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Surface effects on the x-ray photoemission spectra of metals

Pierre Longe
Institut de Physique, Universite de Liege, B-5, Sart-Tilman, B-4000 Liege, Belgium

and Department ofPhysics and Atmospheric Science, Drexel University, Philadelphia, Pennsylvania 19104

Patrick Kiehm
Institut de Physique, Universite de Liege, B-5, Sart-Tilman, B-4000 Liege, Belgium

Shyamalendu M. Bose
Department ofPhysics and Atmospheric Science, Drexel University, Philadelphia, Pennsylvania 19104

and Schlumberger Doll Re-search, P.O. Box 307, Ridgefield, Connecticut 06877
(Received 30 August 1982)

The effects of the presence of the surface on the main line shape and strength of the
photoemission spectra of metals and adsorbates have been investigated. By using a modi-
fied Nozieres-deDominicis theory, recently developed by Bose, Kiehm, and Longe for the
bulk photoemission spectra of metals, the power-law exponent a and the intensity parameter

g have been calculated as functions of zo, the distance from the surface. With the use of
these values, the asymmetry indices at half- and quarter-maxima, as well as the maximum
intensities, have been calculated. These quantities are seen to be highly influenced by the
presence of the surface for photoemission from adsorbate atoms outside the sample. The
surface has moderate effects on the photoemission from atoms embedded inside the sample.
The results obtained in this article can be utilized to estimate the distance of a photoemit-
ting adsorbate atom, from the experiments&ly observed asymmetry indices and intensity
maxima.

I. INTRODUCTION

In a one-electron model, the intensity of the x-ray
photoetnisson spectrum (XPS) from an inner core
state of a metal may be described by a 5 function as
long as the lifetime of the core state is infinite.
Many-body interactions in the metal introduce an
asymmetrical width to the line shape of the XPS.
These many-body effects have been studied some
years ago by Doniach and Sunjic (DS) (Ref. 1), who
extended the Nozieres-deDominicis (ND) theory of
the edge effect in the x-ray spectra to the photoemis-
sion case.

The many-body effects which modify the 5-
function shape are of two kinds: The ones which
give a width A, to the line shape but maintain it in a
symmetrical Lorentzian shape

E +A,
and those which introduce an asymmetry and are
directly related to the so-called edge effect. The
width 3, is related to the core-hole damping (general-
ly due to internal Auger transition ) as well as to
the photoelectron damping ' (electron-hole pair and
plasmon excitations). The edge effect, on the other

Xcos a—+(1—a)tan
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(2)

where a is given by

00
Ia=2 g (21+1) (3)

I=O

The 5t's in Eq. (3) are the phase shifts of the Fermi
electrons scattered by the core hole. Note that when
a goes to zero Eq. (2) reduces to the Lorentz func-
tion [Eq. (1)]. Thus the parameter a can be visual-
ized as the asymmetry parameter introducing asym-
metry in the XPS line shape.

In actual metals, for the density parameter r, run-
ning from 2 to 5, u has been estimated to range
from 0.12 to 0.25 according to an expression pro-

hand, is associated with the creation of a large num-
ber of weak-energy electron-hole pairs during the
photoemission process. As shown in DS it modifies
Eq. (1}into the asymmetrical band shape

1 R "d exp[i( @+i',)s)—I e =—Re ds
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27 6000 1983 The American Physical Society



27 SURFACE EFFECTS ON THE X-RAY PHOTOEMISSION. . .

posed by Longe, using the Born approximation,
controlled by the Friedel sum rule, for the phase
shifts, i.e.,

a=(2maskF+2)

where the core-hole potential V(q) is the Thomas-
Fermi potential.

In Eq. (2), g is a constant having the dimension of
energy and is estimated roughly to be of the order of
the Fermi energy eF kp/2m——. However, g as well
as a would depend on energy e if one wants to ex-
tend the DS model to lower energies. Since the DS
model is valid only for e«eF, the calculation of g,
as it appears in Eq. (2}, is irrelevant, as it provides
information only about the absolute photoemission
intensity, which practically is impossible to measure
experimentally.

The calculation of g, however, becomes interesting
if one wants to study the evolution of the line shape
[Eq. (2)] as a function of zp, the normal distance of
the photoemitting atom from the metal surface.
This atom may be, for instance, an impurity atom
embedded in the metal, or it may be an adsorbed
atom or an atom belonging to an adsorbed molecule.
In the latter case, the atom is outside the metal at a
(negative) distance zp from the surface.

The aim of this paper is to study the evolution of
the line shape of the photoemission from a metal
[Eq. (2)] as a function of zp. More precisely, we in-
tend to calculate the zp dependence of g and a,
which determines this evolution. The limit
zo —++00 would correspond to the bulk situation
described in DS and the limit zo —+ —oo would cor-
respond to photoemission by a free atom (or mole-
cule). Note that A, appearing in Eq. (2) should, in

principle, depend on zo also. However, this depen-
dence can be considered negligible if the core-hole
lifetime, which depends mainly on the inner-core
Auger transition, is considered more important
than the photoelectron damping. ' We will assume
such a situation as it is encountered in deep —core-
level (E-level) photoemissions. Measurements are
also more reliable in these situations.

The two quantities of experimental interest are (i)
the intensity maximum and (ii} the asymmetry of
the main line. It is particularly interesting to study
the evolution of these quantities as a function of zp.

II. INTENSITY MAXIMUM
AND ASYMMETRY INDEX

Before proceeding to the calculation of a(zp) and
g(zp } in the next section, let us first show how they
are related to the experimentally determined quanti-
ties, the intensity maximum and the asymmetry in-
dex. Introducing the dim ensionless quantities
x—:e/A, and J=m.AI, we find that the line shapes,
Eqs. (1) and (2), can be represented by two functions
independent of A, , except for an overall factor (A, /g)
in J . Onehas

J (x}= 1

x +1
and

J"(x)= (A, /g) A (x),
with

A(x)=I(1 —a)(x +1)'

Xcos a—+(1—a)tan 'x
2

1.0-

& 0.5-
N

~ ~
C
E
O

0 l

I
(

I
I I
( I $ lL
( \I

] I
] I

) I
)
(
)

I~ ~ ~
(

( I

F

I
8 Ll
1 F

I
I

h =)/2

h=&/4

I

-2
c/

FIG. 1. Schematic representation of the photoelectron intensity for the symmetric (Lorentzian) and asymmetric cases.



LONGE, KIEHM, AND BOSE 27

Functions J (x) and A (x) are shown schematically
in Fig. 1. The intensity maxima occur at x=O in
Eq. (4) and at

x =x~:—cot[a./(2 —a)]
in Eq. (5). The magnitudes of these maxima are

B

and

l.
Jmax = l

'a

0— 0—
FIG. 2. Lowest-order diagrams contributing to the

photoemission intensity.

~max ~max ~ (7)

with

A,„=I (1—a) sin
2 —cx

As in DS, we define the asymmetry index a ( —, ) at
half-maximum as the ratio of ~peak energy minus
energy at half-maximum~ on the low-energy side to
that on the high-energy side of the peak. Another
asymmetry index a ( —,}, which is easier to measure,

can be introduced similarly by using the energies at
quarter-maximum instead of half-maximum. One

1 1

has a ( —,) & a ( —, ) ) 1, the equalities corresponding to
the symmetric Lorentzian shape [Eq. (4)]. An im-
portant point to realize is that a ( I/n), which is cal-
culated from Eq. (6}, depends only an a. It neither
depends on g nor on A, . However, the line asym-
metry is probably not the easiest quantity to mea-
sure in the x-ray photoemission spectra.

The zo dependence of the intensity maximum
should be easier to determine experimentally. This
maximum given by Eqs. (7) and (8), however, de-

pends an both g and a, and it tends to 1 (Lorentzian
limit) for an atom or molecule at large distances
from the metal and to the DS value (with g to be
evaluated) when the atom is embedded at a few
angstroms inside the metal (bulk photoemission).

To conclude this section we note that the signifi-
cant quantities to calculate as functions of z0 areJ,„,a ( —,), and a ( —,), which, in turn, implies that it
is necessary to calculate both a and g as functions
Z0 ~

III. CALCULATION OF THE POWER-LAW
EXPONENT a AND THE INTENSITY

PARAMETER g

The ND theory for the edge effect in the x-ray
spectra and its extension to the XPS by DS use a
separable core-hole potential. These theories show
that the edge effect is described by a power law and
then give expressions for the power-law exponent a
as a function of the phase shift [see Eq. (3)]. They

do not give an expression for g, the calculation of
which would require the use of a more realistic po-
tential. Furthermore, the extension to the case
where a surface is present requires reevaluation of
the power-law exponent, as the phase shifts are not
only determined by the scattering of the electrons by
the core hole alone but also by the charges induced
on the surface.

The only way to evaluate a and g is then to intro-
duce a realistic potential describing the interaction
of the electrons with a core hole in the presence of
the surface. This can be done by using a technique
already used by the present authors (BKL) (Ref. 9)
to extend the DS theory beyond the immediate
neighborhood of a=0 The B.KL theory is the
lowest-order expansion of the ND theory where a
ground-state propagator is calculated between times
0 and s, at which times the core-hole potential is
suddenly introduced and removed, respectively (see
Fig. 2}. In the ND theory this propagator is calcu-
lated by means of a diagrammatic expansion where
an unlimited number of vacuum loops, containing
an unlimited number of core-hole vertices, represent
the multiple scattering of the conduction electrons
with the core hole. The BKL approximation con-
sists of considering only one loop with two vertices
(pair propagator). The power law given in Eq. (2) is
then approximated by a logarithmic law,

I (e) =5(e) 1 —a ln —a—e(e)

r 2

f dq q [ V(q)]2 . (10)

(Here we have assumed A, =O and y=0.577. . . is the
Euler constant. ) This line shape is not correct for
e-O, but it gives satisfactory expressions for a and

g, where the core-hole potential appears quadratical-
ly. The important point is that in this approxima-
tion, these quantities can now be calculated using
various types of realistic potentials. For instance, if
the core potential V(q) is spherical (i.e., no core-hole
internal structure and no surface effect) one has
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Equation (10) yields Eq. (3') if V(q) is taken to be
the Thomas-Fermi potential with a constant screen-
ing length. Equation (10) is also directly related to
Eq. (3) with the 5I's calculated in the Born approxi-
mation. This calculation has been shown to be
quite satisfactory even for the x-ray edge of L bands
where the power-law exponent depends strongly on
5p, the most important phase shift.

Let us now give more details about this calcula-
tion and show how ft can be adapted to the evalua-
tion of a(zp) and g(zp). The lowest-order propaga-
tors to calculate the photoemission intensity are
shown in Fig. 2. As already mentioned, only one
loop with two vertices is considered in our approxi-
mation. This loop 8 in Fig. 2 is related to the
electron-hole pair propagator 8(q, pi) Th.e dotted
lines represent the instantaneous interaction with the
core hole which is represented by a double line prop-
agating downward between times 0 and s. The two
diagrams contribute to the intensity through the two
terms

CO

Ip —Re —f— ds e '"=5(e)

and

INs jIi ———Re f ds e '"f dao . . a(pi},
2i (co —iA, )

(12)

with

a(pi)=(Sir pi) ' f dq
~

V(q)
~

Im8(q, co) .

(13)

The procedure consists in identifying Ip and I,
with Eq. (9), which yields an expression

a(e)ln =I' f dc' . (14}

Equation (14} together with Eq. (13) allows the
determination of functions a(co) and g(co), and
hence a(0) and g(0) as required in the present prob-
lem. Note that Eq. (10) can be obtained from Eq.
(13)by using the expression

Im8(q, pi) = 6(2kF —q)8(pi),
2&/

which is valid for co-0. Here 8 is the usual step
function.

To calculate a(zp) from Eq. (13), we need an ex-
plicit potential V(z,zp, q~~) to describe the interac-
tion between the core hole, treated as a point charge
localized at a distance zp (positive or negative) from
the surface, and a conduction electron located at a
distance z (positive) from the surface. Here q~~ is a

two-dimensional wave vector parallel to the surface.
In this paper, for V(z,zp, q~~) we will use two ap-
proximate potentials which were discussed exten-
sively by Heinrichs' a few years ago. These poten-
tials were calculated by procedures where a part of
the problem was treated phenomenologically and the
remaining part in a self-consistent way. The first
potential is based on the step-density approximation
(SDA) where the unperturbed electron density is
uniform right up to the surface where it then drops
abruptly to zero from its bulk value. The other po-
tential is calculated in the dielectric approximation
(DA) in which the dielectric function everywhere in
the metal, even close to the surface, is replaced by its
known asymptotic form in the bulk. According to
Heinrichs, the potentials calculated in SDA and DA
should be treated on equal footing and it is not pos-
sible, a priori, to discriminate against one in favor of
the other. However, the validity of both of these
treatments is restricted to situations where the dis-
tance of the perturbing charges from the surface is
larger than the range of electron density variation
near the jellium edge. This point is important and
makes the present calculations invalid for
~zp

~
(k~ '. With these approximations, the SDA

or DA potentials can be introduced in Eq. (13) by
simply replacing V(q) with

00

V(zp q ) = dz e * V(z'zo' q (15)

In principle, 8(q, co) appearing in Eq. (13) should
be calculated by introducing wave functions for elec-
trons reflected by a surface. However, by using the
usual pair propagator 8 (q, co) with the electrons sim-

ply described by plane waves in this paper, we are
performing the calculations consistent with the ap-
proximations used to obtain V(z, zp, q~~) in SDA or
DA. Under these conditions, both a and g can be
calculated as functions of zp by using Eqs. (13}and
(14), respectively.

IV. RESULTS AND CONCLUSIONS

The power-law exponent a(zp) and the intensity
parameter g(zp) have been calculated numerically by
using Eqs. (13) and (14) in conjunction with Eq. (15)
in both SDA and DA for the electron density
parameters r, =2—5. The results are plotted in Figs.
3 and 4 as functions of the distance zp from the sur-
face of the metal. In both approximations, a and g
show similar zo dependence even though the values
obtained in DA are somewhat larger. Figure 3
shows that the power-law exponent a falls off rather
rapidly outside the sample and inside the sample it
attains the bulk values within a distance of several

k~
' from the surface. Similar zp dependence of a

for negative zo's has been calculated by Gadzuk and
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FIG. 3. Power-law exponent a for density parameters r, =2—5 calculated in the sudden density approximation (SDA)
and dielectric approximation (DA) is plotted as a function of zo (in units of 2k~), zo being the distance from the surface of
the metal.
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Metiu. " As shown in Fig. 4, the intensity parame-
ter g also falls off to a constant value outside the
sample and increases to its bulk value inside the
sample. However, this approach to the bulk value is
slower than that for the exponent a.

Knowing the parameters a and g we can calculate
the photoemission intensities for the symmetric
(Lorentzian) and the asymmetric cases by using Eqs.
(4) and (5). These intensities are shown schematical-
ly in Fig. 1, as functions of the parameter x =e/A, .

1 1
The asymmetry indices a( —, ) and a( —,) correspond
to the asymmetry at half-maximum (h =—) and

1
2

quarter-maximum (h = —,), respectively.
These asymmetry indices for r, =4 are plotted in

Fig. 5. As expected, the index a( —, ) is larger than
a ( —,). They fall off rapidly outside the sample and

at large negative zo's the asymmetry indices ap-
proach zero. This is expected, as it simply indicates
that far away from the metal the photoemission line
is symmetric, i.e., photoemission from an atom far
away from the sample is not affected by the pres-
ence of the surface. However, near the surface the
photoemission from adsorbed atoms or molecules is
strongly affected by the presence of the metal sur-
face and the line shape is highly asymmetric. Inside
the sample asymmetry indices are large and attain
the bulk values within a distance of a few kF

' from
the surface.

In Fig. 6 we have plotted the ratio of the intensity
maxima for the asymmetric and the symmetric
Lorentzian cases. As expected, the ratio approaches
1 for large negative values of zo where the emission
intensity becomes symmetric as it corresponds to
emission from an isolated atom. For small negative
zo's and for all positive zo's, this ratio is different
from 1 indicating that for these values of zo the
photoemission is highly influenced by the metal.
Note that variation of this ratio is negligible inside
the sample. However, it should be pointed out that
a typical escape depth of the photoelectrons in the
XPS experiments is of the order of 10—20 A and
one may, therefore, expect the intensity maximum to
be also affected by the inelastic scatterings of the
photoelectrons when they are created inside the sain-
ple. Since we have not included such extrinsic
scattering process in the present calculation, the in-

tensity maximum does not show any appreciable
change as a function of zo when the core hole is in-
side the sample. In real XPS measurements the
photocurrent will show significant zo dependence as
it will be modified by the above scatterings.

In conclusion, we would like to mention that in a
previous article' we had calculated the so depen-
dence of the surface- and bulk-plasmon satellite in-

tensities during photoemission from a metal and
showed that they were strongly modified by the
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FIG. S. Asymmetry indices at half-maxima (h = —) and quarter-maxima (h =—) for density parameter r, =4 are plot-

ted as functions of zo.
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FIG. 6. Ratio of the intensity maxima given by Eq. (7) for the asymmetric and symmetric (Lorentzian) cases for r, =4 is
plotted as a function of zo.

presence of the surface. We were able to calculate
these satellites not only for emissions from atoms in-
side the sample but also from the adsorbates. In the
present article we have extended this study of the
surface effects to the main lines of the photoemis-
sion spectra of metals. The results obtained in these
papers are interesting as they can be utilized to esti-
mate the distance of a photoemitting adsorbate atom
from the surface of the metal. As indicated in Figs.
5 and 6, the experimentally observed asymmetry in-

dex and/or the intensity maximum would give us
such an estimate.
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