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Phase transtions in frustrated two-dimensional XY models
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We study the fully frustrated XY model on a square lattice with the use of Monte Carlo simu-

lations. We find a phase transition at a finite temperature TI with the specific-heat data being

consistent with a logarithmic divergence. The helicity modulus Y jumps to zero with a value

Y/ksT &2/e at a T & TI The ap. plication of frustrated XYmodels to the behavior of coupled

Josephson junction arrays is discussed.

I. INTRODUCTION

II. DESCRIPTION OF MODEL

%e consider a class of models described by

H =—Jp Xcos(8~ —
HJ

—(fr»)
&v)

where 8; is the angle of the planar spin at site i of a
square lattice, (ij ) denotes nearest-neighbor pairs,
and P» is a bond angle such that the sum around a
plaquette

(2.1)

p»+ Qqk+ Q +klieg
= 2rrf (2.2)

is constant over the entire lattice. The constant f de-
fined by Eq. (2.2) is referred to as the uniform frus-
tration of the model. The partition function is de-
fined by a sum over the spin variables 8;.

The Hamiltonian in Eq. (2.1) describes an array of
Josephson junctions (one junction on each bond of
the lattice) in the low capacitance limit. In this case,

Jwe identify P» =2e/tc; A d 1, where A is the vec-
tor potential. Provided the sample size L is small
compared to the transverse penetration depth of the
lattice Xq, i.e., L ( A.q~ 1/Jp, A may be taken to be
that of a uniform applied transverse field Hp. ' The
uniform frustration f is related to Hp by

f =Hpa /4p, (2.3)

The Kosterlitz-Thouless (KT) theory' of the phase
transition in the two-dimensional (2D) XY model has
been applied to many physical systems including su-
perconducting and superfluid films. Experimental sit-
uations have been found which seem to agree well

with theoretical predictions. Recently, experiments
have been performed2 to look for KT phase transi-
tions in 2D arrays of coupled Josephson junctions in
a transverse magnetic field. In order to investigate
the nature of such transitions we have considered
uniformly frustrated XY models' which map onto
the coupled junction problem. In particular, the fully
frustrated case is studied using Monte Carlo simula-
tions.

with 4p= hc/2e the flux quantum and a the lattice
spacing.

The model specified by Eqs. (2.1) and (2.2) is
periodic in fwith period I, and in the interval [0,1]
has reflection symmetry about f= —.The case f =0
corresponds to the ordinary "unfrustrated" XY
model which has a Kosterlitz-Thouless phase transi-
tion. In this Communication we concentrate on the
case f =

2
which corresponds to one-half flux quan-

tum per unit cell of the Josephson junction array.
This is the fully frustrated XY model studied in the
context of spin-glasses. '

III. MONTE CARLO CALCULATIONS

X stn (si HJ Q») (e» x)
t,'v&

(3.1)

This may be obtained using a straightforward exten-
sion of the analysis of Ohta and Jasnow7 for the f = 0
case. Since the helicity modulus is a measure of the
phase correlations of the system, we expect the tem-
perature where Y goes to zero to indicate the onset
of a resistive transition in the Josephson junction ar-
ray.

Lattices with N = 8, 12, 16, 22, and 32 were used
and our re ults are sho~n in Figs. 1 and 2. Data for
N ~ 16 are the results of one or two independent
runs averaged over 25000 to 50000 passes with 2000
to 5000 initial passes discarded for equilibration.
These were sufficient to achieve equilibrium at all
temperatures, and obtain statistically independent
data. For N ) 16, however, to circumvent long

We have studied the behavior of Eq. (2.1) with

f =
z

on 1V x ll/ lattices with periodic boundary con-

ditions using the standard Metropolis algorithm.
The average energy per site (u), the specific heat per
site C, and the helicity modulus Y were computed as
functions of T. Y was determined with the use of

1 JpY=—(u)—
k~ TN'
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correlations near T„ five independent runs, each
averaging over 10000 passes with an initial 5000 dis-
carded, were performed. Our data represent the
average of these five runs. Error bars have been es-
timated by considering the distribution of values ob-
tained when averaged over shorter times.

Our results for Y(T) are shown in Fig. 1 for the
cases f =

2
and f =0. The unfrustrated XY model

1

undergoes a KT transition with a universal jump~ in
Yat T=T:

(3.2)lim Y(T)/ksT=2/m .
T~T

C

A line of slope 2/rr is shown in Fig. 1. The f=0
results and Eq. (3.2) (finite-size effects have
broadened the discontinuous jump) permit an esti-
mate of T„k~T, =—0.95JO compatible with previous
results. ' " The low Tbehavior Yy p = Jp-ksT/4
agrees with the results of Ohta and Jasnow.

Results for the f =
2

case show clear evidence for1

a phase transition at a finite temperature k~T,

FIG. 1. Helicity modulus Y vs temperature T for the un-

frustrated (f=0) and fully frustrated (f=
2 ) cases, and
1

various lattice sizes N. A line of slope 2/e indicates the
universal jump in Y(T,)/ks T, of a Kosterlitz-Thouless tran-
sition.

FIG. 2. Specific heat C of the fully frustrated (f=
2 )
1

model for various lattice sizes N. The smooth curves
through the data are drawn as guides to the eye and are not
the result of any theoretical computation.

=0.45Jp. Y(T) goes to zero more steeply than in
the unfrustrated cases and is consistent with a jump
equal to or perhaps slightly larger than the Nelson-
Kosterlitz value (3.2).

In Fig. 2 we exhibit our results for the specific heat
per site C computed using the fluctuation-dissipation
relation for f=-, and various lattice sizes N. The

peak value of the specific heat C,„is plotted as a
function of X in Fig. 3. In marked contrast to the
unfrustrated case where C,„saturates at a finite
value of about 1.5k~, ' "we see that C,„ increases
with N. An exponent of o. =0(logarithmic) charac-
teristic of an Ising transition is indicated by the linear
relation between C,„and in%. Estimates of C,„
obtained by differentiating the computed average en-
ergy are consistent with the values obtained from the
fluctuation-dissipation relation.

We also note that, whereas in the unfrustrated
model the specific-heat peak lies -10% above T„' '
the peak for the fully frustrated case lies much closer
to the temperature where Y 0. Our calculations are
not precise enough to distinguish whether C,„oc-
curs at the same temperature as where Y 0 or
slightly above.
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with conserved magnetization. '
We believe that the two types of excitations illus-

trated in Fig. 4 are of importance in understanding
the numerical results: Type (a), which we call KT-
like, results from the interchange of a given +—,, ——,

pair with separation r and has energy proportional to
lnr; and type (b), which we call Ising-like, results
from the formation of a neutral domain of the other
ground state which, in the limit of large domains, has
an energy proportional to the perimeter.

The Ising-like excitations, resulting from the two-
fold degeneracy of the ground state, cause the loga-
rithmic divergence of the specific heat at T~. The
identification with an Ising antiferromagnet suggests
a discrete order parameter, the "staggered magnetiza-
tion" of the n; ( Ref. 14)

FIG. 3. Maximum specific heat Cm, „vs lattice size N for
1

the fully frustrated (f=
2 ) case. The linear relation

Cm,„~in% indicates an exponent of o, =0 (logarithmic

divergence).

(4.3)

To understand the behavior of the helicity modulus
Y, we express it in terms of the dielectric constant of
the Coulomb system following Ohta and Jasnow":

IV. INTERPRETATION OF RESULTS

47r'Jo . (ngn g)
o=tEo = hm =

AT A; o k
(4.4)

In order to interpret the results of the numerical
simulations we consider the generalized Villain model
believed to be in the same universality class. " By us-

ing standard duality transformations, the partition
function can be separated into a Gaussian spin-wave
part and a fractionally charged Coulomb gas with a
Hamiltonian, 3

Y is reduced from its T = 0 value by excitations
which develop a net dipole moment, such as the KT-
like excitations [Fig. 4(a)] or certain of the Ising-like
excitations [Fig. 4(b)].

Noting the identification of Y with eo, one can re-
peat the original Kosterlitz-Thouless argument re-
garding the instability with respect to free charge for-
mation, ' and deduce the condition

&c= nJo $(m +'f;)G&(m&+f&)
ij

Y ( T )/ks T «2/n (4.5)

where 6j is the lattice Green's function and the sum
is over all sites of the dual lattice; Jo is the coupling
of the generalized Villain model, f; is the frustration
of the plaquette around the dual site i and equals the
constant f of Eq. (2.2) for our uniformly frustrated
model. The m; 's are integer variables. %e may de-
fine the "charge" at sitei, n; by

Thus Y(T) must drop discontinuously to zero at
some temperature T, with a jump equal to or greater
than the universal value 2/n. Two possible scenarios
seem likely:

(i) As T~ is approached from below, the Ising exci-
tations result in a steep drop in Y(T) from its low T-
value. As Y/ksT approaches 2/m, however, the KT
excitations become important, producing a universal

n;=m;+ f (4.2)

Averages are evaluated by summing over values of
(m;] that lead to neutral ( Xn;=0) configurations.
We see from Eq. (4.1) that the ground state for the

f= —, model consists of an alternating lattice of

n; = +—, charges and is doubly degenerate (corre-

sponding to n, n;) If w—e res.trict our attention to
n; = + 2, excitations, which must preserve charge

neutrality, correspond to rearrangements of the
][ 1ground-state charges. Identification of +—, and ——,

charges with up and down spins, respectively, maps
our model onto a long-range Ising antiferromagnet

+++ —+

FIG. 4. Two types of excitations of the fully frustrated

(f=
2 ) model; Kosterlitz —Thouless-like (a), and Ising-like (b).
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jump 2/m in Y ( T)/ks T at some temperature T, ~ Tt.
(ii) As Tt is approached from below, the Ising exci-

tations result in a nonuniversal jump in Y/ktt T & 2/sr
at the same temperature as the specific-heat peak T~.
Our numerical simulations cannot adequately distin-
guish between these two possibilities.

V. CONCLUDING REMARKS

Thus we find clear evidence for a phase transition
in the f=

2
model. The discrete degeneracy of the

ground state of the f = —, model has played a crucial

role in determining the nature of the transition. As f
is varied continuously, the charge configuration and
the degeneracy of the ground state will vary discon-
tinuously. Thus the system should display interesting
properties as a function of f (or external field Ha in

the Josephson junction array). In particular, we have
performed calculations of the ground-state energy uo

for several rational f and find that ua(f) is nonmono-
tonic in f C [0,—,]. Since ua(f) will be proportional

to the T 0 critical current of the Josephson junc-
tion array, such structure should also be observable
experimentally. Preliminary calculations of Y(T) for
the f =

3
model indicate a ks T, =0.25Ja, thus T, is

also nonmonotonic as a function of f (or Hp). The
model in Eq. (2.1) should display a rich variety of
phenomena as a function of f which we are currently
exploring.
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