(x, t) = —A5(x ut) for 0& t &—L/u (3.1) (3.5)

an explicit expression for the Green function can be
obtained. The qualitative nature of the result can be
studied by taking A to be sufficiently small that per-
turbation theory is applicable. The eigenfunctions
can be written as P„(x —ut), where, for the ground
state,

Pp(x) =L '~ [1+mA (x ——,L) /FPL) (3.2)

up to first order in A. The overlap of Bgp/&}x with

&I}„ is given by

(v 2/L)(2mA/fi L) f (x —, L)sin(2nnx/L}d—x

=—mAV 2/mA n . (3.3)

The integral of the current Jp over the period L/u

so the leading term in the integral of the current is

C„=+4'tfPn ImAL, (3.6}

with the plus sign for the lower state and the minus
sign for the upper state. This also depends continu-
ously on the strength A of the potential, but diverges
as A goes to zero whereas (3.4) tends to zero.

IV. FILLED BANDS IN A PERIODIC
SYSTEM

In Eq. (2.7) it is possible to replace

[e»(k) ez(k)) 'BIBx-

by (im /fP)B/dk, as might be expected from the for-
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Pk =uke ikx (4.1)

where uk satisfies periodic boundary conditions and
the equation

1

2m

B
i A —+iiik

Bx
B B

2+2m By Bz2

+ V —e(k) uk=0. (4.2)

From this it follows that

~~A,k ='g (k)ui.k

1+ gu„k
ei (k) —eq(k}

. a
)& —g k

—
& +k ugk

m " Bx

mal relations between x and i B/Bk, and between the
commutator of x with the Hamiltonian and B/Bx.
To show this explicitly one can write

normalized wave functions.
There is a slightly different way of understanding

the integral. Rather than allowing Pk to be analytic,
but possibly multiple-valued functions of t and k on
the torus, one can make them single-valued by
demanding that the functions at one particular
reference point in space be real and positive. This
definition introduces singularities at those values of
t, k for which P is zero at the chosen point. The in-

tegral then reduces to a sum of contributions from
these singularities, and it can be shown that the con-
tribution of a singularity is 2ni, with a sign that
depends on the sign of Im(Q~BQ/Bk) at the refer-
ence point.

It is also possible to change from the variable k to
the variable E =ei(k}. The integral over a period of
k becomes a contour integral over E which sur-
rounds the energy band. This integral can be contin-
ued into the complex plane by restricting

~ PE ) to
those solutions that satisfy the Floquet condition
with a negative real part of the exponent; (PE

~

is
then the adjoint solution with a positive real part of
the exponent. The particle transfer is

iA
(~

&Szk

)
(4.4)

Substitution into Eq. (2.7) and integration over t
(which eliminates the term involving the matrix ele-
ment of x) give the particle transfer as

Ak ~ Ak

(4.5)

In the paper of Thouless et al. ' it was argued that
such an integral over two parameters in which the
Hamiltonnian is periodic should give 2mi times an in-

teger, since the integral is equal to i times the
change of phase of the wave function round the per-
imeter of the region of integration. The integral de-
fines the first Chem class of the mapping of the
torus in tk space on the complex projective space of

(4.3)

where g(k) is an arbitrary real function. With Eq.
(4.1) this gives

4'i.k

k
=t lg (k)+x)'6k

(4.6)

For the one-dimensional Schrodinger problem this
topological invariant can be expressed in a form that
is more transparent. Firstly, 1(E can only have zeros
for E on the real axis, since, from the Floquet condi-
tion, a zero at one point implies zeros at any multi-

ple of L from that point, and so implies a solution
of the homogeneous eigenvalue problem in a system
of length L. Secondly, since

~ QE ) can be construct-
ed by integrating the Schrodinger equation from an
arbitrarily large value X of x to small values of x
and taking the limit X—+co, the nodes of

~ fE)
move monotonically toward larger values of x as E
is increased. This implies that Bf/Bx and BP/BE
have opposite signs at the nodes, so that if Bg/Bt
and Bg/BE have the same sign the node is moving
to the right, while if they have opposite signs at a
node it is moving to the left. If the contour in Eq.
(4.6) crosses the real axis at EF and at some point
below all the bands, then the integral is just the sum
of contributions from all those values of t for which
there is a node at the reference point of the wave
function at Ez, the contribution is 2nifor a no—de.
moving right and +2ni for a node moving left. The
particle transfer C is just the net flux of nodes mov-

ing through a given point at energy EF during a
period T.
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V. COMPETING AND INCOMMENSURATE
PERIODS

This method can be used to classify the energy
gaps of a one-dimensional Schrodinger equation
with competing periods. The potential is taken to
have the form

V(x)= g V;(x/g; —rl;) with V, (x+1)=V,(x}

(5.1)

so that g; is the period of the component i and rt;
gives its phase. In the general case, according to the
Wigner —von Neumann theorem, an energy gap will
not close when a single parameter g; is varied con-
tinuously, so, if the contour of integration crosses
the real axis at E~ in an energy gap, then the gap is
characterized by an integer t; which gives the parti-
cle transfer when q; is increased adiabatically by un-

ity; this integer is given by

-( " ") . (5.2)

The path of integration may have to be shifted as rl;
is varied to keep it within an energy gap.

If the gap remains open for all values of the
phases and if there is a lowest common multiple

g=p;g; of the periods, then a uniform translation of
the whole potential by a distance g is equivalent to
successive translations of the rt; by p;. This gives

VI. SOLITON CHARGES

There are two types of discrete solitons in one-
dimensional systems:

(a) solitons such that each soliton must be suc-
ceeded by some sort of antisoliton. An example of
this is a domain wall in a ferroelectric polarized
along the chain. In this example the soliton charge
is just twice the component of the dipole moment
along the chain divided by the spacing between di-
poles. There is no constraint on the value of such a
soliton charge.

(b) solitons which can occur in succession without
any intervening antisoliton. The solitons in polyace-
tylene [(CH)~] discussed by Su, Schrieffer, and
Heeger are of this sort—they are breaks in the al-
ternating sequence of double and single bonds along
the chain of carbon atoms.

Polyacetylene does not have fractionally charged
solitons because the molecular orbital states are oc-
cupied by two electrons. A model in which the
magnetic field is so strong that only one spin state is
occupied for the valence electron can be considered.
For example, a regular chain of alternating B and Be
atoms joined by alternating double and single bonds
has solitons of type (a}, as is shown in Fig. - 1(a},
since the soliton illustrated, with two double bonds
on a B atom, must be succeeded either by two single
bonds on a B atom or by two double bonds on a Be
atom. The B-Be pairs carry a dipole moment, so
movement of the soliton one unit cell (two atoms) to
the right, as shown in Fig. 1(b), involves a charge
transfer which is not just one electron going half a
unit cell to the right, as the figure suggests; but also
there is an additional amount which depends on the
polarization of the bonds.

p;t;=m, (5.3)

g tg/gg
——p, (5.4)

where p is the average particle density.

where m is the total number of particles in the
length g all the numbers in this equation are in-

tegers. This is a generalization of Eq. (5) of Ref. 1.
If the gap closes for some values of the gj, the

values of t; may depend on the other gj. A closed
path that goes through a single-level crossing leads
to a half-integer value of C, since the wave function
changes sign round such a path.

For incommensurate potentials continuity sug-
gests that these relations should still hold. If the
gap remains open for ail values of the phases, then
the generalization of Eq. (5.3) is

8—Be=8—Be=8=Be—8=Be—8
(a)

8—Be=8—Be=8—Be=8=Be—8
(b)

8—B=B—B=B=B—B=B—B=B
(c)

FIG. 1. Possible configurations for polymers with al-
ternating single and double bonds when the magnetic field
is so strong that only one spin state of the valence electron
is allowed. In (a) and (b) the bonds have an electric dipole
moment that is reversed on the two sides of the soliton.
In (c) there is no dipole moment, but the units carry a net
charge of one unit for each pair of atoms.
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L =Na+d, (6.1}

so that d is the length taken up by the soliton, and
the net charge per period is Nm +m' units, so that
m' is the extra charge associated with the soliton.
From the theorem of Sec. IV translation of the
whole system by a distance L produces transport of
an integer number of electrons (and certainly in-
volves transport of an integer number of ionic
charges}, provided the Fermi energy lies in a band
gap, so that m and m' are integers.

A second type of periodic motion of the system

In the polyboron shown in Fig. 1(c) there is no po-
larization of the bonds, but there is a net charge of
one proton on each pair of boron atoms. This soli-
ton can be succeeded either by a similar soliton or by
the antisoliton with two single bonds. The results of
Sec. IV can be applied to such a soliton.

The potentials in which the electrons move are, of
course, associated with ionic charges, so movement
of the potentials involves also movement of these
ionic charges, which are multiples of the proton
charge and treated classically. A periodic system is
constructed which has a large number N unit cells,
each of length a (except near the soliton) and charge
m units, with a soliton at the end of each group of N
unit cells. The period of the system is

that can be considered consists of adiabatic displace-
ment of the soliton one unit cell to the right, fol-
lowed by uniform displacement of the whole system
one unit cell to the left. If q, is the soliton charge,
this process involves the displacement of a charge

q, —mN —m' in each length L a distance a, so the
total charge transport, which again must be an in-
teger, is

(q, mN —m')a—/(Na +d) =—m .

The value of this integer must, of course, be —m
since N is large. This leads to the result

q, =m' —md/ a.

For the type (b) solitons fractional charge is only
possible if there is a net charge on the chain, and if
the fractional part of the charge is equal to minus
the charge per unit cell multiplied by the ratio of the
length taken by the soliton to the length of a unit
cell. These results are identical to those originally
derived by Prange.
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