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Correlated diffusion in quasi-low-dimensional systems
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The space- and time-dependent tracer occupancy correlation is solved for a general
quasi-low-dimensional system with arbitrary concentration of hopping ions. Our theory is
exact at both small and large ionic concentrations and gives reasonable results for all inter-
mediate concentrations. Detailed numerical results for the diffusion correlation factor f0,

and the incoherent neutron scattering function S(K,co), are provided for a variety of cases
as the system changes gradually from three dimensional to one dimensional (1D), and vice
versa. Similarly, the corresponding results associated with travel from two dimensions to
1D, and vice versa, are also recorded. Analytical expressions for f0 as a function of the
direction cosines of the wave vector are worked out for all limiting cases as the system ap-
proaches one, two, or three dimensionality. In particular, it is found that as one dimen-

sionality is- approached, the diffusion correlation factor approaches zero in proportion to the
quantity c '(Jj /J~~ )'

I. INTRODUCTION

Stochastic hopping motion of classical particles,
described in terms of simple rate equations, has been
cited to be the central theme in a wide range of
physical phenomena. Examples include ionic
motion in superionic conductors, diffusion of hy-
drogen in various metal hydrides, and tracer atom
diffusion in hot solids via the vacancy mechanism.
However, despite the stochasticity of the allowed
hops, successive tracer-vacancy interchanges show
correlations which arise because of the exclusion of
double occupancy of any lattice site. These correla-
tions were first noted by Bardeen and Herring, and
they affect both the short-range and the long-term
characteristics of the hopping and extend over mac-
roscopic space and time separations. 5' In three di-
mensions, correlations alter the small vacancy re-
sults quite substantially. Here, the diffusion coeffi-
cient is reduced by as much as 35 lo (for the simple
cubic lattice}, and even more importantly, the rate of
change of the tracer correlation function with va-
cancy diverges at the zone boundaries.

The effects of the correlations are, however, much
more substantial in lower dimensions. In two di-
mensions the reduction of the small vacancy tracer
diffusion coefficient is more than 50%%uo (for a square
lattice} whereas in one dimension diffusion of a
tracer completely ceases the instant the background
stream contains any other particles.

These dramatic changes in the characteristics of
ionic diffusion in one dimension (1D} were first

described in an important paper by Richards. The
essentials of Richard's Monte Carlo results were
later corroborated by Fedders (who used a diagram-
matic summation procedure employing an improved
version of his multiple-scattering approximation)
and Alexander and Pincus' (who used simple argu-
ments based on the coupling of single-particle
motion to the density in 1D geometry).

Thus, reduction in dimensionality leads to funda-
mental and far-reaching changes in the details of
ionic motion. Apart from the purely theoretical in-
terest that such a happening generates, recent work
on fast ion conductors has focused particular atten-
tion on the quasi-low-dimensionality (QLD} features
of the ionic conductivity in these systems. ' Prime
examples of nearly 10- and 20-like ionic motion are
provided by P-eucryptite" (LiA1Si04} and certain
P-alumina. '

Experimental observation of the single-particle
self-correlation function (note that the measurement
of the self-diffusion coefficient D gives such a corre-
lation function only for short wave vectors K and
small frequencies co) is generally limited to in-
coherent neutron scattering (INS) experiments.
Apart from their expense, neutron scattering experi-
ments can only be performed in a few high-flux na-
tional facilities and are thus of limited accessibility.
Nuclear magnetic resonance (NMR) techniques, on
the other hand, are of much wider availability, but
they generally measure two —specific-particle corre-
lations (TSPC), ' rather than the single —specific-
particle correlations (SSPC) measured by INS. Un-
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fortunately, however, the TSPC is much harder to
evaluate than the SSPC.

Recent experimental developments, such as the
magnetic "tagging" techniques, ' have brought
about a remarkable change in the state of affairs.
Here the NMR linewidth data can be related to a
frequency Fourier transform of the SSPC.'s '7 Ac-
cordingly, these developments have not only
highlighted the relevance of the SSPC in general,
they have also underscored the need for the SSPC in
QLD systems' where relevant experiments have
only recently been undertaken. '

In Sec. II, we present a formulation which distin-

guishes the hopping rate of the labeled ion (the
"specific" particle} from that of the background
ions. Moreover, we consider a spatially anisotropic
lattice where the nearest-neighbor (NN) separation is
different along the three Cartesian axes, being equal
to a„,a~,u, along directions xpp, respectively. Con-
sistent with this anisotropy we assume different
hopping rates along different axes, namely, J, , J»,
and J, for the labeled ion, and J», J», and J, for the
background particles. However, we assume inver-

sion symmetry in the lattice whereby

W (i —j)=W (j —i)=W, if
~

i —j ~

=5

=0, otherwise

where, in the first equality, i and j, are nearest
neighbors along axis u. Here 8'~ =J~ or J~ accord-
ing to whether it relates to the labeled ion or the
background particles and 5~=a„,a»,a, when a
equals x, y, or z, respectively. The advantage of
such a formulation is that we can readily change the
dimensionality from 3D to anisotropic 2D (by put-
ting J, =J,=0, say} and on to 1D in a fairly general
fashion. The mean-field approximation (MFA),
often times called the random-walk solution for the
SSPC is presented in this section.

In Sec. III the second-order solution (SOS) is
worked out. The result is given in terms of six cou-
pled linear equations, for the six components of the
inass operator referring to the six NN separations
5 . While the various coefficients occurring in
these equations require tedious numerical computa-
tions for general frequencies to and wave vectors K
in the small-frequency limit co«g J when the
wave vectors are also very small, i.e., g K~~ && 1,
analytical methods can be used to recast these equa-
tions into a particularly simple form. This is, of
course, the well-known diffusive limit.

Detailed numerical results for general frequencies
and wave vectors are presented and discussed in the
concluding Sec. IV. However, for the sake of brevi-

ty, computations are presented only for the case of
cylindrical symmetry.

II. FORMULATION

We begin by introducing the rate equation that is
assumed to be satisfied by the stochastic occupancy
variables of the labeled atom, p;(t), and that of the
background particles, n;(t). As usual, an occupancy
variable is unity if the site i at time t is occupied by
the specific atom, i.e., p;(t) =1, or any of the back-
ground atoins, i.e., n;(t) =1. Otherwise, the relevant

occupancy variable is zero. We can write the rate
equation as

dOl-

dt
=—g W ( i —j )(o V —o V)

J
(2.1)

where 0&
——p; or n; according to whether

W(i —j}=J(i—j} or J(i —j}, and V~ is
the occupancy variable specifying a vacancy at site i,
1.e.,

V =1—p —n-l Pl l (2.2}

This model assumes that there is only a single la-
beled ion, that other than the point hard-core repul-
sion there are no interparticle interactions, that the
hopping transit time is short, the concentration of
hopping particles is c, and that the concentration of
vacancies is u, i.e.,

&n;) =c, & Vi) =u =1—c . (2.3)

(Note that, compared with unity, terms of order 1/N
will be ignored where N is the number of sites in the
lattice. )

In order to calculate the SSPC, it is convenient to
work with the single —specific-particle (SSP) Green's
function

G (t)=—2mi8(t) &p (t)p (0) )

and its frequency Fourier transform

G~
—= &&ps,ps ))

+ ao

dt G~ (t)exp(idiot} .2'

(2.4)

(2.5}

a)G~ =5~ iud J (g ——j )(G~ —G,s )

1

+i g J'(g —1)(r ., —r...),
J

(2.6)

where I' is a second-order fluctuation (SOF} Green's
function defined as

In (2.4), 8(t) represents the Heaviside unit step
function and the single angular brackets signify an
ensemble coverage.

The rate equation (2.1} leads to the following
equation of motion (EM} for the SSP Green's func-
tion G, i.e.,
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I'i;;g = «piu, 'pg »,
u;=nj. c—, &u,.)=0.

(2.7a)

(2.7b)

Within the simple MFA, the SOF is ignored as be-
ing "small" and thus we get

6» = (r0+ivctP» ) y

aP» ——2g J [1—cos(E a )] .

(2.8)

(2.9)

For k «1, the spectral line shape is entirely dif-
fusive, i.e.,

6 +—(~+jvDok ) (2.10a)

where K=k (P»,Pz, P, ), P~ being the direction
cosines of the wave vector K and

Do gJ p——~~ . (2.10b)

The self-diffusion coefficient of the ion, vDp is thus
a function of the direction in which the diffusion is
taking place.

For the isotropic lattice, the foregoing result is
known to be in error in both 3D and 2D, by approx-
imately 35% and 53%, respectively. In 1D it is
even wrong qualitatively. Here the diffusion coeffi-
cient is known to be vanishing as long as c&0.

A feel for the relative accuracy of the MFA can
be had from the following simple argument. On the
right-hand side (rhs) of Eq. (2.6) the neglect of the
terms proportional to I, in comparison with those
proportional to 6, will affect the mass operator for
G~—which in the MFA is proportional to co~U—by
terms proportional to co»(I »/6»). The ratio of
these Green's functions, however, should be of the
order of the variance of uj, i.e., of order

&u,
'. )=cv . (2.11)

Thus the mass operator, for instance, X(K,co), can
be expected to be of the form

X(K,a)) =vs»+

~vcr» +0 (cv }co»,0 0 (2.12)

III. FLUCTUATIONS FROM THE MEAN FIELD

In view of the inadequacy of the MFA, an im-
proved SOS is essential, especially in QLD systems.
To this end we study next the EM of the Green's
function I'. We get

where the ellipsis represents fluctuation terms. The
relative important of the fluctuation terms (as com-
pared to those that are retained in the MFA) is thus
of order c. For small enough concentration, i.e.,
c «1, fluctuations from the MFA should, there-
fore, be small. This, however, is true only as long as
the connectivity of the lattice is such that the MFA
itself is not qualitatively in error, for if this should
be the case, it makes hardly any sense to look for
small fluctuations from the MFA. In this regard we
remind ourselves of the well-known property of the
MFA, namely, that it becomes asymptotically exact
as the effective number of neighbors becomes large.
From the work of Richards and others, ' it ap-
pears that the MFA breaks down qualitatively only
when the motion is rigorously restricted to one di-
mension. Thus, in 1D our simple estimate for the
size of fluctuations from the MFA is valid in only
the trivial limit c=0. As soon as c&0, we can ex-
pect the neglected terms to be of the same order as
the MFA itself.

0ical ij. g=—c[J ( 1.—j )v +J( 1 —j )+(iso rv r)5—
i~ ]61g-

+I ij g[(1—2c)J. ( 1 —j )+J( 1 —j ) —Pv —r]+cJ ( 1 —j )le.g

+(1—Bi )g[vJ (1 —i }I;.+J( j —i }I'i;. .]+98(l,j,g') . (3.1)

x«(p; —p; );p, »,
ra=2(J, +Jg+J, ), ~=2(J, +J~+J, ) .

(3.2)

(3 3)

The third-order term (TOT), denoted by A', involves
at least two fluctuation fields and refers to three dif-

This equation is exact. The new notation introduced
is as follows:

%(l,j,g')= g J (1 —i )(1—&i, )(1—&;J)

ferent particles at positions l,i,j which are, of
course, all different. Moreover, much like the
second-order terms on the rhs of (2.6), the third-
order term also involves a mutually subtractive
structure of the form (piu; —p;ui) referring to neigh-
boring sites i and l. Accordingly, we anticipate that
relative to the terms being retained, neglecting the
TOT would cause errors in the mass operator of the
order of

v '&u u,');~,=0(c'v) .
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This represents a considerable improvement because
c u is small in both the c « 1 and u« 1 limits.

1 . . 1

Also, for the worst case, c =u = —,, it is —,. Finally,
for small c, the omitted terms are now of order c,
rather than c, as was previously the case. Accord-
ingly, we expect that, even in 1D, the predictions of
the second-order theory would be qualitatively
correct. A detailed examination of this point is best
deferred to Sec. IV.

Neglecting SF, an exact solution of Eqs. (2.6) and
(3.1}can be achieved. In order to carry this out we

use inverse lattice Fourier transformation. First, it
is convenient to recast (2.6) as follows:

[co+iX(K,co)]G» ——1,
where

(3.4)

G~ (1——/N) g G»exp[iK ( g —g')], ~ (3.5a}

X(K,co)=vcr»+ g J (5)p(5)[exp(iK 5) —1] .
5

(3.5b)

The sum gs spans over six NN vectors, +5»,
+5&, and +5„and

p(5) =—Q I » ~ ~exp( i 3—5)/, G», (3.5c)

'2
1

rIJ., = — XX r, , exp[iK& (1 —g')+'Kz ( j —g')] . (3.5d)

Next, we examine (3.1). We employ the Fourier transformation (3.5d), and regroup the various terms in Eq.
(3.1). This leads to the following relationship for the quantities p(5):

p(5) =4(5)+ g p(5') IJ (5')exp(iK 5')[cP(5+5') —uP(5)]

+[J(5')+J (5')(1—2c)]P(5—5') —J(5')P(5}I, (3.6}

where

P(r)= —+exp(iA, r)/E(A), (3.7a)

I

like in isotropic lattices, is now a function of the
direction of diffusion, i.e.,

f'=f'(P. Py».—)

4(5)=icu ge—xp(iiL 5)(co».+~ aP~)/E—(A, ),

(3.7b)

E(2, ) =co+1(cog+vcip»+g),

co~——2g J [1—cos(A,~~)] .

(3.7c)

(3.7d)

The mass operator is thus seen to depend on six
quantities p(5) which, in turn, are determined from
Eq. (3.6}, the latter being a set of six coupled linear
equations. For general K and co, the evaluation of
parameters 4(5) and P(r) requires cumbersome nu-
merical computation. However, as mentioned in the
Introduction, in the long-wavelength small-co limit
the mass operator can be cast into a particularly
simple form by using analytical models. This in-
volves tedious but elementary algebra and the result
is found to be the following:

=1+(2c/D, ) g (J'.)'~.(P~.)'/(I+v. &.)~,

(3.9)

Here Dv is as in (2.10b) and

v~ =J~+J~(1—3c),

T = g[cos(2A~ —) —I]/Y(A, ),1

Y(A, ) =2g (J~+ vJ~ )[1—cos(iL~~)] . (3.10c)

(3.10a)

(3.10b)

J~=J, J~=J, a~=a for a=x,y,z

T =(J+vJo) '(cos8) .

(3.1 1)

(3.12}

It is clear that the inverse lattice sums T are a gen-
eralized version of the well-known quantity (cos8)
that arises in isotropic lattices. For instance, in the
limit of isotropy, i.e.,

uDcf k2= lim lim X(K,co),
Dk2/co~0 / +O~O

(3.8)

where fo is the so-called correlation factor and, un-

Now, using the fact that

g(P )'=1, (3.13)
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we find f independent of the direction cosines p,
s.e.,

refers to diffusion which is purely along the z axis.
From Eq. (3.9) we get

2J c(cos8)
(J+vJ )(1+(cose) )

(3.14)
f (0;1)=[1+(1+u)T((]l[1+(3u—1)T))],

(4.8)

This is, of course, the result obtained for isotropic
lattices.

IV. RESULTS

where

1 (cq, —1)

2X & (1+v)[1—c,+il(2 —c„—cz)]

0J~=J~,
J„=Jy ——Jg, Jg =J((,
az =ay =ay, az =a()

(4.1)

(4.2}

(4.3)

Thus the only relevant parameter specifying the
QLD features of the problem is the ratio

i) =JilJ~~, (4.4)

that is, as long as the interatomic separations, aj
and a~~, are included as the relevant normalization
factors for the inverse lattice wave vectors. Accord-
ingly, henceforth, we shall use the notation

In view of the proliferation of parameters in the
general formulation presented in the preceding sec-
tions, and the fact that all the relevant computations
are straightforward to carry out should the need
arise, in what follows we limit ourselves to a simple
subset of parameters. This subset is appropriate to
the most familiar QLD systems where the labeled
ion is similar to those hopping in the background.
More specifically, we restrict all future discussion to
the following model:

and

(4.9}

c„=—cos(nA, ~ ) . (4.10)

and hence for c&0,

f (0;1)=0. (4.12)

This is well known but nevertheless important be-
cause it demonstrates that the present formulation is
in accord with the absence of self-diffusion in 1D.
However, for finite il, self-diffusion does occur and
it is a simple matter to estimate the corresponding
integral T~~ when g is small compared to 1. %e get

Tll (1+v)-'[—1+2h,g'"+O(i})],
q &&1

(4.13a)

We notice that the correlation factor depends only
on the ratio i} and not on the individual values of
the longitudinal and transverse hopping rates.

In the 1D limit, T~~ is especially simple, i.e.,

lim Tll = (1+u) (4.11}
g=0

K„aj.——k„, K&aq ——kz, Kgat~ =k, . (4.5} where

The dimensionless wave vectors k will thus form a
simple cubiclike Brillouin zone, —m (k & m. As g
varies from 0 to 1, the effective dimensionality of
our physical system ranges from 1D (the uncoupled
linear chains extend along the z direction) to 3D.
Similarly, the system varies from 3D to 2D as g
ranges between 1 and 0. Here the relevant 2D sys-
tem consists of uncoupled quadratic layers parallel
to the x-y plane. In this format, the directional
dependence of F(K,co) is reduced to two effective
direction cosines Pi and P~~, where

pj.=(p'+pi', )' ', pii=p. (4.6)

Accordingly, for brevity as well as convenience, vec-
tor notation will be abbreviated' along the following
lines:

K=(ki, k~(), f (P„Py,Pg) =f (Pi,P~~~) . (4.7)

Let us first examine the behavior offu(0;1). This

hu-(2m ) J f dx dy[1 —(coax +cosy)/2]'

A word of caution is in order regarding Eq. (4.13a)
in particular, and, in general, a11 the subsequent
equations that relate to the limit in which one
dimensionality is approached. Here, the tracer dif-
fusion is drastically reduced due to correlations. It
is, therefore, necessary to take account of this reduc-
tion in the second-order equation of motion (3.1), or
equivalently, its solution given in (3.6). This is a
lengthy procedure and will be described in detail
elsewhere. For the present purposes, it suffices to
say that the net effect of this renormalization is
quite small. It affects only the concentration depen-
dence of the multiplying factor to the il'~ term in
Eq. (4.13a), changing it from (1 + v) to
[1+O(ui)'~ )], which, in turn, approaches unity as
g~0. No corresponding role is played by such re-
normalization in the opposite limit, i.e., gazoo,
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where we estimate

T~~
= lim —(1+u) ' (rI 'lni)) —0 (il '),

0 2

(4.13b)

where h i -2/m . Hence we get

h ic (rl »rl )f (0;1)= lim 1 — —O(cg '),
(1+v)

(4.14a)

fo(0;1)= lim hu(gc ')'~ +O(inc ) . (4.14b)
g—+0

For arbitrary concentration c, as i) '~0, the dif-
fusion along the chains becomes random-walk-like.
This is not surprising since it is trivially known that
as long as c is rigorously zero (i.e., the lattice is com-
pletely empty except for the labeled atom), fo is l.
On the other hand, in the opposite limit, i.e.,
ilc «1 [see Eq. (4.14b)], the above result is non-
trivial both for small rl and small c. Indeed, it
demonstrates that for finite c, the rate of increase of
diffusion along th.e chains is divergent for q —+0. A
hint of just such a happenstance has recently been
noted in some very preliminary Monte Carlo work
being done at Julich. '

To contrast the above behavior of diffusion along
the chains with that of diffusion confined to the
transverse xg planes, let us examine the correlation
parameter f (1;0). From Eqs. (3.9), (3.10), (4.3), and
(4.4}we get

It expresses the fact that when intraplanar hopping
is much slower than the intrachain hopping, the ion-
ic diffusion within the planes is essentially uncorre-
lated, i.e., it is random-walk-like and, accordingly,

f (1;0) is nearly unity. In the opposite limit, i.e.,
when rl »1 and the diffusion is largely restricted to
the planes, we already know from (4.14a) that dif-
fusion along the chains is weak but uncorrelated.
Thus, despite its different appearance, Eq. (4.18) is
very similar in its physical content to the result
given in (4.14a).

Finally, we estimate Ti for the opposite limit, i.e.,
when g '«1. We write

1 (cz„—1)
Ti =(1+v)

N i 4—2c„—2cy+2g '(1—c, )

(4.19)

as g '~0, this gives

TJ —( 1 +u) '[ (cos8)2ri+hi(rl '1nil )], (4.20)

where

(cos8)2o ——(2N) ' g (c2„1)/—(2 c„——cr ) .

(4.21)

Thus for il »1
2ch i (1+u)f'( I'0) =fzo+—

[1+u + (3v —1)(cos8 }2&]

)& (g 'lnrl)+O(rl ') . (4.22)

f (1;0)=1+2cT&/[I+(3v—1)Ti],
where

(4.15)
Here h3 is approximately equal to hi and fzo is the
correlation factor for isotropic diffusion in 2D, i.e.,

1 (c2 —1)
T,= 2(1+v) N i 1 —c,+i)(2—c„—cr)

(4.16)

2c (cos8 }2of2o= (1+ )(I+( o 8& )
(4.23)

For g «1, we can again estimate the sum. To the
dominant order we get

Ti — hire~
' /—[2(1+v) ]+0 (1),

g g&1
(4.17)

The significance of this result should not be missed.

where hz is approximately given by the following
2D sum:

h2=(V2ir )

X dx dy(1 —cos2x)/(2 —coax —cosy)'~ .
0 0

Hence

f (1;0) —1 ch2g' /(1+v)——O(i)) . (4.18)

We have numerically estimated the parameter free
sum (cos8}io given in (4.21) and find it to be
= —0.3634+0.000 05.

The physical consequences of Eq. (4.22) are the
following. If intrachain hopping rates are small
compared to the intraplanar hopping rates, the dif-
fusion characteristics of the ion within the planes
are only weakly affected by the interplanar hopping.
The motion thus displays the correlation charac-
teristic of the purely 2D case. Note also that the
rate of increase of f (1;0), with i) ', is logarithmic
in the limit where g

' is small. This is in striking
contrast with the corresponding, nearly 1D result
for i)~0 given in (4.14b). Thus the presence of
even a single additional linear chain, with slow inter-
chain hopping, would increase diffusion along the
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original chain precipitously. No such dramatic ef-
fect should be noticeable when diffusion is being
monitored in a 2D sheet and an additional sheet
with weak interplanar hopping is added.

So far in this section we have examined only the
diffusive limit, namely, the long-wavelength small-
frequency limit. Most experiments, however, detect
the SSPC at general wave vectors and frequencies.
Accordingly, it is convenient to introduce the gen-
eralized correlation factor F(K,co) as follows:

X(K,ro) =ucoxF(K, co) . (4.24)

On comparison with (3.8), it is readily confirmed
that the two correlation factors are related, i.e.,

lim lim F(K,rv) =f (P„,Py, P ) ~ (4.25)
D k /co~0~ 00

However, unlike f, for general K and co only nu-

merical solution is possible for F(K,co). Because the
correlation is generally most significant for small
frequencies and low vacancy concentration, in Fig. 1

we show F(K,O) for the limit u~O. Parameters

f (0;1) and f (1;0) are given as solid lines labeled a
and b, respectively. The corresponding dashed
curves show F(K,O) with (EC a ) =(0,0,n.} and
(n.,m, 0), respectively. For the sake of generality we
have also given the correlation factor F(K,O) at the
zone edge along the cube diagonal, i.e.,
(Eaaa)=(n, m, n. )—this is shown as the dashed
curve labeled c. The solid curve marked c refers to

f (I/V3, 1/V3, 1/&3). The nice feature of such a
plot is that it spans two-thirds of the relevant
dimensionality space, namely, 3D~1D as well as
3D~2D. The numerically computed results seem to
corroborate the analytical ones given above although
the detail of the singularity of the slopes near g~O
and g '~0 is hard to determine accurately.
Another important aspect of these results is that
motion along the [111]direction is seen to consider-
ably accentuate the slopes near the 2D limit, i.e., the
correlation factors for r) '~0 for direction along
the [111]diagonal rise more steeply than those refer-
ring to the purely planar diffusive motion along the
[110]direction.

Given the interest in the rapid increase in intra-
chain diffusion, when a small number of additional
chains with weak interchain hopping are intro-
duced, ' it is essential that the line of investigation
presented above be fully completed. This means
that in addition to the 1D~3D~2D analysis, we
must also examine the 1D~2D characteristics of
the problem. To this end, we consider a system with
a quadratic lattice in the x-y plane, with NN separa-
tions a„and az and hopping sites J and J~. (For
simplicity, we continue to assume Ja=Ja. ) Let us
call the ratio J~/Jz ——p. Then the relevant expres-
sion for such a correlation parameter f (P~,P~ ) can
be readily found from the general three-dimensional
result given in Eq. (3.9). Accordingly, we can write

f (0;1)=[1+(1+v)Ty]/[1+(3u —1)Ty],

(4.26)

I.O

0.8

T„=[2(1+v)]
1

X —g (c2&—1)/[1 —cz+p(1 —c„)]. (4.27)

0.6

0.4

For p « 1, we get

T„=(1+u) '[ —1+2h4Iz' +O(p)], (4.28)

0.2

0 I I I I

0 0.2 0.4 0.6 0.8 I.O 0.8 0.6 0.4 0.2 0
'9

FIG. 1. For the limit u~O, the diffusion correlation
factor f0 (shown as full curves) as well as the generalized

correlation factor for zero frequency E(K,O) (dashed

curves) are plotted as a function of g. Curves a, b, and c
refer to motion along the longitudinal linear chains, i.e.,
parallel to [001]; within the x-y planes, i.e., parallel to
[110]; and along the cube diagonal [111], respectively.
For the dashed curves a, b, and c, the wave vector is at
the zone edge,' i.e., for these curves

(K„a„gC„a~,K,a, )=(0,0,n), (m, n,0), and (n;m, m), respec-

tively.

f (1;0)= 1 —ch5(1+v ) 'p'~ O(y, ), —(4.30)

where h5-8/3'. Again, in going from 1D~2D
the initial behavior is very similar to the correspond-

where h4-2/m. and hence the renormalized result is
the following:

lim fv(0;1)=h4(pc 2)'~z+O(pc 2)
@~0

[compare Eq. (4.14b}]. It is interesting to note that
h4 is roughly two-thirds of h0. Thus both the struc-
ture of the singularity as well as its prefactor are
essentially the same whether the passage is 1D~3D
or 1D—+2D.

For f (1;0}similar analysis gives
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ing one found for the travel ID~3D [cf. Eq.
(4.18)].

Such a symmetry is, however, broken when we
consider the travel from 2D~ ID. Here, in contrast
to Eq. (4.22), we get

f (0;1}= lim f2D+Mi6, (4.31a)
a~0

f (0;1)= lim fsD M2e,—
g~O

(4.31b)

where Mi and M2 are finite constants dependent on
concentration c and e is a measure of the departure
from 2D in the direction of 1D, i.e.,

(4.32)

For v —+0, Mi ——Mq ——0.147; compare curves 1 and 4
in Fig. 2. [Note that Eqs. (4.31) cannot usefully be
contrasted with Eq. (4.14a) because the latter relates
to an altogether different physical situation. Indeed,
it is more reasonable to compare the content of Eq.
(4.14a}with that of (4.30).]

To supplement the analytical results, which for
the sake of convenience have been set out in the
form of tables (see Tables I and II), in Fig. 2 we
present the ID~2D version of the plot given in Fig.
1. Here the v-+0 results for f (0,1), f (1;0), and

f (1;1}are given as a function of p. Again, for use-
ful comparison, results for F(K,O) with

lim fo(0;1)=hq(pc ')'»'
p~Q

lim fs(1;0)=1-
p~O

1/2

1+v

lim fo(0;1)=fqn+Mie
e~O

lim f (1;0)=f2D M2e
g~Q

M ) ——M2-0. 147

I.O—

0.9

TABLE II. For the 2D~1D traversals, the diffusion
correlation factor f (P„,P»), corresponding to a 2D infini-
tesimal wave vector K with direction cosines (P„P»), is

presented as a function of the ratio J„/J~ =p. Again, for
simplicity, in this analytical work we have confined our-
selves to the case where J =J . When approaching the
2D limit, it is convenient to work with the quantity

TABLE I. For the 3D~1D traversals, the diffusion
correlation factor f =f (P„P&,P, ), corresponding to
an infinitesimal wave vector K with direction cosines

(P„P»,18, ), is presented as a function of the ratio
Ji/Jii =g. Here, for convenience, we have restricted our-
selves to the case where the tracer hopping rates J are
equal to those of the background particles J and have
further assumed the x-y symmetry, i.e.,
J„=Jy ——J„=Jy ——Jg and J,=J,=Jii. Moreover, for
brevity, we have used the notation f (P„P»,0)=f (1;0)
and f (0,0,1)=f (0;1). The quantity fzn is defined to be
(1 i (cos8) in)/(I —(cos8) in) where the quantity
(cos8)in is equal to the 2D integral specified in Eq.
(4.21). [Note: for relating of F(K,c0) to fs(p„p», p, ), see
Eq. (4.25)].

lim f (0;1)=hs(r)c )'
y—+0

lim fo(0;1)=1—hi i) 'Inrl
y~oo 1+V

0.8

0.7

0.6

0.5

0.4

0.5

0.2

0. 1

0
0

I

0.5
I

I.0

lim fo(1;0)=1—hq
o

' 1+v

2h3c (1+v)
lim f (1;0)=fin+ (g 'lng)

1+v +(2—3c)(cos8)in

FIG. 2. This is the 1D~2D analog of Fig. 1. Here
(E a )=(k,0) for curves 1 and 2, (O,k) for curves 4 and 5,
and (k, k) for curves 3 and 6. For curves 1, 3, and 4
k =10, whereas for curves 2, 5, and 6 k =~. Here
v —+0 and p=J„/J„.
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FIG. 3. To demonstrate ID~3D variation, the correlation factors f and F(K,O) are plotted as a function of the parti-
cle concentration. Again, the full curves refer to f and the dashed ones to F(K,O) with K at the zone edge. Relevant
values of g for curves 1, 2, 3, and 4 are 10, 10 ', 0.5, and 1. For (a), the wave vector is parallel to the z axis, i.e.,
(K~~)=(0,0,k), whereas for (b) the wave vector is along the diagonal within the x-y plane, i.e., (K~a~) =(k,k,0). Parame-
ter k =10 2 for the full curves and m for the dashed ones Com. pare the full curves marked 1 in (a) and (b) with Eqs.
(4.14b) and (4.18), respectively.
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0.40—
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FIG. 4. Similar to Fig. 3 except that here the variation shown is for 2D~3D. According, curves 1, 2, 3, and 4 refer to
'=1, 0.5, 10 ', and 10 . Compare the solid curves marked 4 in (a) and (b) with Eqs. (4.14a) and (4.22), respectively.

For convenience, the abscissa relating to the solid curves in (b) is v. For the dashed curves in (b) [as in Fig. 3(b)] the abscis-
sa is c.
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FIG. 5. Plot displays 1D~2D variation in F(K,O) as a function of concentration. Curves 1, 2, 3, and 4 refer to
IN=10, 10 ', 0.5, and 1 with (a) (E~a~)=(k,O) and (b) (E~a~)=(O,k). k =10 for the solid curves and m for the dashed

ones.

(E aa)=(O,n), (n,O), and (n, n) are also included.
Note that because of the inherent symmetry between
the x and y directions only the case 1)p & 0 need be
studied.

While the u —+0 limit is interesting, it is even more
valuable to get a feel for how the change in concen-
tration affects the various results. To this end in
Figs. 3 and 4 we have shown the 1D~3D and
2W~3D characteristics as a function of the concen-
tration. Here F(K,O) is given for K along the linear
chains, i.e., (X a ) =(k,0,0), as well as the diagonal
in the x-y plane, i.e., (KNa~}=(k,k,O}. To obtain a
convenient comparison between the diffusive and
the large-K limits, results for both small k, i.e.,
k =10,and for k =m, are provided.

These variations should be contrasted with those
found during 1D~2D passage. Accordingly, in Fig.
5 we have presented the latter. Again, the analytical
results given above are corroborated. At the zone
edge, the divergent slope for v~0 is noted in all di-
mensions.

The frequency dependence is analyzed in Figs. 6
and 7. For the sake of brevity, we consider only the
small vacancy limit v=0.01 and show in Fig. 6 the
incoherent response function for (X a }=(O,O,m)

for the nearly 1D case, i.e., q =10 . Such a choice
of the wave vector K (namely, when it lies in the

400

300- )

ioo-

3
~ 200-
V)

0
0

I

0.002
I

0.004 0.006

FIG. 6. For v=0.01 the incoherent scattering function
S(K,co) is plotted as a function of the normalized fre-
quency co =co/(6J~~ ). Broken curve refers to the nearly 1D
system with q=0.01, .whereas the solid curve is for the
isotropic 3D system (the simple cubic lattice) with g=1.
Here {Ea )=(0,0,m). Solid curve marked MFA gives
the corresponding mean-field-approximation results
which happen to be the same for both these cases.
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lower dimensionality) brings out the strongly corre-
lated character of the nearly 1D system because then
the MFA results for the 1D and the 3D systems are
the same.

The corresponding, nearly 2D limit, i.e.,

FIG. 7. S(K,co) for v=0.01 is plotted as a function of
the normalized frequency co=co/(6J&). Here the broken
curve is for the nearly 2D case g '=0.01 whereas the
solid curve is for the isotropic 3D system (the simple cu-
bic lattice with g = 1). Relevant wave vector is
(E a ) =(m, m,0). Mean-field-approximation result,
marked MFA, is the same for both these systems.

'=10, is shown in Fig. 7. Again, to give a
visual demonstration of the importance of correla-
tions, we have chosen the wave vector to lie within
the two dimensions, i.e., (Eaaa)=(tr, tr, O). This
makes the MFA results for the given system as well
as those for an isotropic 3D (simple cubic) system to
be the same. We notice that while correlations are
important in the 2D system (the actual, dotted
curve, is more than 2 —, times as high at co~0 as the
MFA), they are far less important here than in the
nearly 1D limit (where the relative heights of the
two corresponding curves were approximately eight
to one).
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