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Asymmetry in the Raman cross section from large temperature variation
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We show that in the presence of large temperature gradients the second-order Raman
. cross sections can show asymmetry around the optical-phonon frequency. This skewness as
a function of Raman frequency is proportional to the temperature gradient and is traced to
the form of the accoustical-phonon occupation. It thus provides an additional mechanism
for this asymmetry in addition to the usual spatial variation considered previously.

The Stokes intensity R~ has been studied in solids
under equilibrium conditions. More recently, such
measurements have been extended to systems far
from global equilibrium (but possibly in local equili-
brium, i.e., equilibrium within small microscopic re-
gions) of which one manifestation is very large
"temperature" gradients. Laser annealing is an ex-
ample of such a system. It is the purpose of this pa-
per to focus on noticeable asymmetry in Rs ob-
served for such large nonuniformity in the tempera-
ture. We follow a previous study of Brillouin
scattering, where acoustic phonons (AP) at the

I

center of the Brillouin zone (BZ) are involved, and
extend it here to Raman cross sections with the cor-
responding optical phonons (OP) at the center of the
BZ. While other mechanisms certainly exist for ex-
plaining such asymmetries in Rs (see, for example,
Ref. 2) the one we propose has not been previously
considered, and if its magnitude is competitive it
could provide insight into higher-order Raman pro-
cesses.

The Raman-Stokes intensity Rq, of any nonuni-
form collections of electrons and ions, can be writ-
ten as

Rs- J d r I d r' g n~n&I~&its(vL, vs, u
~
(r), u7, (r '), r, r ')Er(r)Es(r '),

1, 1'

where n is a unit vector defining the scatterd light of
frequency vs, E is the electric field of the incident
light of frequency vL, u i are the displacements of
the ions at lattice positions 1, and I~&~ is the Ra-
man tensor which contains beth electronic and vi-

brational coordinates. In the usual way we can next
make expansions of I in the ionic coordinates u-,

(first order in u i is first-order Raman, etc.). The

point we wish to make [in Eq. (1)] is that when the
spatial variation of E(r ) is of the scale of the nonun-

iformity it samples, the nonlocal dependence of I on
r and r ' might become very important.

While Eq. (1) is rigorous it is clearly intractable.
To reduce it we make the following two assump-
tions: (1) The vibrational modes are unaffected by
the global "temperature" nonuniformity, and their
occupation obeys local statistics [with "tempera-
ture" T(z), see below]; (2) the electronic contribution
to I via the electron-ion interaction is also a local
function of T(z). (We consider nonuniformity in

only the perpendicular direction z to the surface. )
With these two assumptions first- or higher-order
Raman intensities can be written in terms of local

I

quantities, i.e., the scattering cross sections (see Fig.
1) are calculated as though the system were uniform
with a local "temperature" T(z). For example, for a
surface with "temperature" profile T(z) the dif-
ferential first-order Stokes-Raman intensity dRS(z)
at point z is given by

—al
dRs(z) =vsRL e 6(vL vs aio)o (vL»s )

X [n (z)+1]dz, (2)

where RL is the iricident laser photon flux, uL the
absorption coefficient at frequency vr, coo the fre-
quency of the Raman phonon, o(vL, vs) the Stokes-
Raman cross section, and n (z) the OP occupation at
the center of the BZ. We have neglected the local
variation in aL (z), which would otherwise modify

—aLs
e ~exp — aL(z')dz'

0

If d is defined as some characteristic length over
which the "temperature" T(z) shows appreciable
variation, then the total signal is
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FIG. 1. (a) Feynman diagrams for the first-order Raman cross section 0, in an emission of an optical phonon. The wig-

gly lines are the incoming and outgoing photons; the double solid line is the optical phonon and the single arrowed line the
electron propagators. In more common treatments (Ref. 4) this graph is nothing more than the polarizability tensor
P s(oj } in Eq. (7) of Ref. 4. The Raman cross section cr, is calculated by squaring this contribution and averaging over the
Boltzman ensemble (Ref. 4). (b) Second-order Raman cross section 0,' for an emission of an optical phonon and acoustic
phonon of wave vectors q1 and q2, respectively. This graph is the term I' ~(q,j,j) in Eq. (7) of Ref. 4. Both figures 1(a)
and 1(b) correspond to the I A coupling of the electron to the electromagnetic field. Note that both Figs. 1(a) and 1(b) do
not include electron-electron interactions which further modify the electron contributions (i.e., the circle) to cr, . (c) the
same as Fig. 1(a) for pA coupling. (d) The same as Fig. 1(b) for pA coupling. (e) Example of additional contributions to
o,' which relate via crossing symmetries. There are two for o, [Fig. 1(a}]and six for e,' [Fig. 1(b)].

Rs vsRi 5(vr—,——vs —rop)= 3

X erg(vr, vs, z)
0

X [n(z)+1]exp[ —(aL, +as)z]dz,

(3)

where as is the absorption at the Stokes frequency
vs. The type of spatial variation in o(z) and n (z) of
Eq. (3) has been considered previously ' ' and will
not be our primary interest here [see discussion fol-
lowing Eq. (4)]. We therefore imagine a probe laser
of frequency vL such that the absorption takes place
within a distance much smaller than d [i.e.,
d(uL, +as) »1]. Then Eq. (3) simplifies to

vsRL, 5(vL, —vs rpp)o's(—vL, ,vs )
3

Rs= (n+I) .
aL +as

(4)

We now turn to the particular effect (from the z
dependence in the temperature) which is of interest
here. Imagine first that Fig. 1 describes a Brillouin
process, i.e., an emission or absorption of an AP.
Even when we neglect the overall spatial variation in
o(z) and n (z) [as we did in arriving at Eq. (4)], the
local derivative in the "temperature" introduces a
modification in the AP occupation. More explicit-
ly, consider the Boltzmann equation for the acousti-
cal branch (in the presence of a temperature gradient
V T, summation over polarization is implicit). With
the use of the usual transformation for the phonon

occupation, i.e.,

Brio q
(5)

Buq

where n p( q ) = 1/(e~—1), the standard
Boltzmann equation for these acoustic phonons em-
erges, i.e.,

n (q) =np(q)—

Bnp(qi)—U~ VT

x[—p- +p- +p, ]q2

q1+P- -[—0- —0-+0- ]!,q2 q2 q1 q2 q2

where

(6a)

P-'- =5(r0- —r0- —rp, )np(q2)np(q 2)q1'q2
~ I

X[1+np(qi)]D (6b)

~ I

D ' is the matrix element connecting the three

AP [for the additional channel of an OP and two
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~ t

AP, see Eq. (9) below], P ' defined in Eq. (6b) is

the equilibrium transition rate, and v-
q&

=Btoe /Bq i. If the crystal possesses inversion sym-

metry, Eq. (6a) can be solved exactly for the zone-
center (qi ——0) AP. This follows from the appropri-

g I

ate symmetries of the scattering amplitude D-'
q&, q2

which, of course, includes both normal as well as
umklapp processes. We get

VX'
lim P- = —lim u to- r(qi), (7a)

p q ~ ~
p q

q ) q (

where

1 Bnp{qi)
lim r( q i )=-

e, -p P Bto-
q )

be as pronounced as for the AP for two reasons; OP
have zero velocity at the BZ center and the. excita-
tions have finite energy (as qi~0). From Eq. (6)
the correction is in fact identically zero at qi —+0.
One could imagine that the coupling between the
OP and AP branches would impart indirectly a
phase velocity to the OP. We show that this is not
so. We identify the variable qi with the OP and qz
with the AP. Equation (6a} only changes in that
now P- (AP branch) has a different functional

q2
form from P (OP branch). The second equation

q&

for this coupled system is

Bnp(q2)—vq
.VT

~ I

q) qg

q2 q&
( iP~ ~ ~ +P~ ~i )

q$ q2

+0(1) . (7b)

V'T= lim np(qi)+1 —y(q,)u, (8a)
q, 0 q& T

where

Bnp(qi)
y(qi)=ei- r(qi)

Bto
q )

Clearly, V T introduces asymmetry in the Brillouin
cross section if y(qi) and u- are nonzero. The

q )
finite-phase velocity of the AP (lim+e pu =+us,

q )

which equals speed of sound), the low energy of the
excitations (t0e ——usq} coupled with the singular
structure of np(qi), and the infinite lifetime ~(qi)
(Refs. 8—13) ensure this. [Note that boundary
scattering will make r(q i) finite for q, =0 (Ref. 9).]
The question we explore next is whether similar
corrections can enter the optical-phonon Raman
cross sections.

The effect of V T on the OP occupation cannot

[From Eq. (6a), the correction to r(qi) of Eq. (7b},
as one moves slightly from the center of the BZ, is
of order 1, i.e.,

~ qi ~

.] Also, it is not hard to see
that higher-order phonon-phonon scattering will

only modify Eq. (6b) by bringing higher-order sums
of higher-order scattering processes, e.g.,~l ~st

D ' '.7 From Eqs. (5) and (7}we get
q, . q,', q2

lim n(q, )+1
q, 0

(9)

It is again not difficult to show that at the center of
the BZ, P- is given exactly by Eq. (7). Although

q

the coupled Eqs. (6) and (9) only allow for the chan-
nel where OP scatter off two AP, a full treatment
does not change this conclusion. In fact, it can be
readily seen that phonon-phonon scattering to any
order with electron scattering included will also
leave the OP occupation unchanged to order

~

V T
~

(this follows from appropriate symmetries of the
scattering amplitudes). Second order in

~

V T
~

or
V T contributions cannot introduce asymmetry in
Rz and will not be considered here.

We have approached the effect of V T on the OP
via the Boltzmann equation in order to make direct
contact with the work of Griffin on AP. Actually,
Rs [Figs. 1{a) and 1(c)] can be written more
rigorously than Eq. (4) by replacing the OP occupa-
tion numbers 5(vL, vs cop)(n—+1—) by the exact OP
propagators D(q, tp) [see, e.g., Eq. (11) of Ref. 4).
As long as D(q, co) has no discontinuity at q =0,
i.e.,

lim D ( q, t0) = lim D( —q, co),
q -+0 q -+0

the effect of V T on the first-order Rs must vanish.
(This is expected for the OP which differ from AP
by their finite optical frequency co(qi 0) =top a——nd
zero phase velocity. ) V -T, however, can incur correc-
tions of the form of Eq. (8) in second- and higher-
order Rs [Figs. 1(b) and l(d)). To see this, consider
the emission of two phonons. Then Rz gets correct-
ed by
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V
BRs= RL, g [n(q&)+1][n(q2)+1]@q2+qi+@@co-+co- —»o's(+qz ql Pl, Pi+x'), (10)

L, +&S g2 g(
&& ~z

with 0' the second-order Stokes-Raman cross section
and where p ~ is the momentum of the incident light,

the momentum exchange, and 0=vL —v~.
(Emission of a phonon and absorption of the other
also have to be considered. }

Now light carries very small momentum (s is
small) and q&

———q2 —a. = —q2. It then follows
that linear corrections in V T again vanish (to order
~) unless one of the phonon occupations contains
singular behavior. For example, the channel of two
AP (of opposite momentum) combining to give the
OP energy coo, or similarly the transverse and longi-
tudinal AP near the zone edge along the [100]direc-
tion, ' are both not relevant to V T or hRq. The only
relevant channel is the convolution of the AP and
OP (both at the center of the BZ}where the AP car-

ry a singularity [Eqs. (5) and (7)]. It is tempting to
dismiss Eq. (10}on the basis that the phase space of
such contributions is very small (due to s being
small). We show next that the form of r(q) (Refs. 8
and 9) and the singular nature of the AP occupation
compensate for the small phase space and lead to a
finite correction ERs. (Finite here means a contri-
bution which is not scaled by positive powers of
vs/c, or equivalently by positive powers of x, where

c is the speed of light in the media. } Since the VT
l

contribution comes entirely from the center of the
BZ we write ez as a leading small q& and q2 expan-
sion, e.g.,

os(+q2 qt Pt Pt+" }

=~s(» &)
I q~ I

'I qi I
"(q2 ql)

[The exponents t and u and the function b,s are dis-
cussed following Eq. (16).] The V T contribution to
the AP occupation n(q 2}is given by Eqs. (5) and
(7}. For the lifetime r(q2) we use the form from
Callaway, i.e.,

r(q2) = 1
(12)

Ace- +(B,+B2)T'co' +vs/L
q2 g2

where coq ——U~qq and coq
——coo, A is the phonon im-

purity scattering, and 8~ and 82 correspond to the
umklapp and normal contributions to r [note that
B

&
contains the exponential temperature factor

e ', where e is the Debye temperature and a is
a characteristic constant of order 2 (see Refs. 7 and
9}]. The term vs/L reflects corrections from macro
scopic boundary scatteririg; here we will take
L~ 00. The contribution of V T to n (q2) is

dno(q2 } ks q2 V T
lim n(q )2=—

q& 0 &coq, 2 Rq2[Avsq2+(B)+B2)T (vsq2)'+vs/L]

Combining Eqs. (11), (13), and (10), we get

+&s B
bRs —— RI ln(coo)+1] ~s(pi, &)

CXL +CZAR fi

(13)

I
~+ qi I

'[Avs
I
~+ qi I

'+(Bi+B2}T'(vs
I
~+ q I

)'+vs/L]

X l(qi+~)'qi]'@vs
I
~+ qi I

+o —fI) . (14)

The integral over q ~ can be carried out. For a backscattering geometry (i.e., Pc= —2p ~ ), we get
3

kB

&L +&s ~ vs
~

K
~

E [Avse + (B)+B2)T'(vs') +vs/L]

where

(15a)

I(IC&e)= [J)+g(K&e)(K eK EK+E—)+J3+—g('K&e)( —3K +2E K +e )
Six

i

+J5p„(K&e}(3K e) J7pg(K&e)]——&
(15b}
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FIG. 2. Contribution to the Raman cross section 4Rq from the emission of an optical and an acoustical phonon in the
center of the Brillouin zone. The incoming wave number of the probing laser p~ is set equal to 10000, 20000, and 30000
cm-'.

where

J,(«,e}=f q'dq (16}

and e=
~

0—coo
~

/Us. For an absorption of an AP
and an emission of an OP (i.e.,

~

0
~

& coo) we get the
negative of Eq. (15); thus ERs is indeed asymmetric.
For the exponent s we take the value of Callaway '
(s=2). The exponents t and u are much more diffi-
cult to establish, and so in order not to overestimate
we choose the least favorable values for the effect of
V T (t = —1 and u = —2). With these three ex-

ponents and setting A =0 and L~ oo, we see that in
Eq. (15a) «d' '+'=«e. Now e is of the order of K

and comparison of the powers of «and e in Eqs.
(15) and (16) leads to finite contribution from b,Rs
[indeed the small-phase space does get compensated

by the structure of n (q2) of the AP; see the discus-
sion preceding Eq. (11)].

Along with the exponents t and u it remains for
us to establish the magnitude of i4(pi, «) in Eq.
(11), which is indeed very difficult since it clearly
depends on the details of higher-order electron-
phonon interactions [see Figs. 1(b) and 1(d)]. We
therefore will only briefly consider the magnitude of
hR~. We concentrate more on its dependence on vL

(the probing laser's frequency). In Fig. 2 we display
the asymmetry contribution of b,Rs for three dif-
ferent vt. ' The temperature T(z) was set to 350 K
and the temperature gradient to 5X10 K/cm. '

Particularly striking is the change in the width of
the asymmetry around the OP frequency ~o——520
cm '. We would like to add that this asymmetry is
about the OP position and not an asymmetry in the
Stokes —anti-Stokes ratio. It thus is different from
that observed in Ref. 3. The experimentally ob-
served asymmetry was attributed to a geometrical

variation in T largely parallel to the surface. Our
contribution, from Eq. (15), come from variations in
the temperature only along z. However, without an
accurate estimate of hs( pi, Pc) we cannot tell wheth-
er it is competitive in magnitude with other con-
siderations. A very rough estimate in which we as-
sume that the emission of the AP proceeds indepen-
dently from the OP via the usual screened electron-
phonon matrix element and in which the symmetric
line shape around the OP is approximated via a
Lorentz linewidth of 3 cm ' could possibly produce
an asymmetric correction of the order of a percent
away from the center OP line. Preferably, however,
its signature [strong dependence on vL and V T(z)]
should be experimentally verified. For example, in
laser annealing (where large V T are expected) major
differences in V T(z) exist in different time duration
of the annealing pulse' ' which can help identify
such ARq contributions. Finally, one can aim ex-
perimentally for larger V T at lower T [see Eq. (15a))
in the hope of encouraging enhancement of the
asymmetry. The possibility of extracting the struc-
ture of Eq. (11) experimentally could then yield in-
teresting information about higher-order Raman
cross sections.
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~4We would like to make here a brief connection between

the exact result of Eq. (6) (in the center of the BZ) and
apprxoimate relations throughout the BZ (Refs. 9—13).
Following Callaway we see that if a [Eq. (6) of Ref. 9]
is set equal to our ~ q &), the two results are similar; but
there is more to it than that. The displacement param-
eter lim P,(q&)= P'uz—V T/T [Eq. (10) of Ref. 9],
and therefore a=r, (1+P'/r~)=r, +O(l), which is
consistent with the O(1) correction of Eq. (7b).
In certain symmetry direction the exponent s can be
larger (see Ref. 8). However, not to overestimate the ef-
fect of V T, we choose s=2.
Note, from Eq. (15), that boundary scattering of the
form of Eq. (12) is not expected to change these results
drastically.
Such temperature and temperature gradients are ob-
served in madel calculations (see Ref. 6) during the ini-
tial duration of the annealing laser pulse. We also cau-
tion that for this temperature the lifetime in Eq. (12)
(and, in particular, its temperature dependence) is being
extended beyond its true limit of validity (see Refs. 8
and 9).
We should, however, note that the higher temperature
gradients are accompanied (usually) by higher tempera-
tures which, through Eqs. (12) and (15), tend to com-
pensate. A better nomenclature would probably be vL, .


