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Inelastic scattering time in two-dimensional disordered metals
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The particle-particle diffusion propagator is evaluated diagrammatically in two dimen-

sions in the presence of inelastic scattering due to screened Coulomb interactions. As ex-

pected, an inelastic scattering rate 1/~, ac TlnT cuts off the backscattering divergence re-

sponsible for localization. The w, thus determined is the same as the quasiparticle lifetime
determined from the self-energy of the one-particle Green's function.

I. INTRODUCTION
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where w, is the inelastic scattering time, which has
so far been introduced phenomenologically, and
which has been assumed to be the same as the quasi-
particle lifetime. Such an electron quasiparticle life-
time will simply be proportional to T if the dom-
inant interaction is electron-electron scattering in a
pure system. However, once T & r ', the neglect of
impurity scattering will not be valid and a different
temperature dependence is expected. Actually
Schmidt and Altshuler and Aronov some time ago
examined this kind of possibility for three dimen-
sions and found that r, 'cc T ~ in dirty systems.
Recently this problem has been discussed in detail
by Abrahams et al. , who concluded that
~, ' ~ T lnT in two dimensions.

Although it is quite natural and physical that the
quasiparticle lifetime should enter Eq. (1.2), this has
to be examined in detail, since r, in Eq. (1.2) has to
be determined by the particle-particle diffusion

Interaction effects in the weakly localized regime
in two-dimensions have been extensively investigated
recently. ' It has now been established that the
prefactor of the logarithmic temperature dependence
of the conductivity is affected by interactions, i.e.,

e 1.gin (1.1)
4mvT

'

where ~ is the elastic scattering time and g is the di-
mensionless effective coupling constant. On the
other hand, the localization theory leads to '

II. PARTICLE-PARTICLE DIFFUSION
PROPAGATOR

Our model Hamiltonian is given as follows:

=4 p+V. (2.1)

Here u(r) is the one-particle potential due to ran-
1

domness whereas —, g,.+.v (r; rj ) = V is th—e Cou-
lomb interaction.

The particle-particle diffusion propagator
D (q, to~), given by Eq. (1.3), is defined diagrammati-
cally as in Fig. 1(a), where e„=(2n +1)nT&0 and
e„+ (e„+cot„——) &0. Here D =D(q, to~) includes full
effects of randomness and Coulomb interactions.
The effect of interactions can be treated perturba-
tively as is shown in Fig. 1(b), where the interaction
block 6 is due to interactions and Dp is given by the
propagator in the absence of interactions:

propagator D (o,co~), which will have the form

D(q, coq) = 1 1 . (1.3)
2~N(0)H Dq'+ ~~, ~+lxr,

Here N(0) is the density of states at the Fermi ener-

gy, D is the diffusion constant, and tot„ is a Matsu-
bara frequency equal to 2trA, T.

In the present paper we shall evaluate ~, in Eq.
(1.3) diagrammatically for the screened Coulomb in-
teraction in the same context' as the derivation of
ot, Eq. (1.1). We take units such that th'= ks ——1.
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FIG. 2. Interaction vertex 6 in the linear order of the
Coulomb interaction (wavy lines).

Do + Do 6 D

1 1
DD(q ~i,)=

2mN(0)v Dq + in) iij

(2.2)

We confine ourselves to first order in the electron-
electron interaction. Then G is given by the process-
es shown in Figs. 2(a), (b), and (c) where wavy lines
are Coulomb interactions. In these figures we do
not show the possible quantum corrections due to
elastic impurity scattering. These are examined in
detail later.

We now argue that for the leading contribution, it
is possible to neglect graphs of the form of Fig. 2(c).
Graphs of the form of Figs. 2(a) and 2(b) have
coi ——0, which means that the two diffusion propaga-
tors D that enter Fig. 1(b) with G always have the
same frequency coi. This gives rise to a more singu-

(b)

FIG. 1. Full particle-particle diffusion propagator D,
with Coulomb interaction. (b) Equation for D in terms of
that in the absence of interactions Do and the interaction
vertex G.

1

2mN(0)r
(2.4)

Thus we need to evaluate G given by Figs. 2(a)
and 2(b). In the absence of quantum corrections due
to randomness, these processes result in familiar
contributions 6, consistent with the Fermi-liquid
theory:

lar contribution at ioi~0 than that from Fig. 2(c),
for which the two diffusion propagators of Fig. 1(b)
differ in frequency by 2coi. The latter contribution
can only be important if the interaction itself is
singular at cubi

——0, which in our case (in contrast to
the case of paramagnetic impurities) it is not. This
conclusion remains valid when the graphs for G are
dressed with all possible quantum corrections.

If we then ignore Fig. 2(c) we find that Fig. 1(b)
can be represented by an algebraic equation whose
solution is

D(q, coi) = 1 1

2irN(0)r Dq +
i
coi

~

+I/r,
where

G'= Tg g u(q, m—,)[$'(k,e„+)9( k, ~„)S—(k+q, e„++~,)+ 9'(k, e„+)9'( k, e„)S—(k+q, e„+~,)]
I kq

(2.5a)

H f dx n (x}1m'(q,x)Re[Ga(k, e)G&(k, e}Ga(k+q,e+x)]
+ kq

—f dx f(x)lmGa(k+q, )Rxe[ (qu,axe)Ga(k, e)Gq(k, e)] (2.5b)

In Eq. (2.5a) u(q, coi) is the screened Coulomb in-
teraction

0
q

V (q, Ni) =
01+u~ II(q, coi )

where u~ =2ire /q, II(q, co )isithe polarization func-
tion,

9'(k, e„)=(i e„ek+i sgne„/2r)—
E'k =k /2m —eZ .

In Eq. (2.5b), 9' denotes the principal part and

ua(q, x)=u(q, —ix+0) .

Also,
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GR(g)(k&e) =9 (k, —l'e+0)
&

f(x)=(e~"+ 1)

n (x)= (e~"—1)

P=1/T .

In the limit of weak scattering epr~ac we note
that

k k' k'q k
w'f $ & f I)F1

&n++ &n, '
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and then

GR (k& e )G~ (k& e)= I 1T(2%) 5(e ek ) —&

(2.7)

(2.8a)
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FIG. 3. Quantum corrections to 6, where broken and
double-broken lines are particle-hole and particle-particle
propagators, respectively, defined in Fig. 4.

where

Ae(x) = g 5(e ek)5(e+x——ek+~ }
k

and in Eq. (2.9b) we introduced the approximation
n(x)+f(x+e)=n(x)+f(x)=(sinhPx) '. In the
clean limit

'2

ImuR (q,x)=— go

2N 0
n.

xAI (x), (2.10)

where we defined go as

2X(0}u~

&+&I„&q,x)&& )
(2.11)

The average in Eq. (2.11) is over the scattering over
the Fermi surface. As long as a.=4rrN (0)e is much
larger than the Fermi momentum kz, ~/k~ &&1, we
have go -1. For free electrons A~(x) is given by

' 2 —1/2

e(2k —~q ~
),( )

mN(0)
q X q

2k'

(2.12)

where x, which is at most of the order of tempera-
ture, can be ignored compared to the Fermi energy.
Finally, v, in the clean limit ~, is given by

Consequently, G is given by

Go =8)rr g J dx [n (x)+f(x +e)jAs(x) ImuR (q,x)
q

(2.9a)

1=8Irr g I dx . A&(x)lmuR(q, x), (2.9b)
S11111 x

1 & 2T 1—=—go ln —,
2 eF 5

(2.13)
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FIG. 4. {a) Particle-hole diffusion propagators. {b)
Particle-particle diffusion propagators.

where 5 is the cutoff parameter of the order of ei-
ther (ezra)

' or T/eF, which is introduced to take
into account the smearing of the Fermi surface due
to disorder or temperature.

Next we examine the quantum corrections to 1/~, .
As has been discussed elsewhere, there exist four
different kinds of contributions to the self-energy
function of electrons, depending on either Hartree or
Fock type of process with either particle-particle or
particle-hole diffusion propagators. In the present
case of screened Coulomb interaction, ~, ' is seen to
be determined by g& processes, i.e., those with small
energy and momentum transfers. These processes
are shown in Figs. 3(a)—3(d), where broken and
double-broken lines are the particle-hole and
particle-particle diffusion propagators shown in
Figs. 4(a) and 4(b). These propagators are singular
when e„e„&0and in such a case these are given as
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follows. Figure 4(a} is equal to

1 1

2mN(0)r D(k —k') + i
e„e—„ i

=—I ~.«(k k—',e„e—„), (2.14a)

and Fig. 4(b) is equal to

1 1

2~N(0)r' D(k+k )'+
~
e„e„.—~+ 1/r,

—:I p q(k +k', e„e„)—. (2.14b)

In Eq. (2.14b), we introduced r, which is to be
evaluated and determined self-consistently. By use
of Iz «(q, co~) the sum of the contributions from
Figs. 3(a), 3(b), and 3(c) is equal to

which simplifies to

—[2~N(0}~']'T g v(q ~l)r h(q-~I) .
~E)~a+

(2.15b)

Here we noted that the leading contribution from
each process is canceled. From Eq. (2.15a) to
(2.15b) we made use of the fact that v(q, co~) is an
even function of co~. On the other hand, the process
of Fig. 3(d) yields the following contribution:

[2mN(0)r ] T g v(q, col)rp p(q, egg+~() .
6'g ++opI )0

(2.16)

—[2mN(0)] r T
6~ ++CtlI )0

v(q l}r h(q ~t}-

X(Dq'+
I ~i

I »
(2.15a)

I

By use of Eqs. (2.15b) and (2.16) and by taking
the contributions from the processes where the mu-
tual interactions are on the lower Green's function,
we obtain the following result for 1/r,', the quantum
correction to 1/P, :

=2nN(0)H g T
f ~I)~n+ ~I) ~n

"(q ~l}r h(q ~l)- + g v (q, a)( }Ip p(q, co«+col )

(2.17)

By analytic continuation the summation over co~ in Eq. (2.17) may be transformed to the following integration:

=—2N(0)r y f" dx 1m'(q, x){[f(x e)+f(x+—e)]rz «(q, x)+2n(x)r&&(q, x)]
q

Oe

+iN(0)r y f dx ff(x e)+f(x+e}—]vz(q, x)[I&.h(q, x) I &&(q,x)]— (2.18)

R

=—4N(0}r g f dx, „ 1m'(q, x),r~ ~(q,x}

q
sinh x

(2.19)

where rz «(q, x)=r& «(q, ix+0—), rzz(q, x)=rzz(q, ix+0—). In obtaining Eq. (2.19) from Eq. (2.18) we
have retained the most singular contribution. Note that only I z z(q, x) remains in Eq. (2.19). At small q and x
the screening in vz (q,x) is of diffusive type, i.e.,

2n e Dq ix 2n e — Da.qx
Imva q, x = Im

q Dhq —ix q (Dgq)~+x~
'

and rzz(q, x) is givenby

(2.20)

r„(q,x)=
2mN(0)r Dq ix+1/r, —

Consequently, we perform the sum over q and estimate Eq. (2.19) as follows:

(2.21)

Ds (ix+1/r, )
dx . Rc ln

n Da o sinhPx ix + 1/r,
(2.22)
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We evaluate the integral in Eq. (2.22) approxi-
mately, using the fact that the major contribution
comes from 0&x &P '=T. This permits the re-

placement

1 x (T
X

sinhPx
(2.23)

Tln(Da T~, ) .1 1 2 2

2E'p T
(2.24)

Here we have used the two dimensional relations
D =vFv/2 and a=4mN. (0)e =2me . From Eq.
(2.24) we see that we need to determine r, self-
consistently.

It is clear that for T & I/~, I le,' dominates I/~,
of Eq. (2.13). Then we can use 1/r, for 1/r,' in Eq.
(2.24) and find the leading logarithmic behavior

r/r, = ( T/2' )ln( T, /T),

Tt 4(eF~) D——a (2.25)

This result is the same as that found previously by
Abrahams et al.

III. RESULTS AND DISCUSSIONS

We have seen that in two dimensions the inelastic
scattering time v„defined by the particle-particle
diffusion propagator, is given as follows if we as-
sume the dynamically screened Coulomb interaction:

mT ln, T)1/r
2E'F

T 1ln, T &1/r.
(

2EFr T

(3.1)

(3.2)

Since the scale of variation of x is 1/r, which is of
order T/eFr«T, we may extend the upper limit
of the x integration [given by Eq. (2.3) as T] to in-

ftnity. We then find

» Eq. (3.1) we assumed that the inverse screening
length x is much larger than 2k+ and then go, de-
fined by Eq. (2.11), is approximated as go= l.
Equation (3.2) indicates that, once T & I/~, the
smearing of the Fermi surface affects the inelastic
processes as has been first noted by Schmidt and re-
cently elaborated by Abrahams et a/. These latter
authors evaluated the lifetime of the quasiparticle
from the self-energy of the one-particle electron
Green's function. In this paper we evaluated the
lifetime of the particle-particle diffusion propagator
in the momentum representation, since the inelastic
lifetime appearing in the localization problem is de-

fined through this propagator. We have seen that v,
in the former is essentially determined by the
particle-particle propagator I z z [see Eq. (2.19)],
while in the latter it is governed by the particle-hole
propagator I z q. Actually, we have found that ~, in
the present scheme is determined self-consistently,
since it depends on I ~ z, which in turn has the same

~, to be determined. Surprisingly, the result of this
self-consistency leads to the same result as that
determined by the self-energy.

A different discussion of the electron-electron
scattering inelastic cutoff has been formulated by
Altshuler, Aronov, and Khmelnitsky. ' Their re-
sults are rather similar to ours, although in some
parameter ranges the lnT is absent.

The present diagrammatic procedures clearly indi-
cate that the dynamical interactions with different
symmetries will result in r, much different from the
one we obtained here. This will be discussed else-
where.
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