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Eigenvalues of the stability matrix for Parisi solution of the long-range spin-glass
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We study, near T„ the stability of Parisi's solution for the long-range spin-glass. In addition

to the discrete, "longitudinal" spectrum found by Thouless, de Almeida, and Kosterlitz, we

find "transverse" bands depending on one or two continuous parameters, and a host of zero
modes occupying most of the parameter space. All eigenvalues are non-negative, proving that
Parisi's solution is marginally stable.

In the spin-glass riddle the primary question to be
settled is the stability of various "mean-field" solu-
tions. The replica-independent Sherrington-
Kirkpatrick' (SK) ansatz q p

——q, for the order-
parameter matrix, was shown to be unstable by Al-
meida and Thouless' (AT), which led to a search of
solutions breaking the replica symmetry. After
several attempts' ' Parisi proposed a most promising
scheme where the order parameter q was replaced by
a function q (x) on the unit interval. ' Its stability
was investigated, near T„by Thouless, Almeida, and
Kosterlitzs (TAK) who found it at best marginally
stable. Their analysis was however confined to
"longitudinal" fluctuations, whereas the space of
fluctuations is vastly larger and besides, the most
dangerous fluctuations lie in the "transverse" direc-
tions (i.e., into configurations with additional sym-
metry breaking). Indeed, the AT work has shown
the existence of three families of eigenvalues: A
unique X"' of order r —= (T —T, )/T„a (n —1) de-
generate h.

"' (reducing to h.
"' as the replica number

n vanishes), and a small negative X t3', of order r 2 and
n (n —3)/2 degenerate. The corresponding eigenvec-
tors f p [column vectors with n (n —1)/2 com-
ponents, which can be conveniently thought of as
real, symmetric matrices with zero diagonal elements]
are f ttp~, a constant, i.e., a purely longitudinal vector;
f t2pl, a two-valued matrix taking a constant value ex-
cept on one arbitrarily distinguished row (and
column) S where it takes a different constant vaiue;

f p, a three-valued matrix with two arbitrarily dis-
tinguished rows (columns) st, 82. It turns out that
TAK analysis amounts to a generalization of f t'~,

whereas AT work hints that the dangerous mode lies
in the transverse direction (ft" in particular).

In this work we follow the strategy used by Parisi
who constructed the space of q (x ) by consider-
ing the limit of a discrete ansatz sequence q~&,

8 =0, 1, 2, . . . . We construct equations for eigen-
values and eigenfunctions of the Hessian around the
above sequence. We find that the generalization of
f t ~ (f t ~) is a set of functions of two (three) vari-
ables. For simplicity we have kept to zero magnetic

field and used the Parisi approximation for the q &

Lagrangian. The result exhibits all eigenvalues as
non-negative, which proves that the Parisi solution is
marginally stable against all fluctuations, longitudinal
and transverse. The second family h. (~), 0~ K

~ 1 is made of bands pinned on the TAK spectrum
A

t"—= A.
t ~(0). The third family is made of a zero

mode on most of the parameter space, and of a con-
tinuum spanning the range (0, 2r ).

(1) A very good representation, near T„of the SK
free-energy functional, is given by the Parisi model

f 1

= lim (2n) ' r trq'+
3

trq'+ —X q p, (1)

where a, P = 1, 2. . . n. The eigenvalues of the Hessian
of (1) are determined by

0= (h, +2r+3ypq 2p)f,p+ X (q ~f„p+qp„f„)

cot~xt ——~(I —xt) .

This spectrum contains one "large mass"

(3)

where in the following we keep the standard value

y~ =
3

. The AT solution of (2) around the SK sta-2

tionarity point now plays for us, in some loose sense,
the role of an unperturbed problem in the search for
a solution around the Parisi stationarity point. Switch-

ing in the "perturbation" (i.e., the replica symmetry
breaking) lifts the high degeneracy, and rotates the
AT eigenvectors, but these can still be constructed in
close analogy with AT. The simplest matrices f tpt~

solving (2) have the same hierarchical structure as
Parisi s q p. Substituting this ansatz into (2) yields a
system of linear equations which, in the continuous
limit 8 ~, goes over into precisely the TAK in-

tegral equation. ' Its solutions have the same break-
point xt = 2r + 0 (r') as q (x ) [beyond which

q(x) =xt/2], i.e., f(x) =—sincox for x (xt and

f (x) =constant for x ~xt, corresponding to the
of eigenvalues ~(1) m 2 obtained from
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h.
t"= 22 + . and a sequence of small (but stable)

masses

+ ~, m=1, 2, . . .472

mm
(4)

(2) We need now enter deeper into Parisi's
hierarchical block procedure. ' Consider, for exam-
ple, the a row index (a-1,2. . .n). It may be re-
placed by the sequence of hierarchical block numbers

(jp jt,j2. . .j„;a),where jo ——1, j,=1,2, . . . n/mt,
j2 = 1, 2. . . m ~/m 2, . . . , js = I ~ 2. . . mn 2/mn and

where a =1,2. . .m~ labels replicas in the smallest
block R (mI is the number of replicas in each of the
mI 2/ml blocks i). Coordinates of a matrix element

q & are now written with the two sequences

(jojt. . .jn', a) and (lo, lt, . . . ls,b). Let us call over

lap the uninterrupted sequence jp = lp, J'p = I&, . . .J'; = l;
but j,+~ & I&+t, or rather the number i, a pop =i.
We then have q &= qI. In the continuous limit where
m~=i/(R +1), R ~, and m, & x & mj+1, then

q~ q(x). Consider now an eigenvector f '~&' of the
2nd family with one distinguished replica 8. We need
now know, besides i (or x in the continuous limit),
the overlaps 8 Q 0 a =k, 8 Q 0 p = ks. It is easily

observed that if those two numbers are equal
k =ks=k, k ~i, but if k A ks, i =min(k, ks), in
which case the other number is max(k, ks) =k. The
eigenvector is thus now dependent upon two vari-
ables i (or x, a measure of the distance to the diago-
nal) and k (or z, a measure of the distance to 8);
f(x;z). This type of ansatz leads to

a0=—X"'f(x;z)+2q(x) J dt f(t;z)+2 I drq(t)f(t;z) 2q(z) J
—tdt f(z;t)—

for z &x, and for x &z
g

0= —X
2 +xq(x)+ drq(t) f(x;z)+q(x) dr[f(t x)+f(t;z)]

(5)

pZ feS

+ J dt q (t) [f(t;z) +f (t;x) ] —
&

t dt—[q (z)f (x;t) +q (x)f (z t) 1+xq (x)f(x;x) + J dt q (t)f(x;i)

(6)

tanco(xt —K) +u)(1-xt)I (talK) =
1 —to(1 —x, ) tana) (x) —«)

where

I (y) —= 14 —y'I ' 'C'(g)/C(g)

and

~y [4 y2( 1/2

and C(g) satisfies

($2 —s)C"+4($C'+C) =0

(7)

(8)
i

Here e =sgn(4 —y'), and the boundary conditions
are C(0) =0, C'(0) -1. For s=+ I (8) is a Gegen-
bauer equation. '2 Solutions of (7) for eigenvalues

The TAK family is obviously included as a particular
solution independent of z. A study of the discrete
equations behind (5) and (6) shows that solutions

f (x;z ) can be adequately parametrized by a break-
point value K on z, beyond which f„(x;z & K) is z in-

dependent, and that the eigenvalues can be obtained
from the one-dimensional integral equation for
(ii/Bz)f„(x;z) i, „~-=F„(x).

For example, in the region K & xt, F„(x) is a
Gegenbauer function' for 0 ~x & ~, a sine function
with a phase shift for x ~x & x~, and a constant for
x ~xt (note that F„has a jump as x crosses K).
Matching boundary conditions gives the eigenvalues
spectrum A. = A,„.

If ]c &x~, again, with A"'=co ', one has

I

it "(K) can be exhibited, for K « xt/m, as

1 3

jl. (K) =it ' 1+(—)e' m —" +
gN Jlf 3 x 1

where it t" is given by (4), thus displaying bands
pinned at X"'. In the other extreme K » (xt/m )
(but always keeping K & xt) one gets

(K) =K /(3m1r) + (10)

It keeps to that form for K & xt, and (11) only adds
the large mass A.

"'—2v + to the 2nd family
spectrum.

Note that no negative eigenvalue A, = —ao is com-
patible with (7) or (11). Indeed, in that case, the
right- and left-hand sides of (7) (11) remain of oppo-
site signs. Since the original matrix is real symmetric.
no complex solution exists either.

Having solved for k'"(K) and F„(x),one'can
return to (5) and (6) and solve for (0/Bz) f„(x;z)
[and f„(x;z)] thus obtaining the eigenvectors.

(3) Turning to the third family, we need now a

complete information on the eigenvector f s with
two distinguished replicas 8~, 82. This includes the
following: (i) As above the a +OP overlap i; (ii)
the overlaps with 8~, 8t Qoa=kP, 8~ POP=k~n
and with 82, 82 Qoa=k2, 82 Qo p=k2, and (iii)

As K increases and reaches the value x~, (7) becomes

I (coxt) = cU(1 x&)
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the overlap Ht go 82= r, an external parameter.
Again max(kt ,kts. ) = k&, j= 1, 2 and the domain of i

is determined by min(k&, kts) when kt A k&s, andlor
by i ~ k, = kj~ when the k~'s are equal. Altogether,
taking into account constraints of the hierarchical
blocks geometry, and writing x, z~, p for the continu-
ous version of i,kj, r one is left with only the follow-
ing sectors:

(i) f(x;z,z), for z, =z, =—z & p,
(ii) f (x,zt, p) and f (x;p,z2), for p & z~,z2,

0, x]&p&K
z(xt p ), p&xt&K

z(n -p ), p&tr&xi

(13)
(14)

If we let z~ = z2= n —0, then (12) yields either
(i) F„(tt —0;K —0) =0 or (ii) k 3 (K;p)
=2[q'(n) —q2(p)]. In this last case one obtains,
depending upon the relative position of x~ with
respect to p and K,

A study of the system of six coupled integral equa-
tions shows that, if X A X"', the system folds back
onto the second family [Eqs. (S) and (6)]. It also
shows that (1S) is not an admissible solution (it cor-
responds to an identically vanishing eigenvector).
This is not a loss of any eigenvalues since (14) and
(1S) span the same interval (0, 2r'). The same re-
mark applies to possible solutions with asymmetric
breakpoints n~, tt2 in sectors (ii) and (iii). Note that
the soft mode (13) occupies most of the parameter
space (except for a piece of order r') and corre-
sponds to fluctuations disturbing the flat core of
q (x). Although we did not mention it, such soft
modes also exist in the two previous families.

(4) Equations (3), (7), (11), (13), and (14) give
the complete spectrum of eigenvalues, This spectrum
in wholly non-negative, proving that the Parisi long-
range spin-glass solution (at least for the approximate
Parisi model used here for simplicity) is marginally
stable.

In addition to extracting the eigenvalue spectrum
from (2) there are good reasons to solve it in full for
the eigenvectors. Indeed, that would allow one to
construct the one-loop correction to the tree approxi-
mation, that is the first correction in the reciprocal of
the coordination number. That would reveal both
the effect of short-range corrections, and presumably
the lower critical dimension that has been the subject
of much speculation.

where x varies between 0 and 1, and

(iii) f (p;z~, z2), for p & z~.zz

For these eigenvectors f t' one can write a discrete
set of coupled linear equations that, in the continuum
limit, goes over into six coupled integral equations on
sections of the unit cube. The system is fully sym-
metric in (zt, zz) and, as a whole, depends upon the
external parameter 0 & p & 1. It shrinks back onto
Eqs. (S) and (6) whenever f becomes independent
of zq (or z2). The gist of this "dangerous" family
lies in sector (iii).

As above, solutions for the eigenvectors can be
parametrized by a breakpoint n (beyond which f is z
independent). If tr & p, the system reduces to the
second family (it is blind to any distinction between
H~ and Hz). If the breakpoint happens above p we
could in principle introduce K~ and tr2 (for z~ and z2,
respectively). Assuming for the moment that the
solutions are symmetric in (z~, zz) we are left with a
single breakpoint. Letting F„(z~,z2) —= (rl'/8z~rlzz)
xf „"'(p;z~,z2) one obtains an equation decoupled
from the other five,

(12)

0= [—X "(n;p) +q (zt) +q (zz) —2q (p)]F„(z~,zz)
t 1

+q(z)) J t dt F„(t;z2) +q(z2) J t dt F„(z),t)'
g2
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