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We derive powerful sum rules for several important surface response functions which
describe the response of a metal surface to an external time-dependent electric field. As an
illustration, the van der Waals interaction between a particle and a metal is discussed.

I. INTRODUCTION

In recent years a major theoretical effort has been
launched in describing the interaction between elec-
tromagnetic radiation and a "realistic" metal sur-
face. ' This constitutes what has been termed non-
local optics since in contrast to the classical (local)
treatment the dielectric response of the medium is
dealt with particular attention to its spatial features.

It is a well-known fact from elementary classical
electromagnetic treatments that when exposed to ra-
diation an induced charge will be set up which re-
sides right on the interface. This singular surface
charge is the hallmark of the local optical treatment.
However it is obvious that this has to spread out
spatially in a more realistic interface model. A con-
venient measure of this spreading out of the induced
surface charge is its center of gravity, henceforth
denoted di (a length). This has both real and ima-

ginary parts, connected by a Kramers-Kronig rela-
tion, describing the reactive as well as lossy response
of the perturbed metal. di is the length of nonlocal
optics, and plays the same central role for the sur-
face response of a metal as the polarizability does in
characterizing the response of an atom. Causality
and free-particle behavior at high frequencies
(co~ oo) lead to simple and useful restrictions on the
analytical structure of the atoms polarizability as
well as on di(to), leading to sum rules which are the
main objectives of this paper. They put specific lim-
itations on d& s evaluation within different models
for the metal response, and thus helps to guide in
judging the significance of various model results.
di(co) enters in most situations when we want to
know the response to an electromagnetic perturba-
tion such as the surface plasmon damping and
dispersion, the surface photoelectric effect, '
friction forces on a charged particle, " the position

of the effective image plane, ' damping of excited
molecules outside a metal, ' ' etc., and has recently
been applied to the nonlocal properties of small met-
al particles. ' In fact most of the so-called nonlocal
calculations in recent years have been more or less
indirect ways of calculating dz. We will therefore
focus on this very useful quantity and in the next
section we will first derive a set of very powerful
sum rules for di. These sum rules show very clearly
that an accurate description of the surface region of
the metal is crucial in order to obtain reliable re-
sults. Simple models, such as the so-called semiclas-
sical infinite-barrier model, fail completely and
should not be used for quantitative purposes. We
further propose a simple analytical form for di
which can be used as a guide in situations where the
significance of nonlocal effects has to be estimated
without having to resort to heavy numerical calcula-
tions. In the final section we al'so compare our di
with an interpolation formula frequently used in
atom-surface scattering for finding the
ef'ective —image-plane position. ' '

II. SUM RULES

In this section we will derive some very useful
sum rules for the centroid of the induced charge
density di(co), at an irradiated metal-vaccum inter-
face.

dz is defined as

fdzzp;„d
dg= (I)fdzp

where p;„d is the induced charge density. To make
this definition well defined for co&co&, where bulk
plasmons can be excited, one must imagine that the
bulk plasmons are damped (damping y) and take the
limit z~oo before letting @~0. Being a linear
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response function, causality requires dt(co) to be an
analytical function of co for Imco & 0. Since, further-
more, di(co)-co as co~ac (see Appendix A) it
follows that di(co} must satisfy the Kramers-Kronig
relations

co'Imd t(co')
Redi(co) =—f dco'

N —N

co Red'(co')
Imdt(co) = ——f dco'

z z

(2a)

(3a)

Multiplying Eq. (2a) with co and Eq. (3a) with co

and taking the limit N —+ ce gives

dco co Im[ —di(co)] =—lim co Red&(co),0 2 N~ao

(2b)

f dco Red'(co) =—lim coImdi(co) .
0 2 ol~co

In Appendix A it is shown that

co di(co)~ f dzno(1 —no)

00

dz(1 no ):——ri—
4~

(3b)

(3c}

as co~ac. Here no(z) is the ground-state density
profile normalized so that no~1 well inside the
metal (i.e., as z~ac). Combining this result with
Eqs. (2b) and (3b) gives the following two sum rules
which are the main result of this paper:

NNIm —I N =g rs (2c)

f dco Red&(co) =0 .

In the above expressions all frequencies are mea-
sured in units of the bulk-plasma frequency and all
lengths in units of the inverse Fermi wave number
1 lkF ar, ao where a=( ——, ir)', ao—fPlme ——(Bohr
radius}, and r, is the electron-gas density parameter.
Notice that ri is a function only of r, .

From Eq. (2a) we can also relate the
static —image-plane position' di(0) to the
loss function Imdi(co) via

ma frequency, as has been shown earlier in Ref. 14.
In Fig. 1 g(r, ), rt(r, ), and g(r, ) are shown as a

function of r, as obtained within the so-called jelli-
um model. In this model the metal-ion cores are
smeared out into a positive uniform background oc-
cupying one-half space (z & 0}. The interaction be-
tween the electrons is accounted for by use of the
density-functional approach within the local-density
approximation.

Another surface response function of great in-
terest is the so-called complex —image-plane position
dip(co), which is related to di(co) via

E0
dn (co}= di(co)

e0+ 1

where

E0= 1 —N

Since dtp~dt/2 as co—+ ac it follows that dip will
satisfy the following sum rules:

00
1

dco co Im( —d,p )= —,ri,0

f dco Redtp =0, (8)

where ri was given earlier in Eq. (2c). We have thus
derived two sets of surface response sum rules. In
principle it is possible to derive a whole set of them
using standard methods, but the two presented are
the most interesting ones.

Finally, in connection with spherical metal parti-

(4)

Similarly, for small co Eq. (3a) reduces to

Im( dt ) =cog(r, ), —co « 1

Imdt(co)
di(0) =—f dco —= g(r, ) . —

m' N

0
0

I

4

where

00

g= —f dco
Red i(co')

p2

Thus the loss function Imdi(co) increases linearly
with N for frequencies much smaller than the plas-

FIG. 1. Parameters g, r), and g are ground-state quan-
tities which (in the jellium model) only depend on the
electron-density parameter r, . They are evaluated within
the local-density approximation to the density-functional
approach (Ref. 19). The functions g and i) are defined in

Eqs. (5) and (2c), respectively, and the values for g
[=—di(0)] are taken from Ref. 18.
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cles one can introduce another surface response
function' da (co)~di(co) as the particle radius
R ~ ao. Again, for da (co) one can derive sum rules
very similar to those presented above.

It is interesting to compare the values of g ob-
tained with a Lang-Kohn profile with the results of
simpler models. For example, in the infinite-barrier
model the electrons are forced to occupy one-half
space due to an infinite barrier. The ground-state
electron density in this model is

no(z) = 1 —3ji(2kpz)/2k',

where ji(x) is a spherical Bessel function. For this
density profile il can be calculated analytically,

08=0.18,
80 16

and is independent of r, . This value of g is about —,

of the prediction for a Lang-Kohn profile with

r, =3. There exist several other models, such as the
semiclassical infinite-barrier model or the plasmon
pole approximation, which have been used frequent-
ly for the nonlocal description of metal surfaces.
However, it has been shown by Feibelman that these
models are very crude and we will not discuss them
further here.

III. van der WAALS INTERACTION
BETWEEN AN ATOM AND A SOLID

di (co) determines the influence of a metal surface
on all dynamical processes involving electric fields
which vary slowly over the surface. We illustrate
this here with the van der Waals interaction between
a particle and a metal. For other applications see
the review work by Feibelman. ' Sm also Ref. 14 for
a detailed discussion of electron-hole pair quenching
of excited states above metal surfaces and Ref. 15
for applications to small metallic particles.

Recently, puzzling experimental results have been
reported involving the van der Waals interaction be-
tween a particle and a metal. For example, there are
results which suggest that the interaction between a
cesium atom and a gold surface might be 30%
smaller than expected from the Lifshitz formula.
Quite aside from these rather speculative results,
there is a growing interest in the role of the van der
Waals interaction in connection with helium beam
diffraction experiments from inetal surfaces. '

The classical formula for the van der Waals in-
teraction between an atom [with the polarizability
a(co)] and a semi-infinite metal is '

U(z) =— J du a(iu) —, (9)
e(iu) —1 1

4m o e(iu)+1 z

where z is the distance to the metal surface and

dip(iu}
X 1 —3

Z Z3
(10)

where d»(N) is defined in Eq. (6).
An often-used form for d,p was introduced by

Zaremba and Kohn, '

di(0)
dip(lu)

2u +1
(1 la)

which has the correct limits d»(0)=di(0) and
dip(i Oo ) =0. However the leading term in the high-
frequency expansion is -di(0)/2u, which is
—g/2u in our notation, while we know that it has
to be ——g/m. u . Thus as a simple approximation
to dip(iu) we propose

di(0)
d„(iu) = (1 lb)

1+gmu /ri

instead of Eq. (11a}. This approximation has the
correct u~0 and u~oo limits, but it is not clear
yet how accurate this form is. Therefore, to check
this, we will now present a simple analytical approx-
imation to dip(iu) which satisfies the sum rule (2c)
as well as conditions (4) and (5). It can be shown
that Imdi(co) has its main weight below the plasma
frequency. We will therefore make the following
ansatz:

Im[ —di(co)]=A(1+an) +ba) }a)8(1—ro},

(12)

where 8(x) is the usual unit step function, i.e., 8=0
for x &0 and 8=1 for x &0. The coefficients A, a,
and b are obtained from Eqs. (2c), (4), and (5).
di(co) is obtained directly from Imdi(co) by analyti-
cal continuation:

—di ———(1+ace +bee koln
A co —1

7r co+ 1

+B+a'a)'+b'a)4 (13)

where a', b', and B must be chosen so that

where e(co) is the bulk dielectric function of the met-
al. In this model the metal surface (or, more
correctly, the image plane) is located at z =0. But,
as is now known, the image plane depends on the
frequency and Eq. (9) must therefore be replaced
by16

U(z}=— du a(iu) e(iu) —1 1

4~ e(iu)+1 [z+d»(&u)]'

J du a(iu)
4n. o eiu +1



SUM RULES FOR SURFACE RESPONSE FUNCTIONS WITH. . . 6061

d~~2rl/nco as co~ 00. This gives

8=2(1+a/3+6/5),
a'= 2(a +b/3),
b'=2b .

In Fig. 2 we show Im[ —dq(co)] as a function of co.

Also shown are the numerical results of Feibelman. '

The agreement is not perfect, but the approximation
(13) is certainly much more accurate than that used

by Zaremba and Kohn. ' Also, it is straightforward
to improve upon the given approximation by includ-

ing further terms cco +dco + . in the polynomi-
al approximation of Imdq, and to adjust the coeffi-
cients c,d, . . . to get an optimal fit.

Figure 3 shows how Red~(co) varies with co. Fig-
ure 4 shows how d&p(iu) varies with u. The
Zaremba-Kohn curve is calculated from Eq. (1la)
while the curve "present work" is obtained from
Eqs. (6) and (13). The dashed line in Fig. 4 is calcu-
lated from Eq. (lib) and is obviously a very good
approximation to the more exact expression based
on Eq. (13). We note that dtp(iu) is a smoothly

Feibelman

Q

EL
I

FIG. 3. Real part of —dj(co) as a function of co calcu-
lated from Eq. (13) (r, =3).

varying function of u. This is in sharp contrast to
the behavior along the real co axis where dip has res-
onance structures. All singularities (poles and
branch lines) of dip(co) are located below the real co

axis in the complex ~ plane. When following the
co=iu axis we are never close to any of these singu-
larities and dtp(iu ) is consequently a smooth func-
tion of u. Actually, one can prove that dtp(iu) is a
real-valued, monotonically decreasing function of u
(see Appendix B):

2 ~ N
d&p(iu) =—J dco Im[dtp(co)]

N +Q

f dco, 1m[de(co)] .~ 2u +1 0 co+u

Q

E

.p 0
4 CL
M MD

0
0

I Q

2

FIG. 2. Imaginary part of —d&(co) as a function of co.

The curve "present approximation" is calculated from Eq.
(13) while the other curve has been obtained earlier by
Feibelman (r, =3).

FIG. 4. Function —dj(co) along the imaginary positive
axis co=iu. The Zaremba-Kohn curve is obtained from
Eq. (11a) and the other full curve from Eq. (13). The
dashed curve is calculated from Eq. (11b) (r, =3).
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The difference between the Zaremba-Kohn esti-
mate of d, i (iu) and the present more accurate re-
sults are never larger than 0.2di(0)-0.2 A. For z
values -6 A in Eq. (10) this gives at most a 10%%uo

correction to the value calculated with the
Zaremba-Kohn ansatz and it is obvious that a devia-
tion in the van der Waals interaction of about 30%
as seen experimentally for particles passing hun-
dreds of A from the surface is not due to a nonlocal
effect.

IV. CONCLUSIONS

From causality and the free-particle behavior at
high frequencies, we have derived powerful sum
rules for two important surface response functions.
These sum rules show that several frequently used
models for the electromagnetic response of a metal
surface are very crude. To obtain reliable results one
must use a realistic surface potential, such as the one
obtained by Lang and Kohn. This result is con-
sistent with numerical results obtained earlier by
Feibelman' whichf, or example, show that the semi-

classical infinite-barrier model underestimates the
probability for electron-hole pair excitations by a
factor of 10 and completely fails in the description
of the bulk plasmons for co & co&.

The sum rules we have derived are valid even if
the atomic structure of the solid is taken into ac-
count. Of course, in this case no, p;„z, etc., depends
not only on z but also on the coordinate parallel to
these surfaces x~~. Thus no, for example, will exhi-
bit periodic oscillations parallel to the metal surface,
with the periodicity determined by the lattice con-
stant. Now if we replace no (x~~p} with its average
over x~~,

n, (z) —=— d x~~n, (x~~,z),1

where A is a surface unit cell, then all the formulas
presented in Sec. II are still valid.

Another important question is whether no(z)
should contain all the electrons in the system or only
those in the conduction band. The situation here is
similar to that of the f-sum rule for the bulk dielec-
tric function. The answer is that strictly speaking
all the electrons should be included. Nevertheless,
for practical purposes one can usually get good re-
sults even if only the conduction-band electrons are
considered in the sum rule, as in the discussion
above, provided one is not interested in such fre-
quencies co that deeper levels are probed.

In Sec. III we discussed the van der Waals in-
teraction between a particle and a metal. It was
shown that the effective (dynamical) image-plane
position d,i, defined in Eq. (6) deviates by less than
0.2 A from earlier estimates by Zaremba and

Kohn. ' Thus the numerical results presented by
these authors and often used in atom-surface scatter-
ing calculations, should be accurate enough for most
practical purposes.

This is the second work in a series of three papers
devoted to the description of dynamical processes at
surfaces. The basic assumption of this work, as well
as of the first work, ' is that the external field varies
slowly over the metal surface. In the third paper we
will abandon this assumption, and fields which vary
arbitrarily rapidly in space will be studied. This is
especially important when the probes are in the im-
mediate vicinity of the metal surface, as is often the
situation in the studies of surface-phenomena.
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APPENDIX A

V eE=4mp, „, ,

where e is the dielectric integral operator of the met-
al. Integrating this equation from a point just out-
side the metal (where the electric field is Eoz } to an
arbitrary point z inside the metal [where the electric
field is E,(z)z ] gives

@ED(z)=Eo .

That is,

E,(z}=e 'Eo,

and we can calculate the induced density p;„z(z,co)
from

1 1 d
pl~a

—— V E=- e Ep .
4m. 4m. dz

Thus

1 1
dzp;„g —— ——1 Ep,

4m ep
(Al)

Here we will study di(co) as co~ ao. Assume that
the metal occupies the half-space z&0 (z=0 is
chosen at the edge of the positive background in the
jellium model} and let

p,„,=5(z+L)e

be a time-dependent external charge density located
on the sheet z= —L outside the metal. Consider the
Maxwell equation
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where (cp is measured in units of co~)

6p= 1 —CO
—2

is the bulk dielectric function. In deriving (Al) we
have utilized that e—+1 outside the metal and e~ep
inside the metal. Next we must calculate

E'p

dg(cp)= fdzz e 'I
1 —ep z

2~co dzz e I as co~cc .
dz

To evaluate

zzpI« —— zz E Ep ~

4m' dz

Equations (Al) and (A2) give

(A2) e ' I= fd x'e '(x, x', co)

as co—+ ao, we use the Kubo formula

2

ez(x, x ',co)=[1—co np(z)]5(x —x ')5J —
2 CJ(x, x ',co)

where CIJ(x, x ';co) is the so-called current curren-t response function:
I

(0[J;(x)
~

n)(n
~

JJ(x') [0}
C,J(x,x ',co) =

co+ I 5—rp„

(0~ Jj(x')
~
n)( n~J;(x) ~0}

cp+ l 5+co+

—(0
~
[J;(x),J (x '}]

~

0}

, (0
/
[[J;(x),H ],JJ (» '))

/
0) +

%co

as co~ oo. Now, [J(x)PJ(x ')]=0 and the leading contribution to CJ(x, x 'co) for large co is thus
—2

C;J(x, x', co}- (0
~
[[J~(x),H],JJ(x ')]

~

0} .

To order co we then set
2

e~. '(x, x ';co} [I+a-o np(z)+co np (z)]5(x x')5 1+—
~ (0

~
[[J(x),H],JJ(x ')]

~
0),

and, consequently,

fd x'ez '(x, x ',co)=[1+co np(z)+co np (z)]51+ (0
~
[[J;(x),H],PJ lm] ~0), (A3)

where P; is the total momentum operator for the
electrons. Now, let us write H =Hp+H' where

H'= e fd —xU(x '}g (x '}P(x '},
where U(x) is the potential from the positive back-
ground, i.e.,

V'U= —4~e(z} .

We have

[J;,H']= — . U, Aml

where

then

[J;,Hp]=F;,

[J;,H]=F; — U ggtP .
mi

Since

[F;,PI]= . F;J-—
E

we get

e
(0~ [[J H] PJ] ~0}=—. F

&
—A U npj

I

(A4)

(A5)

If we denote
where F;= (0

~
F;

~

0}.The term F;~ in this expres-
sion can be eliminated as follows. Since
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{oi[Z, ,H] io}=0
we get, from Eq. (A4),

tie
Fi — . Ui~O=O

ml

from which it follows that

tie
Fi,»= . «, lnp), »

.
mi

Substituting this into Eq. (A5) gives

A'e
{0

i [[J;,H],P»] ~

0) = U, ,inp

f2e2
4n— . 8(z)np, (A6}

where the last equality is valid for i =j=3. Substi-
tuting (A6) into (A3) gives

x 'E33 '( x, x ',co) = 1 +co np +co np —co 8(z)np
4m

We can now calculate

dl (co) co fdzz E j(
dz

=co dzz 1+co lip(z)+co np (z) — co 8(z)lip(z)
d 2

z 4m

dzz np+np co — 8(z)npco2 -2 —2

dz 4m.

=fdzz np 8(z}+[—np 8(z)]co— 8(z—)[np 8(z)]c—o
dz 4m

= —fdz np 8(z)+—co [np —8(z)]—co 8(z)[np 8(z)—]
—2 2 1

4m.

Now, charge neutrality implies that

fdz[np 8(z)]=—0

since 8(z}is the positive background. Therefore,
T

1
d J (co) co f-dz np(z)[ 1 —np(z)] —8(z) [1 —np(z)]

4m
(A7)

as co—+00.

APPENDIX B

Since d» (co) is analytical in the upper co half-plane we get, from Cauchy's theorem,

dj(co)
dj (z) = . dco

27KE
—OO N —Z

where z is an arbitrary point in the upper half-plane. In particular, if z =iu, we get

ao d» (co) 1 e&

dl(iu)= . f dco . = . f dco
dj(co) dj( —co)

N —lQ CO+lQ

(B1)

But d» (z) =d» ( —z*) (this relation is valid for any retarded response function) gives d» (co)=d j ( —co) and thus

dl (co)(co+iu ) d» (co)(co iu —) 1 —co Imd» (co)+u Red'(co)dl(iu)= . dco dN
2@i N +Q m' N +Q
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Substituting Red& for Imdt using

m Imdt(co )
Red'(co}=—Ref dco'

7T CO —CO —l E

into (81) and interchanging the co and co' integra-
tions gives finally

m co Imdt(co}
dt(iu ) =— dco

N +Q

Since —Imdt(co) is a positive definite quantity in
our approximation it follows that —dj(iu) is a
monotonically decreasing function of u (this proper-
ty can actually be proved to be of more general va-
lidity) and so, therefore, will be —d&p(iu), since

dn (iu) = dt(iu ) .u +1
2Q +1
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