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I consider the possibility that the excited-state oscillator wave functions of dilute hydro-

gen in bcc metals overlap sufficiently with nearest-neighbor occupancy sites so as to produce
hydrogenic energy bands, analogous to electronic energy bands in narrow-band semicon-

ductors. The theory is motivated by the experiments of Magerl et al. as well as the earlier
observation of ground-state tunnel splitting by Wipf et al. , demonstrating quantum coher-
ence in the motion of the hydrogen, despite the necessity of correlated motion by the sur-

rounding metal atoms. Because of the latter complication, the relevant overlap integrals are
not calculated from first principles. The band structures are given for the first (nondegen-

erate) and second (doubly degenerate) excitations coi and coi& of the local oscillators, modulo a
few irreducible overlap integrals, which are then determined by comparison with experi-
ment. The fact that the experimental bandwidths for inelastic neutron scattering from di-

lute hydrogen in V, Nb, and Ta satisfy I (V) & I (Nb) & I (Ta) at room temperature (Rush,
Magerl, and Rowe) finds a natural explanation in the theory. It is shown that the coi and coii

bandwidths satisfy EEL/EEi ——(Hii/Hi)Y, where Hi and Hii are irreducible overlap in-

tegrals and Y is an (almost) universal constant for H in bcc metals, determined (essentially)

by the geometry of the tetrahedrally coordinated hydrogen occupancy sites. Qn the basis of
the band structure that I obtain, I estimate that Y=—„.Based upon physical reasoning, the

relation (Hii/Hi) =(cori/coi) is proposed. Given the (model-consistent) empirical result,

cori/coi-2', this leads to the prediction EED/AEi- —,, to be compared with the neutron-

measured ratios I ii/I i
——1.3 and 2.0 for dilute hydrogen trapped at 0 and N impurities in

Nb metal at T=4 and 10 K, respectively. The variation in I ii/I & is attributed to perturba-
tions of the intrinsic hydrogen bands by the trapping impurities, which are necessary for
low-temperature observation, if one is to prevent coagulation of the hydrogen atoms into the

phase of NbH. The differential cross section for inelastic neutron scattering from hydro-

gen in band states is related theoretically to that for H in local oscillator states. With ap-
propriate rescaling, the band structure that I obtain for hydrogen can also be applied to the
case of trapped positive muons in bcc metals.

I. INTRODUCTION

The investigation via neutron scattering of hydro-
gen in bcc metals, both nominally pure and doped
with interstitial or substitutional impurities, is
currently an area of active experimental research. '

Of particular interest is the recent observation of
tunnel splitting of the local-oscillator ground state
of hydrogen in the presence of dilute oxygen impuri-
ties in niobium. (The splitting is presumably
enhanced by a lowering of the potential barrier be-
tween two tetrahedral hydrogen occupancy sites as a
consequence of the strain field produced by the
nearby oxygen interstitial. ) This experimental obser-
vation of tunnel splitting clearly demonstrates that

at sufficiently low temperatures the motion of hy-
drogen in these metals exhibits quantum coherence,
despite possible self-trapping effects associated with
the correlated motions of the surrounding metal
atoms. Following the success of the two-well model
in explaining the neutron-induced ground-state tun-
neling transitions, the theory of neutron-induced
transitions to coherent superpositions of excited os
cillator states in the assumed two-well trap has been
investigated by this author. ' Here, I examine tran-
sitions to the excited states from a different vantage,
based upon the hypothesis that, even in undoped
systems, motion of the hydrogen, when in excited
oscillator levels, exhibits sufficient coherence that
quasi-Bloch states form a natural basis for calcula-
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tion, leading to itinerant hydrogenic energy bands,
analogous to the electronic energy bands in narrow-
band semiconductors. From this point of view,
when a hydrogen trapped near an impurity is excit-
ed, say, by inelastic neutron scattering, to a state 0
(100 meV) above the ground state, the final state is
not simply an excitation of the local two-well sys-
tem, as was assumed in Ref. 5. Rather, it lies in an
excitation band, that of dilute itinerant hydrogen in
an excited state in the pure metal, modified however
by the strain field of the nearby impurity. This hy-
pothesis is suggested by two experimental facts. (a)
Semiquantitatively, the neutron-measured excitation
bands for hydrogen associated with interstitial 0 (or
N) impurities in Nb and those for hydrogen in the a
phase of undoped Nb are nearly the same, although
detailed quantitative differences exist. 3'" (b) The ex-
citation bands of either are wider than is the case for
the ordered (P or e phase) hydride NbH, ' where
the excitations are more likely optica1-mode phonon
bands, associated with the oscillations of the hydro-
gens about fixed positions, while participating in
cooperative lattice vibrations of the hydride system.

Thus motivated, I have calculated the energy-
band structure for dilute hydrogen in otherwise pure
bcc metals, in the tight-binding approximation, us-

ing basis states which are linear combinations of the
local-oscillator hydrogen states at each interstitial
occupancy site. (Apart from scale, the resulting
band structure also applies to that of positive muons
in bcc metals, as obtained experimentally via the
weak decays of captured accelerator-produced
pions. ) In V, Nb, and Ta the occupancy sites are as-
sumed to lie at the vertices of the Wigner-Seitz (WS)
cell, as shown in Fig. 1. As illustrated there, each
possible occupancy site (vertex), such as A, is
tetrahedrally coordinated with four near-neighbor
metal atoms (a,b, c,d) which form a cage, leading to
a local oscillator potential at each vertex. Moreover,
each occupancy site (A) is also tetrahedrally coordi-
nated with four nearest-neighbor occupancy sites (1,
2', 3', and 4). It is the overlap between the near-
neighbor excited-oscillator wave functions which,
when acting on the crystal potential produced by the
interaction between the hydrogen and the lattice of
metal atoms, leads to the band structure I obtain,
much as the overlap between electronic wave func-
tions centered at various sites in a narrow-band
semiconductor leads to the electronic band structure
within the customary tight-binding [linear combina-
tion of atomic orbitals (LCAO)] approximation. In
addition to the obvious mass difference between that
of the electron and that of the proton (or captured
p, +), together with its electronic shielding cloud,
there are other significant distinctions to be drawn
between the two analogs. (i) In the electronic case,

FIG. 1. Cutaway view of the hydrogen occupancy-site
configuration in bcc metals. All vertices of the Wigner-
Seitz cell are energetically equivalent. The hydrogen at
site A experiences short-range forces from the metal
atoms in the tetrahedral array a, b, c,d, about it. The
nearest-neighbor occupancy sites 1, 2', 3', and 4 are also
tetrahedrally coordinated about A.

the potential active in the overlap term is a linear
combination of the same local atomic potentials
which give rise, in the absence of overlap, to the
atomic energy levels (in single-particle approxima-
tion). Here, the local oscillator potential giving rise
to the oscillator wave functions is valid only in the
neighborhood of each vertex of the WS cell, being,
in fact, an effective potential resulting from expand-
ing the sum of nearby metallic cage potentials.
Whereas this expansion may be quite appropriate
near the vertices (see below), in the regions of max-
imum overlap between near-neighbor oscillator wave
functions, the harmonic potential is not valid and
one must revert to the actual shield-proton —(or p+)
metal-atom interaction potential. (ii) The presence
of the proton (or muon) plus its electronic shielding
cloud at a given site (such as A in Fig. 1) displaces
the nearby metal atoms, at a, b, c, and d (shown
undisplaced) as well as other more distant atoms.
Therefore, as is well known, when tunneling to a
nearest-neighbor position, not only the hydrogen (or
muon), but also its associated metal-atom displace-
ment field must undergo the transition. Thus a
first-principles calculation of the relevant overlap
terms can become quite involved and, in any event,
must depend upon the details of the assumed
hydrogen —metal-atom interaction potential. Not
surprisingly, as a consequence of symmetry, it turns
out that of the many overlap terms which arise in
the band-structure calculation, most can be ex-
pressed in terms of a few irreducible overlap in-
tegrals, differing from these few by known phase
factors. In the phenomenological model considered
here, these few irreducible overlap integrals can be
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treated as parameters to be fitted by experiment,
rather than to be obtained by a priori calculation.
(iii) The distortion effects discussed above can lead
to self-trapping, effectively destroying the coherence
between wave functions centered at energetically
equivalent sites. Here, I rely on the success of the
two-well model in describing the transitions between
the tunnel-split components of the oscillator ground
state, where, as noted earlier, coherence is clearly in
evidence experimentally. ' If, when in the excited
oscillator state, phase coherence is maintained over
distances of order, a few times the lattice parameter
a, then quasibands will result. Moreover, the sym-
metry of these bands within the Brillouin zone will

be that of the effective rigid-band model employed
here. Also, even when short lived, these band states
can play an important role as effective final states,
when describing the scattering of neutrons from hy-

drogen in bcc metals.
In view of comment (i) above, one may question

the use of the oscillator states as a basis. Their use
is suggested by experiment. If one assumes that the
potential due to interaction of a hydrogen atom
(shielded proton) near site A in Fig. 1 with the metal
atoms a, b, c, and d can be obtained by summing
central potentials V(

~

x —R;
~

), describing its in-

teraction with each, and expanding in terms of small
displacements of the hydrogen from A, then, subject
to the condition r ~d V/dr

~
&& ~dV/dr

~

at
r=( „)'~a, it—follows that the first (nondegenerate)

and second (doubly degenerate) local-oscillator exci-
tation frequencies, cot and co», satisfy the relation

co&i
——2' col. This relation is obeyed experimentally

to within 10% for all systems reported in Ref. 3.
Thus, apart from widths, the local-oscillator model
for the motion of the hydrogen (and its distortion
field) gives a quite good phenomenological descrip-
tion of the data. This fact is sometimes cited as evi-
dence for the complete localization of the hydrogen,
but the latter need not follow. In the narrow-band
approximation, states consisting of linear combina-
tions of these local-oscillator states [cf. Eqs. (6) and

(7), Sec. II] can equally well describe itinerant hy-

drogen in bands centered about these energies,
whence the desired (experimental) ratio between the
excitation peaks is maintained. Apart from widths,
the cross section d o/dQde for inelastic neutron
scattering from hydrogen in narrow-band states
made up of oscillator states centered on a Bravais
lattice is nearly the same as is obtained for scatter-
ing from hydrogen localized in single oscillator
states. As is demonstrated in Sec. II, the two cross
sections differ by the replacement of an energy 5
function in the expression for the latter by a finite
density-of-states function g (E) which appears in
that for the case of energy bands. The cross sections

where the interaction Hamiltonian H satisfies

H = —(I/2mi)V + g V(x —L—r;) .
L,i

(2)

Here, f„and f„are local-oscillator wave functions,

p and p
' lie on nearby vertices of the WS cell (cf.,

Fig. 1), and the sum in Eq. (2) runs over all metal
atom sites r; in the unit cell and over all cells L.
Also, A'=1 throughout. First, consider diagonal
terms of the type given by Eq. (1) with n'=n and
p'=p. For this case, a second-order expansion
about x=p of the potential in Eq. (2) leads to the
approximate oscillator Hamiltonian

H =const —(1/2m i)V + —,miami(x —
p)~~

+ 2 mi co»( x —p )i+ (3)

valid near x =p. Ignoring the constant and higher
order terms in Eq. (3), substitution in Eq. (1)
yields the local-oscillator energy (ni+ —, )cot

+(n»i+n»q + 1koii, times a normalization in-
tegral, equal to unity. When p'&p, one can at-
tempt to estimate the magnitude of the integral (1)
by writing it in the form

H,„=ef d x f„'(x p)f„(x p')—, (—4)

where e is a scalar parameter, having the dimensions
of energy. The dimensionless integral in Eq. (4) can
be readily evaluated and typically turns out to be
quite small. For example, when n'=n =(ni, n»»
n»q) =(1,0,0), which corresponds to the first excita-
tion equal to coq, and p

' —p is chosen to connect
nearest neighbors, I find, using the experimental re-
sult coi——106+ 1 meV for NbNp pp4Hp pp3 and setting
m

& equal to the proton mass,

Hg ——5)& 10

As will be seen in Sec. III, detailed calculation of the
band structure centered at coq, treating the overlap
integral Hi as an undetermined parameter, leads to a
bandwidth, EEi SHi. (This resul——t holds in

become identical in the hmit of vanishing band-
width. Vixen there is more than one hydrogen occu-
pancy site per unit cell, the expression for
d u/dQ de is generally more complex, but, in lead-
ing approximation, reduces to the same form as that
obtained for the case of the Bravais lattice.

Thus the itinerant band model has several attrac-
tive features. However, there exists a possible diffi-
culty. As discussed earlier, within the effective
rigid-band model the matrix elements in the relevant
secular determinants can all be expressed in terms of
a few irreducible overlap integrals of the type

H„„=fd'x f„"(x p)Hf—„(x p'), —
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nearest-neighbor approximation, but is not altered
appreciably when small second-nearest-neighbor
corrections are introduced. ) Now, if one selects the
scale e in Eq. (5) equal to the oscillator excitation
energy co&, then one obtains for the estimated band
width, AE& ——0.4 meV, a result considerably smaller
than the experimental width I t [full width at half
maximum (FWHM)] = 11 meV at T= 10 K. This
discrepancy is the source of possible difficulty.
However, as noted earlier in (i}, in the region of
maximum overlap between the near-neighbor wave
functions, the local-oscillator potential in Eq. (3) is
no longer valid. Far from the potential minima,
the strength of the (typically exponential)
hydrogen —metal-atom interaction can greatly
exceed the scale set by co&. Indeed, the
hydrogen —metal-atom repulsive interaction can be
so great in the regions of maximum overlap between
the unperturbed local-oscillator wave functions that,
in higher order approximation, the wave functions
are rather small there, and the dominant contribu-
tion to the band widths comes instead from the resi-
dual overlap in the saddle-point regions midway be-
tween the vertices of the WS cell. In either case, the
scale e in Eq. (5) can, in principle, be very much
larger than the excitation energies of the local oscil-
lators, allowing consonance with the experimental
widths. As stated earlier in (ii), no attempt will be
made to compute the renormalized overlap terms
from first principles. Instead, as will become clear
in Sec. III, apart from overall scale, the general
features of the energy-band structure can be made
evident without a priori knowledge of their values.
This is particularly so for the first excited band, cen-
tered at coq, but also holds, to lesser extent, for the
second band, centered at coque, although detailed re-
sults for the latter depend upon an assumption con-
cerning the ratio of the two irreducible overlap in-

tegrals which enter in nearest-neighbor approxima-
tion. Also, for both bands, including next-nearest-
neighbor overlap integrals introduces a few addition-
al parameters, leading to further perturbations on
the pristine band structure.

I turn now to a derivation of the differential cross
section for inelastic neutron scattering from dilute
hydrogen in narrow energy bands in metals (Sec. II).
Section III contains further details of the excited-
state hydrogen (or p+) band-structure calculation
and the results thereof. Comparison is made with
experiment in Sec. IV. Conclusions are stated in
Sec. V.

II. DIFFERENTIAL CROSS SECTION
FOR INELASTIC NEUTRON SCATTERING

I first show that for sufficiently narrow itinerant
hydrogen bands in metals, when the possible hydro-

gen occupancy sites form a Bravais lattice, the dif-
ferential cross section for neutron-induced interband
transitions reduces to that which results from
neutron-induced transitions among local-oscillator
states. Then the modified result is derived for the
case of interband transitions when the excited bands
have finite width. Finally, the case of more than
one hydrogen occupancy site per unit cell is treated.
For simplicity the proofs are given in detail only for
the case of one occupancy site per primitive cell, and
for a low-temperature limit, in which the initial hy-
drogenic state is a Bloch sum of local oscillators,
each in its ground state. Thus the initial (I) and fi-
nal (F) hydrogenic states are given by the relations

and

gk(~) ~—1/2y ik Lf (~ L)
L

qk'(~) ~—1/2+e k' L'f (~x L~)
L l

(6)

where fo and f,„are the ground and excited local-
oscillator hydrogen wave functions, respectively. k
and k' are the initial and final hydrogen wave vec-
tors and N is the number of unit cells. From the
standard Fermi pseudopotential

SF( =5Fq+2rrtt7 5(EF Et ), —

it follows that

t~t ——(2n.a/m) I d xe ' '"PP (x)PP(x) .

(10)

q=k~ —kI is the momentum transfer to the neu-

tron, m is its mass, and a is the suitably weighted
low-energy np scattering length. Keeping only the
leading terms with L'=L in Eq. (10) (narrow-band
approximation), it follows that

t~i (2ma/——m)5(k' k+q—'K)F, (q) . (11)

Here K is a principal vector of the reciprocal lattice
and, following the notation of Ref. 5, F(q} is the
transition form factor for the local oscillator:

F(q)= I d xe 'q'"f', „(x)fo(x) . (12)

Summing over the final momenta k~ and k' of the
neutron and hydrogen, the total cross section o im-
plied by Eq. (11) is given by the relation

Vz(x) =(2m.a/m)5(x),

with the use of a normalization for the reduced T-

matrix tF& such that the Heisenberg S matrix reads
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a—(1/k m)
~

a
(

i f dike
~
F(q)

~

5(kF/2m —kt'/2m+E, „(k+K—q) —Eo(")}.
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(13)

For hydrogen bands so narrow that one can neglect
the wave-vector dependence of the band energies E,„
and Eo, differentiation of Eq. (13) with respect to
solid angle Q yields the differential cross section

=(kF/kt) ~a
~

~F(q)
~

(14)

co=e et =km/2m —kt /2m, —= 2 2 (15)

and differentiating Eq. (13) with respect to Q and e,
it follows that

d2
=(kp/kt)

~

a
~ ~

F(q)
~

precisely the result one would get for a single isolat-
ed local oscillator. ' (The lattice Debye-Wailer factor
is, by definition, included in a. )

In the above treatment, the theoretical absorption
peak is sharp, and experimental widths must be at-
tributed to other effects. When the excited band

E,„(k) has finite width, the double differential neu-

tron cross section d cr/dQde can have a finite
width, even in the absence of other effects. When
the oscillator ground state ban-d remains flat, as is
assumed here, the average over the initial hydrogen
wave vectors, coupled with the finite width of
E,„(k) produces a width to the neutron band, even
at zero temperature. If this source of the absorption
band width becomes dominant, then d o /d Q de is
given by an expression of the form given by Eq. (14},
multiplied by a density-of-states function g (E) asso-
ciated with the dispersion of the excited hydrogen
energy band, as will now be demonstrated.

Letting co be the energy transfer to the neutron,
i.e.,

d2 = (kF /kt )
~

cT
~ ~

F( q )
~
g, (19)

where

g = (1/N) g 5(co+E,„(k+K—q) }

=(1/N) +5(co+E,„(k)) .
k

(20)

Letting E ( k )=E,„(k ) —5 where b, is the band gap,

g =(1/N) +5( —
~

co
~
+E(k)+b, ) .

k
(21)

Finally, let E =.

~

co
~

—b, be the neutron energy loss
relative to b„ the threshold energy for inducing tran-
sitions to the excited band. From Eq. (21},

g (E)=(1/N) g 5(E(k)—E) . (22)
k

It is clear that g(E) represents the excited-band
density-of-states function (normalized to unity). In
the absence of other broadening mechanisms g(E)
determines the shape of the absorption band for the
inelastic scattering of a neutron from a single proton
which is initially in the oscillator ground state.

For the special case, considered earlier in this sec-
tion, when the excited band is also flat, E (k) =0 for
all k and Eq. (22} assumes the form

that only the lowest band is occupied, only those
terms with a =0 contribute to Z. In the limit where
the width of the ground-state band (but not that of
the excited band) is ignored, we may set Eo(k) =0
without loss of generality, whence Z =N, the num-
ber of unit cells in the crystal. Equations (16) and
(17) then lead to the result

X5(co+E,„(k+ K—q ) —Eo( k ) ) .
g (E)=5(E)=5(

)
co

)

—b ) . (23)

(16}

=(1/Z) ge '(d o/dQde)t,
I

where Z is the partition sum,

—PEi —PE (k)
e '= e

I a, k

and P= 1/ktt T. For temperatures T sufficiently low

Generally,
~

I ) =
~
a, k ) denotes the initial proton

state, and a is the band index in E (k). Taking a
thermal average

2

(17)
dQde

Equation (19) then describes the excitation by a neu-
tron of a single proton in an isolated local-oscillator
state, and 6 assumes the value of the first excitation
energy of the oscillator. Whether or not the excited
band has finite width, since Eq. (22) implies that

fdE g (E)=1, integration of Eq. (19) over energies
encompassing the excitation band leads to an expres-
sion for do/dQ which is identical to that given by
Eq. (14). This completes the proof of the assertions
for the case when the hydrogen occupancy sites
form a Bravais lattice and the degeneracy of the ex-
cited oscillator state is ignored.

I next consider briefly the general case when each
unit cell contains more than one equilibrium hydro-
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gen occupancy site and account is taken of the de-
generacy of the excited oscillator states. Let h be
the number of sites per unit cell and d be the degen-
eracy of the oscillator states from which the band
states are constructed. (For tetrahedral sites in a bcc
metal, h=6. Also, d= 1 for the oscillator ground

I

state and first excitation coi, whereas d=2 for the
second excitation co». Cf. Sec. III.) If one substi-

tutes the general band states g" and itr" obtained,
in principle, from solution of the band problem into
Eq. (10), then it can be shown that

20'
=(kr /kr) ia i (1/Nh)ggg iE ~ (q, k)

i
5(co+8 (k —q) —E (k)) .

dQde k a a'

Here

h 4j

+ ~ (q, k)= g g e '(E (k —q) ia, n')(a, 0iE (k))P„'.p(q),
a =1 n'=1

(24)

(25)

where p, gives the hydrogen site positions within
the cell and F„'p(q) is the transition form factor of
the anisotropic local oscillator at p, :

Since it follows from either Eq. (30) or Eq. (31) that
cog co =1, integration o Eq. 28 over the exci-

tation band leads to the result

a=1 n=1

To proceed, I shall approximate Eq. (25) by replac-
ing these coefficients by their rms value (1/hd)'rz
times a k-dependent phase factor of modulus one.
Assuming, once again, that the ground-state band is
flat and averaging over the phases,

2

=(kF/kr)
I
a

I
(28)

F„'p(q)= f d xe 'q'"f„~(x)fp, (x) . (26)

Coefficients such as {an i
E (k}} describe the

eigenvector solutions of the band equations. For our
present purpose, we need only note that, in narrow-
band approximation, they satisfy the
normalization-completeness relation

h d

g g i {a,n iE (k)} i
=1. (27)

=(kF/kr) ia i iF(q) i
(32}

Equation (32) is of the same form as Eq. (14).

III. STRUCTURE OF THE ITINERENT
HYDROGEN SANDS

To ascertain the nature of the excited hydrogen
bands in bcc metals, a realistic calculation must take
into account the existence of the six crystallographi-
cally inequivalent interstitial hydrogen-occupancy
sites within the primitive cell (see Fig. 2). Thus
when dealing with Bloch states consisting of linear
combinations of the local-oscillator wave functions
in the first (nondegenerate} state of excitation cot, a

where

h d
iP(q)i'=(I/h) g g i+p(q)i'

a =1 n'=1

and

(29)

g(pr)=5( iso i
—&) . (31)

hd

g(co}=(1/hd) g (1/N) +5(pr+E~ (k)) . (30)
a'=1

g (co) is the multicomponent excited-state band
density-of-states function, normalized to unity.
(Also, the oscillator ground-state energy has again
been chosen as the reference level. ) As before, in the
limit of vanishing width for the excited oscillator
band, Eq. (30) reduces to the simpler form

FIG. 2. Primitive cell. Six crystallographically ine-
quivalent sites A, 1, . . . , 5 occur on a hexagon within the
cell. As drawn, the nearest-neighbor (relative to A) sites
2' and 3' lie outside the cell. These are crystallographical-
ly equivalent to sites 2 and 3, and the site 5 is equivalent
to a second-nearest neighbor of A (cf. Fig. 1.)
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6&&6 Hamiltonian matrix results for each value of
wave vector k. The bands associated with the dou-

bly degenerate local-oscillator excitation co~& are de-
rived from a secular determinant obtained from a
12X12 Hamiltonian matrix. For the coq bands, in
nearest-neighbor approximation, each nonvanishing
matrix element can be expressed as a known phase
factor exp(P;J ) times a single irreducible overlap in-

tegral Hi. In this approximation, all nonvanishing
matrix elements giving rise to the ~qq bands are simi-
larly expressible in terms of either of two possible ir-
reducible overlap integ rais. Since the excited-
oscillator wave functions associated with both the co&

and coque excitations have the same symmetry as p-
orbital cubic harmonics, they are conveniently
represented by arrows in, a graphical representation
of the various overlap integrals, as shown in Fig. 3.
To complete the correspondence between each graph
and its associated overlap integral, the appropriate
diagram is to be considered as embedded in a repre-
sentation of the three-dimensional crystal by super-
posing it on a cube face, such as that with shaded
inner square in Fig. 1 or Fig. 2. Then, the wave
functions, symbolized by the arrows in the graph,
may be thought of as multiplying, left and right, the
Hamiltonian [given by Eq (2)] c.ontaining potential
terms centered on the bcc host-metal 1attice, thus
forming the integrand of the so-specified overlap in-

tegral. So interpreted, Fig. 3(a) represents the single
irreducible overlap integral Hq which, in nearest-
neighbor approximation, determines the coq bands.
Figure 3(d) represents the sole irreducible second-
nearest-neighbor overlap integral in the 6)(6 Hamil-
tonian matrix for the co& band. The quantity Hi
may be thought of as a common scale factor in that
matrix, whence, in units of Hi, the structure of the

co~ bands is uniquely determined in nearest-neighbor
approximation. Including second-nearest-rieighbor
corrections, the structure of the cot bands is specified
by the parameter

F=I(g) /I(a) (33)

S =I(a) /I(b) (34)

That is, unlike the col bands, the shape of the co»

k= ~ ($,0,0) =—,((g,C s=—," (gg, o

where the values of the relevant overlap integrals I
are symbolized by their associated graphs [subscripts
(a)—(f)]. Thus the detailed shape of the bands de-
pends upon the value of Y, but for small values of

~

F ~, does not differ appreciably from the case
Y=O, corresponding to the nearest-neighbor approx-
imation. Results I obtain for the co& bands are given
in Fig. 4, where the solid and dashed curves corre-
spond to Y=O and Y =—0.2, respectively. The
crude estimate of the cot bandwidth employed in Sec.
I, namely EEi SHi, f—o—llows by inspection of Fig.
4.

In nearest-neighbor approximation, diagrams for
the two irreducible overlap integrals which appear in
the 12X12 Hamiltonian matrix determining the su~~

bands are shown in Figs. 3(b) and 3(c) of Fig. 3.
Letting H» (=I(b) ) be the common scale factor (unit
of energy) for these bands, their structure is speci-
fied by the parameter

(a) c)

1w 0
LLI

e) (&)

0.5 1.0 0.5 0.5

FIG. 3. Diagrams for the various irreducible overlap
integrals. Arrows signify the symmetry of the p-orbital
cubic harmonics which characterize the excited oscillator
states from which the Bloch states are constructed.
Graphs (a)—(c) designate nearest-neighbor overlap in-

tegrals, (d)—(f) second-nearest-neighbor terms. Graphs (a)
and (d) refer to the first (coi) excitation band; (b), (c), (e),
and (f) belong to the second (coii) band.

FIG. 4. Sand structure E(k) for the coi bands. E(k)
is given for k={2+/a){g,g, g) along (a) [100], {b) [111],
and (c) [110]. Solid curves: nearest-neighbor approxima-
tion (Y=O). Dashed curves: Next-nearest neighbors in-

cluded (Y=—0.2). (See text. ) The energy scale is equal
to the overlap integral HI. The zero of energy is equal to
that of the isolated local oscillator, excited by an amount
COi.
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bands is not unique in nearest-neighbor approxima-
tion. It appears reasonable to assume S& 1. The
energy-band structure I obtain for S=0.5 in
nearest-neighbor approximation is shown in Fig. 5
for various slices in the Brillouin zone. It is perhaps
worth noting that setting S=O results in dispersion-
less bands, with additional accidental degeneracies,
not dictated by symmetry. For example, under this
artificial assumption, not only are the bands flat, but
also sixfold-degenerate bands occur, whereas the
maximum dimension of the irreducible representa-
tions of the relevant group of the wave vector is 3 at
k =0 and is less than or equal to 2 elsewhere in the
zone interior. Even for finite S, two artifacts of the
nearest-neighbor approximation may be found in the
ro» band structure (see Fig. 5). (i) At a given value
of k, for each solution E, there exists another at

E. (Th—e zero of energy in Fig. 5 has been selected
equal to the energy of the isolated local oscillator,
excited by co».) (ii) Letting k =(2n /a )(g, rI, (), there

T =I(e) /I(b)

U =I(r)/I(b) ~

(35)

exist band crossings and some zero slopes at (=—',
which corresponds to a pseudo-zone-boundary, that
of a cubic zone of —, the volume of the dodecahedral
zone and inscribed therein. Such a zone would re-
sult if the unit cell in real space were the full cube of
volume a rather than the smaller primitive cell of
volume a /2 for the bcc lattice (cf. Fig. 2). These
artifacts are removed when the second-nearest-
neighbor integrals [Figs. 3(e) and 3(f)] are included
in the 12X12 matrix. This situation for the ro»
bands is to be contrasted with that for the co& bands
where, apart from minor shifts of these bands, only
the accidental degeneracy of the flat band in the
[110] direction is removed by including Fig. 3(d),
i.e., for nonzero Y. (See Fig. 4.) Defining the fol-
lowing ratios of irreducible overlap integrals (cf. Fig.
3)

(2)

(a) (b) Ic)

tg 0

(2)

0 0.5 1.0 0 Q.5 0.5 0.5

tw
Q

UJ

'0 0.6 0 0.5 0 0.6 0 0.5 0 0.6 0 0.6

FIG. 5. Band structure E( k) for the co» bands in nearest-neighbor approximation. Various slices of the Brillouin zone
for k along (a) [100], (b) [1—0], (c) [1——], (d) [1—0], (e) [1 z ~ ], (f) [I—

z ], (g) [110],(h) [11—], (i) [11—], (j) [111].The
energy scale is equal to the overlap integral H». As shown, the second parameter, S=0.5. (See text. ) The zero of energy
is equal to that of the isolated local oscillator, excited by an amount con. k =(2m /a )(g, r), g).
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the effects of including second-nearest-neighbor in-
tegrals in the con bands are illustrated in Fig. 6 for
the case T= U=0.2. It is clear that the existence of
pairs of eigenvalues at +E is already removed by the
inclusion of these small corrections. Also, the band
crossings are lifted. However, vestiges of the
pseudo-zone-boundary remain in the form of (some)

1
zero slopes near (but not always precisely at) )=—,.

When comparing the r0& bands (Fig. 4) with the
co&& bands (Fig. 5 or Fig. 6), it is worth recalling that
the zero of energy in the latter diagrams lies above
that of the former by an amount ron —cot ——0.4roq

and, also, that different scale factors, H& and Hn,
are employed as the units of energy for the cot and
co~~ bands. From either Fig. 5 or Fig. 6, I obtain the

crude estimate bEn ——6Hn for the width of the con
band, to be compared with the result M& ——SH& for
the col band, whence

Hn/Ht ——1.3(bEn jbEt) . (36)

IV. COMPARISON WITH EXPERIMENT

The theory developed here is essentially a low-
temperature theory, in the sense that thermally ac-
tivated processes have been wholly neglected in the
application to inelastic neutron scattering (cf. Sec.
II). Since, for the systems considered in Refs. 3 and

This relation is useful when comparing the results of
the present theory with experiment in Sec. IV.

(a) (b) (Ei)

4 0.5 1.0 0 0.5 0 0.5

(g)

-4 I

0.5 0 0.5 0.5 0 0.5

FIG. 6. Effect of second-nearest neighbor corrections on the band structure E(k) for the m&& bands. Subset of graphs
for k along (a) [100], (b) [1—,0], (d) [1—0], (f) [1——], (g) [110],(i) [11—], (j) [111].Graphs are labeled to correspond with

their designation in Fig. 5. S=0.5, T=02, U=0.2. (See text. ) Energy scale and zero, as in Fig. 5. k=(2ela)(g, ri, g).



5952 R. C. CASELLA 27

4, cpr ——O(100 meV), the assumption that only the
ground state is occupied is quite good, even at room
temperature. However, much above 150 K,
thermally activated processes play a role in broaden-
ing the final states, as is evidenced experimentally by
the increased widths of the neutron energy-loss
bands as the temperature is increased from 150 to
295 K. This increase in bandwidths has been ob-
served for dilute hydrogen in niobium with inten-
tionally added trapping centers (0, N, or V) which
inhibit precipitation into the e phase of NbH. Un-
fortunately, the e phase transition prevents observa-
tion of neutron-induced transitions via scattering
from hydrogen in the dilute a phase much below
room temperatures. Thus direct comparison of the
theory with low-temperature experiments on these
dilutely hydrogenated, but otherwise nominally
pure, bcc metals is not possible. Instead, the low-
temperature data of the defected samples will be em-
ployed. Nevertheless, some qualitative statements
can be made based upon the room temperature data
for the pure samples. The lower lying cot band, al-
though broadened by thermal processes, is less af-
fected than the corr band. Hence, we may see wheth-
er the relative widths of the coq band, as observed by
neutron scattering from dilute hydrogen in the nom-
inally pure metals V, Nb, and Ta at room tempera-
ture, vary as we might expect by extrapolation of the
theoretical predictions, which apply at low tempera-
tures. Qualitatively, the answer appears to be in the
affirmative. The lattice constant of V (3.03 A) is
O(10%%uo) smaller than those of Nb (3.29 A) and Ta
(3.30 A), which are nearly equal. Moreover, the ex-
citation energies for all three systems are nearly the
same, O(100 meV), indicating that the local-
oscillator potentials (as obtained by expansion of the
full hydrogen —metal-lattice interaction potentials in
the neighborhood of the vertices of the WS cell) are
also nearly the same. Hence, the local-oscillator hy-
drogen wave functions have roughly the same extent
and the overlap of these (Gaussian-damped) wave
functions will be greater in V with its smaller lattice
constant than for Nb or Ta, leading to a greater
width for the excited-oscillator energy bands for V
than for the other two. This prediction is obeyed ex-
perimentally. Among Nb and Ta, rpr is O(10%)
greater for Ta than for Nb, implying that its local-
oscillator wave functions are somewhat more con-
tracted in space. Neglecting the O(0.3%) difference
in their lattice constants, the excited-oscillator hy-
drogen wave functions ought therefore to overlap
less in Ta than in Nb, leading to narrower excited
bands for Ta than for Nb, again in agreement with
the neutron experiments.

This qualitative agreement must be regarded with
caution, however, since the theoretical bandwidths

(Hrr /Hr ) = (err/el )(Art/A, ) .

By direct evaluation, it can be shown that

(An/Ar) =(tpr/n) =(
~

)' '

(37)

(38)

independently of the value of the lattice constant.
Thus the ratio (en/et) is roughly twice the ratio

depend upon overlap integrals, such as H&, which
contain the Hamiltonian operator [Eq. (2)]
sandwiched between the off-center wave functions.
Moreover, as discussed in the Introduction, the
value of H& for each metal depends upon the crystal
potential in the regions of maximum overlap, where
the strength of this potential need not be equal to
the strength of the local oscillator potential near the
vertices of the WS cell, whereas the latter determines
col. Nonetheless, the successful ordering in size of
the coq bandwidths is encouraging.

W'hat can be learned from the defected samples?
Here, as a consequence of trapping, precipitation in
e-phase NbH is inhibited; hence, thermal effects can
be minimized by going to lower temperatures. Also,
by comparing the ratio I rr/I r of the experimental
widths in the same sample with the corresponding
ratio bErr/bEr of the theoretical bandwidths, semi-
quantitative statements can be made. Of the sys-
tems studied in Ref. 3, the samples doped with V
show evidence of precipitation to e-NbH at T=78
K. Therefore, attention will be focused on the ratios
I'rr/I t ——2.0 for NbNp~Hppp3 at T=10 K and
I «/I I ——1.3 for NbOpp»Hpp&p at T=4 K. I shall
investigate the consequences of assuming that, at
these temperatures, the major source of the experi-
mental widths lies in the energy bandwidths I obtain
and of neglecting the changes in these widths
produced by the defects. Setting b En/b Er
= (I rr/I r) =1.7 and employing Eq. (36). I find
that, on the average, the value of the overlap integral
H» [Fig. 3(b) of Fig. 3] is roughly twice that of Hr
[Fig. 3(a)]. This result is not unreasonable, as can be
seen by superimposing either graph on the cube face
with shaded interior in Fig. 1 and noting that the re-
gion of maximal wave-function overlap Fig. 3(b) lies
quite close to the metal atom at the cube corner (la-
beled a in Fig. 1). In contrast, the center of the re-
gion of maximal wave-function overlap for Fig. 3(a)
lies within the shaded area in Fig. 1, relatively far-
ther away from its closest metal atoms (at c and d in
Fig. 1).

Let Ar and Art be the wave function overl-ap in-
tegrals which result when the Hamiltonian operator
given by Eq. (2) is replaced by the identity operator
in the expressions for the overlap integrals Hq and

H~~, respectively. Factoring each as illustrated by
Eq. (4) and taking their ratio,
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(co»/col), showing that, in first approximation, not
only are the scale factors et and et& note equal to co&

and co», respectively (as was discussed in Sec. I), but
also they fail to scale, albeit by only a factor of 2, in
their ratio. Since the ratios of the experimental
widths differ by nearly that much among samples
with different defects, the discrepancy is not serious,
but it is nonetheless interesting to see how higher or-
der corrections might go. Not surprisingly, it turns
out that the ratio A»/At of the integrals is equal to
the ratio of the corresponding integrands, taken with
each integrand maximal. As mentioned in Sec. I, it
seems reasonable that at these points the (repulsive)
potential in the Hamiltonian [Eq. (2)] can be suffi-
ciently large that, in higher order, the local wave
functions approach zero in these regions and the
overlap integrals H& and H» are dominated instead
by contributions from the saddle-point regions of
the potential, midway between the vertices of the
WS cell. It so happens that, at these midpoints, the
ratio of the products of the excited oscillator wave
functions, i.e., the ratio of the integrands in A» and

At, equals co»/cot, the inverse of the corresponding
ratio at their maximal values. It seems reasonable to
assume that the integrands associated with the
modified integrals A~& and A& maintain this ratio at
the midpoints, now dominating the integrals, which
themselves exhibit this same ratio, i.e., that

Ait/Ai =~»/~t=2 1/2 (39)

~it/&i =~»/d'or ~ (40)

and estimate the ratio of the corrected overlap in-
tegrals as given by Eq. (39), then from Eq. (37) I am
led to predict

Substitution of this modified ratio in Eq. (37), recal-
ling that, given Eq. (36), (H»/Ht) remains fixed
(approximately equal to 2) by experiment, leads to a
modified ratio of the scale factors, ei&/ei-2'
That is, in higher order the ratio (e»/e', ) is expected
to scale roughly as (cot&/cot), even though e,'&co;,
i =I,II, for the reason cited in Sec. I and, again, ear-
lier in the present discussion.

Turning the argument around, if I assume that in
higher order the scale factors ei and e,', in Eq. (4)
are proportional to co& and co», i.e.,

which led to the factor 1.3 in Eq. (36). Also, some
understanding of the variation of the widths as af-
fected by the presence of the different defects (V, 0,
N in Nb) is required, neither of which is considered
further here.

V. CONCLUSIONS

The hypothesis that the excited oscillator states of
dilute hydrogen in bcc metals merge into bands ap-
pears compatible with experiment. In particular, I
find the following: (i) When the hydrogen occupan-
cy sites from a Bravais lattice, the differential cross
section d cr/dQde for inelastic neutron scattering
associated with transitions to the excited-oscillator
band states is equal to that for a single isolated oscil-
lator when one substitutes the finite-width density of
states function g (E) for the Dirac 5 function in the
expression for the latter. In first approximation,
this result also holds for the general case of several
sites in the unit cell. (ii) The relation
I (V) & I'(Nb) & I (Ta) among the experimental band-
widths for inelastic neutron scattering from these di-
lutely hydrogenated bcc metals is successfully
predicted by the theory. (iii) The theoretical widths
hE& and AE» of the excitation bands associated
with the co& (nondegenerate) and co» (doubly degen-
erate) oscillator excitations depend mainly on only
two irreducible overlap integrals, Hi and H». That
is, bE»ICE& ——(H»/Ht )Y, where Y is almost a
universal constant of the bcc metals, depending only
on the geometry of the tetrahedral hydrogen site oc-
cupancy in these metals. By inspection of the band
structures given in Figs. 4—6, I estimate Y=—,. (iv)

Based upon plausible, but less firmly based, assump-
tions concerning the nature of higher-order correc-
tions, I am led to propose the relation
H»/Ht ——(co»/cot) [Eq. (41)] whence, given the
model-consistent experimental relation co»/col
=2' ', I predict hE»/hEi- —,. This prediction is
in reasonable agreement with the experimental re-
sults, I »/I i

——1.3 and 2.0 for inelastic neutron
scattering from dilute H in Nb associated with 0
and N impurities, respectively. Deviations are attri-
buted to the effects of the different impurities on the
intrinsic band structure.

H»/Ht ——(co»/cot) =2 . (41)

This relation, together with Eq. (36) leads to a
predicted ratio I »/I I ——1.5 for the experimental
widths, to be compared with (I »/I t) =1.7, as ob-
tained from the data in Ref. 3. However, a fully
quantitative discussion requires a folding in of the
density of states for each band, rather than employ-
ing the crude estimates AEq ——8H&, AE» ——6H»,
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