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Possible high-pressure phases of Al are examined by comparing the total energies for
three structures: fcc, bcc, and hcp. The energies are calculated using the density-functional

formalism and the ab initio self-consistent pseudopotential approach. At zero pressure, the

most stable structure is the fcc structure in agreement with experiment. At about 2 Mbar,

the hcp structure is predicted to be the most stable, while at about 4 Mbar, the bcc structure

is the most stable. The stability of the bcc phase at compressed volume is found to be

caused by the lowering of the d states. This conclusion is based on an analysis of the occu-

pancy of s, p, and d states at normal and co~pressed volumes.

I. INTRODUCTION

The behavior of materials under high pressure is
of great current interest because high-pressure ex-
periments are becoming more refined. An accurate
first-principles method of calculating, and hence
predicting, the structural properties of solids under
high pressure is therefore very valuable. More im-

portantly, such calculations can reveal the mechan-
isms of pressure-induced phase transitions. Recent-
ly, accurate calculations of structural properties
have been obtained using the density-functional for-
malism and the ab initio pseudopotential approach.
A wide range of materials have been investigated
with this method, including insulators (C), homo-
polar semiconductors ' (Si and Ge), heteropolar
semiconductors (GaAs and A1As), cubic metals
(Al), and noncubic semimetals (Be). The success of
this approach can be attributed to three reasons:

(1) The electronic screening is treated self-
consistently in the density-functional formalism.

(2) The quality of the pseudopotentials is im-

proved by using angular-momentum-dependent
pseudopotentials (i.e., nonlocal pseudopotentials).
The energy dependence of the pseudopotentials is
taken into account by using different potentials for
different angular momenta. The behavior of the
valence electrons is correctly simulated over a wide
range of excitation energy [about 1 Ry (Ref. 7)].

(3) The crystal potential at the interstitial site
(bonding region) is accurately represented using a
plane-wave expansion as compared to using a spher-
ical (muffin-tin) approximation. This accurate rep-
resentation may be important when two similar

structures are compared.
The approach outlined above is employed here to

determine the stable phase of Al under high pressure
and to analyze the driving mechanisms for the phase
transitions. Al is chosen as a prototype simple
close-packed metal. There have been previous inves-
tigations by Friedli and Ashcroft using a local
(angular-momentum-independent) pseudopotential
and a nearly-free-electron perturbation expansion
technique, and more recently by Moriarty and
McMahan using generalized pseudopotential theory
(GPT) and linear-muffin-tin orbital (LMTO)
methods. Comparison between our results and those
of the previous investigators will be discussed below.
Our findings indicate that Al undergoes the follow-
ing transformation sequence: fcc-hcp-bcc. Howev-
er, the transition pressures are quite high, -2 and
-4 Mbar, respectively; hence these transitions have
not yet been observed experimentally. %'e also in-
vestigate in detail the importance of the d states for
the stability of the high-pressure phase. The
amount of s, p, and d character of the wave func-
tions is analyzed as a function of volume. The role
of the d states is also addressed by Moriarty and
McMahan.

This paper is organized as follows. In Sec. II, the
procedures for the total-energy calculation and the
s-p-d decomposition of the wave functions are
described. In Sec. III the results are presented and
discussed. A brief summary is given in Sec. IV.

II. CALCULATIONAL PROCEDURE

The total energy of a solid consists of two parts:
a static lattice contribution and a contribution due
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to the vibrations of the lattice. The static lattice
part includes the electron kinetic energy, the
electron-electron interactions, the electron-ion in-
teractions, and the static Coulomb interactions be-
tween the ions. The vibrational part includes all the
occupied phonon modes and the zero-point motion
of the lattice. The separation of the total energy
into these two parts is a consequence of the adiabat-
ic approximation. The applicability of the adiabatic
approximation in Al is shown in detail by Friedli
and Ashcroft. The static lattice part can be calcu-
lated using the zero-temperature formulation be-
cause at room temperature k&T is much less than
the Fermi energy. The Debye temperature, on the
other hand, is of the order of the room temperature
(at normal volume, T~=430 K). The vibrational
part is extremely difficult to calculate from first-
principles because the phonon spectra for the vari-
ous structures must be known. However, its contri-
bution can be estimated using the Debye model.
The vibrational energy is of the order of k&Tn. At
normal volume, k&TD-3 mRy. The Debye tem-
perature is not expected to differ much among the
various close-packed structures. Even for a 10%
difference in Tn, the energy difference is only 0.3
mRy. The vibrational part is probably not impor-
tant in determining the stable phase of Al and is not
included in our total-energy calculation.

The static lattice part of total energy is computed
using the density-functional formalism, 'o with
Wigner's formula for the correlation energy. " The
interaction between the core and the valence elec-
trons is represented by nonlocal pseudopotentials,
which are generated using only the atomic number
as input. The potentials are the same as those used
in our previous calculations of the structural proper-
ties and phonon frequencies' of Al. The crystal
wave functions are calculated by solving the
Schrodinger equation in a plane-waves basis set.
The procedure is iterated until the input and output
potentials differ by less than 10 Ry. The self-
consistent pseudopotential approach is described
elsewhere. ' With the wave functions expanded in a
plane-waves basis, the total energy can be evaluated
very easily in a momentum-space representation. '

In addition to comparing the total energies of the
three structures, we also analyze the structures in
terms of the number of s, p, and d electrons present
inside the Wigner-Seitz sphere around the atom.
The s, p, and d occupations are defined as follows:
The crystal wave function l( z is given in the plane-

wave basis by

(r)= g C (Q)e' +

6

Clm(k r) '(pk
I Ylm ~ ~ Ylm

l y k & . (3)

The projections are then integrated over the
Wigner-Seitz sphere to get the s, p, and d occupation
of fk,

nt (k)= f C& (k, r)4nr dr, (4)

where R is the Wigner-Seitz radius. Finally, nI is
summed over all the k-points which are below the
Fermi level ez to obtain the total s, p, and d occupa-
tions, N~ .

N&
——f nt (k)e(er —e(k))d k .

The Brillouin-zone integration is performed with the
tetrahedron method. '

III. RESULTS AND DISCUSSION

The total energies of Al for the three structures
are calculated at four different volumes, 1.0Vo,
0.8Vp 0.6Vp and 0.4Vp, where Vp is the equilibri-
um volume at zero pressure. The value of Vp is ob-
tained from our previous calculation and is equal to
109.14 in atomic units. For the hcp structure, only
the ideal c/a ratio structure is considered because
the energy change associated with the variation in
c/a ratio is only a few tenths of a mRy while the
structural energy difference between hcp and fcc is
-3 mRy. Taking the ideal c/a ratio is convenient
and is not crucial to the conclusion of this paper.
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FIG. l. Al atomic radial functions r tP and the
Wigner-Seitz radius for 0.4Vp(Rp 4) and 1.0Vp(R ~ p).

Using the identity,

~ -+ Ie'" '= gi'4', (kr) g YI'm(k)~im(r"},
I m= —I

where jt is the spherical Bessel function and Yt is
the spherical harmonic function, gz can easily be

projected into spherical harmonics centered at each
atom,
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FIG. 3. Enthalpy difference, bcc-fcc (bcc-fcc} and

hcp-fcc (hcp-fcc), as a function of pressure.
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FIG. 2. Energy difference, bcc-fcc (bcc) and hcp-fcc

(hcp), as a function of volume (solid curves). The dashed

curve is the bcc-fcc [bcc ( Vq= V, )] with the d potential

Vq set equal to the s potential V, .

In pseudopotential or frozen-core calculations, it
is important to make sure that the cores do not over-
lap. The atomic orbitals and the positions of the
Wigner-Seitz radius for 0.4VO and 1.0VO are shown
in Fig. 1. Even at 0.4Vp, the outermost core orbitals
(2p) are quite well separated.

The energy difference between bcc and fcc and be-
tween hcp and fcc are plotted in Fig. 2 as a function
of volume. At normal volume 1.0VO, the fcc struc-
ture is the most stable one in agreement with experi-
ment. ' In order to determine the most stable struc-
ture at finite pressure, the enthalpy, H =E+PV,
must be considered; the structure with the lowest
enthalpy is the most stable. Since the total energy is
calculated only at four volumes, the pressure cannot
be obtained directly. Murnaghan's equation of
state' is therefore used to fit our calculated ener-

gies, and pressure is obtained by differentiation,
dE/dV. The en—thalpy differences between bcc

and fcc and between hcp and fcc are plotted in Fig.
3 as functions of pressure. It has been reported that
Al remains in the fcc structure at least up to a pres-
sure of 200 kbar, which corresponds' to 0.85Vp.
Our calculation indicates that the fcc structure per-
sists even up to about 2 Mbar, where the fcc-hcp

transition occurs. The corresponding atomic
volumes at this transition are about 0.5VO for both

fcc and hcp. The volume change is less than

0.01Vp. At about 4 Mbar, the bcc structure begins

to have the lowest enthalpy, and a hcp-bcc transition
occurs. The corresponding atomic volumes at this
transition are about 0.4Vo for both hcp and bcc.
The volume change is again less than 0.01Vp. ¹
tice that the volume changes are very small at both
transitions. Therefore, the stable phase can be deter-

mined by comparing the total energies without the
PV term, as in Ref. 9. Our estimates of the transi-

tion pressure should only be accurate to within a few

tenths of a Mbar because we only fit to within a few

calculated values.
Moriarty and McMahan calculated the energy vs

volume using two different methods, generalized
pseudopotential theory (GPT) and LMTO. 9 Our E
vs V curve (Fig. 2) agrees well with their GPT result
at normal volume, and with their LMTO result at
smaller volume. As pointed out by the authors of
Ref. 9, the GPT approach gives. better result at nor-
mal volume while the LMTO is more appropriate
for smaller volume. Moriarty and McMahan did
not include the PV term in determining the most
stable structure. As pointed out earlier, the PV term
is not important because the volume change is small.
They obtained a value for the fcc-hcp transition
pressure equal to 1.3 Mbar and the transition
volume equal to 0.58Ve from their LMTO calcula-
tion9 but a much higher pressure (about 3.6 Mbar)
and a smaller volume (0.44Ve) from their GPT cal-
culation. ' Our result falls in between. The ap-
parent large deviation between their transition pres-
sure and ours is caused by the rapid increase in pres-
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V/Vo =0 4
bcc
fcc
bcc

1.031
0.827
0.789

1.524 0.289
1.546 0.393
1.490 0.346

0.157
0.235
0.375

sure as the volume decreases. If the energy of one
structure is systematically shifted up or down by a
small constant amount, the transition volume will
change by a small amount but the transition pres-
sure can change by a large amount. Since the ener-

gies involved are so small, their prediction and ours
should be considered in good agreement.

Friedli and Ashcroft predicted no transition up to
3 Mbar. They employed a local pseudopotential
which is fitted to give the correct normal density.
The effect of electron-ion interaction is treated by
perturbation on a free electron gas to second order.
Their pressure vs lattice constant curve agrees very
well with ours at low pressure, up to about 1 Mbar,
but deviates somewhat at higher pressure. %e
suspect that their calculation does not show a transi-
tion because of the use of a local potential. This
conclusion is supported by our analysis of the wave
function at compressed volume, which will be dis-
cussed next.

Moriarty and McMahan found that the energy
difference between structures is well correlated with
the difference in the sum of eigenvalues. They ex-
amined the eigenvalue sum for the various struc-
tures and found that for Al the bcc structure has the
lowest eigenvalue sum at compressed volume. They
also suggested that the stability of the bcc structure
for Al at the compressed volume is caused by the
lowering of the d states. They found that the lower-

ing of the d states causes a dip in the fcc density of
states at two electron occupation. From this they
concluded that the fcc structure is unfavorable for
atoms with three valence electrons, and that the bcc
structure is more favorable. Based on our decom-
position of the wave functions, we find that the sta-
bility of the bcc phase at compressed volume is a
direct consequence of the bcc structure having more
bonding d states than the other structures. By ex-
amining the s, p, and d occupations at 1.0VO and
0.4Vp (Table I) one sees that the effect of compres-
sion is to decrease the s character of the wave func-
tions and to increase the d character. In particular,
at 0.4VO the wave functions have substantially more
d character in the bcc structure than in the fcc
structure.

The fact that the structure with the most d char-

TABLE I. The s, p, and d (dq and d~) occupations in
the fcc and bcc structures for V/Vp ——1.0 and V/Vp =0.4

dy

V/Vp ——1.0 fcc 1.067 1.514 0.305 0.113
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FIG. 4. Nonlocal pseudopotentials for Al. V, is the s
potential, etc. Curve A and B show the charge density
along the first-nearest-neighbor direction in the bcc struc-
ture for 1.0Vp and 0.4Vp, respectively. The charge density
is in arbitrary units. The absolute units of the charge den-

sity are shown in Fig. 6.
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FIG. 5. d~ interaction in the fcc and bcc structures; the
x —y orbital is shown. The first-nearest neighbors are
denoted by open circles; the central atom and second-
nearest neighbors are denoted by filled circles. The plane
shown is the (001) plane.

aeter is also the most stable structure at compressed
volume can be understood in terms of the pseudopo-
tentials, Fig. 4. At 0.4Vo the wave functions start to
penetrate into the core region where the d potential
is more attractive than the s potential. In fact, if the
d potential is set equal to the s potential in our cal-
culations, then the total energy of the bcc structure
remains above the fcc energy for the entire range of
volumes that we have considered (see dashed curve
in Fig. 2). The enthalpy of the bcc structure also
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at normal volume. Therefore, a local potential
which can give the correct behavior at normal
volume may not be adequate for compressed
volume. Moriarty and McMahan examined the im-
portance of the d states by performing their LMTO
calculation with and without d orbitals in the basis
set. They also concluded that there would be no
transition if the d orbitals were not included.

The fact that the bcc structure possesses more d
character can be understood geometrically. In a cu-
bic system, the atomic d states are split into two
groups, dz(xy, yz, zx) and dr(x y2, 3z—2 r2). —At
0.4Vo the bcc structure has more d& character than
the fcc structure (Table I). The dr orbitals point to-
ward the second-nearest neighbors in both the bcc
and fcc structures (see Fig. 5). However, for a given
volume, the second-nearest-neighbor distance in the
bcc structure is about 20% shorter than that of the
fcc structure. Since the interaction between neigh-
bors is a very strong function of distance, the
second-nearest-neighbor interaction becomes very
important at compressed volume. The evidence of
the strong second-nearest-neighbor interaction at
compressed volume is revealed by the charge distri-
bution. In Figs. 6(a) and 6(b), we plot the charge
density for bcc and fcc at 1.0VO and 0.4VO, respec-
tively. At 1.0Vo the maximum charge density
occurs along the direction to the first-nearest neigh-
bor for both fcc and bcc structures, while at 0.4VO,
the maximum charge density is along the first-
nearest-neighbor direction for the fcc structure but
is shifted toward the second-nearest-neighbor direc-
tion for the bcc direction.

IV. SUMMARY

fcc (100}
L

FIG. 6. Charge density in the bcc and fcc structures
for (a) 1.0VO and (b) 0.4VD. The units are in electrons per
unit cell, hence 3.0 is the average density. The contour
step size is 0.5 electrons per unit cell. The first-nearest
neighbors are denoted by open circles; the central atom
and second-nearest neighbors are denoted by filled circles.

remains above that of the fcc structure. Setting the
d potential equal to the s potential causes serious er-
ror at small volumes but very minor error near nor-
mal volumes (see Fig. 2), which indicates that the
difference between the d potential and the s potential
is very important at small volume but less essential

We have determined the most stable structure of
Al at normal volume correctly with an ab initio cal-
culation. In addition, we predict a phase transition
from the fcc to hcp structure at about 2 Mbar and
from hcp to bcc at about 4 Mbar. At compressed
volumes, the structure with the most d character is
the most stable because of the attractiveness of the d
potential in the core region, and the bcc structure
possesses the most d character at compressed
volume because of the strong second-nearest-
neighbor interaction.
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