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Critical adsorption: The renormalization-group approach
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A wall having unequal interactions with the two components of a binary mixture is responsi-

ble for critical adsorption. We have analyzed with the renormalization-group formalism the scal-

ing laws which govern this phenomenon, Furthermore, we have computed, within the e-expan-

sion formalism, the universal order-parameter profile for a range of possible values of the wall

parameters (surface field and decoupling factor).

Recent experiments on binary mixtures' have re-
vealed the existence of a new critical phenomenon
occurring near the wall of the container. This phe-
nomenon, the critical adsorption, is induced by the
difference in attraction (or repulsion) of the two

species by the wall. When the temperature ap-
proaches the bulk critical value from above (T & T, )
a nonzero concentration (order parameter m) profile
appears in the system. It is the existence of this pro-
file m(z) = ($(z) ) which has been demonstrated ex-
perimentally. (The wall conicides with the z =0
plane. )

The presence of the wall affects the behavior of the
system in two different ways:

(i) First, as we have said, the wall modifies the
chemical potential for the two species. In magnetic
language this is equivalent to introducing the field h~

on the surface. This provokes a perturbation which
can spread inside the system, if T is close to T,.

(ii) The second effect is due to the semi-infinite
geometry of the system. The absence of molecules
of the mixture from one-half space (say, z (0)
changes the interaction on the surface. Using the
magnetic analogy one can describe this change by in-
troducing a new interaction term cQ' on the surface, '
where c has a positive value. In general there is no
reason for the parameter c to vanish when T ap-
proaches T,; thus the surface does not become critical
simultaneously with the bulk. Because of this effect
the surface tends to decouple from the rest of the
system.

These two effects are, in fact, in competition: If
c & 0 (the case called "ordinary transition "3) the per-
turbation due to h~ cannot "propagate" when the
temperature approaches T,. There is no critical pro-
file: m(z) =0, for z bigger then a few molecular dis-
tances ao. Only if the field h~ is big enough to over-
come the decoupling effect can one observe critical
adsorption. This is the situation in the above-
mentioned binary-mixture experiments.

One can also imagine a different situation in other
physical systems, in which c is small because of a
supplementary enhancement of the interparticle in-

teractions on the surface. In this case (called the spe-
ciai transition3; c =0) the critical adsorption can take
place even for h~ not so large. 4

In this paper we use the renormalization-group ap-
proach to describe the critical adsorption. In 1978
Fisher and de Gennes proposed' scaling laws for the
order-parameter profile m(z). We shall discuss the
domain of validity of these laws for the ordinary tran-
sition and show how to modify them for the special
transition. We shall derive a formula for the univer-
sal scaling profile to first order in a=4 —d.

We shall study its behavior and, in particular, the
crossover from the special to the ordinary transition.
The profile has a power-law behavior at large z,
which is identical to that which appears in the ordi-
nary transition. However, near the special transition,
the existence of additional length scales modifies this
profile for smaller values of z.

MEAN-FIELD THEORY FOR THE
ORDER-PARAMETER PROFILE

The Landau free energy consists of bulk terms

Xp„jk= JJ dz)I d 'x
2 7$ +

2 tijou +

plus a surface free energy

Xs~rf 1d x(
2 cpg ltl 0')zw
1

We assume here that the wall-sample interactions are
short ranges. (Long-range interactions of van der
Waals type will be discussed in Ref. 6.)

The minimization of this free energy leads to the
differential equation
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with the boundary condition
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For z much larger than the bulk correlation length (,
the order parameter falls off exponentially.

The interesting region is thus z & (, and therefore
we will study directly the critical profile t —= ( T —T,)/
T, =O, f=~. The solution is then simply

12 1

Qp z +zp

with

cp+ [c' +4h) (up/12)'t']'t'

2h)P ( up/12) 't' (6)

RENORMALIZATION-GROUP EQUATIONS

As shown by Wilson, the Landau free energy is a
Hamiltonian which enters into the statistical sum of
Boltzmann factors over all the order-parameter distri-
butions. The scaling limit of this theory (zero lattice
spacing or interatomic distance limit) has been
described by Symanzik' and Diehl and Dietrich' and
we are not going to repeat their analysis in detail.
Let us simply recall that the free wall of semi-infinite
geometry introduces a new short-distance singularity

One can see in this simple solution the two regimes.
(i) Ordinary transition. The parameter cp, which

has the dimension of an inverse length, is not small
at T,. It is given as the inverse of some characteristic
interatomic length scale ap. Then since cp is large, zp

is also large in general and it means that there is no
penetration of the surface effects: The order-param-
eter profile is very small. The only way of getting a
finite profile for large cp is to impose a strong surface
field h~. Then zp itself will be of the order of a few
interatomic distances ap and the profile is proportion-
al to I/z or all distances down to the immediate vicin-
ity of the wall.

(ii) Special transition If cp and .ht both remain
small in ap ' units, then zp is a large length scale
(compared to ap) and the profile falls off as 1/z only
for z » zp. However, it remains finite in the vicini-

ty of the wall. We shall see that this last feature is
modified when fluctuations are taken into account.

+p4 d—ZC4
4) 1

with the boundary condition

Z
ae

Z$ +cZQ =0h)

, zW

(p, is an arbitrary finite inverse length scale).
A differential renormalization-group equation fol-

lows by the standard procedure from these results.
If we look simply at the order-parameter profile
m(z;t, c,h~, g, p, ) the integration of the renormaliza-
tion-group equation gives the flow equation

m(z;t, c, h), g, p)

= f(A) m(z;t(X), c(X),h~(X);g(X), Ap)

in which the parameter transformations under rescal-
ing are given as usual by the equation A. (dg(A. )/dh. )
=p(g(i )),

t

= —h&() ) P(g) lnZ, Z,'
dh) 8
dA. 2 9g

, g())
etc,

We use in addition canonical dimensional analysis and
choose the rescaling factor X as X = (zp, ) ', when z,
the distance to the wall, is large compared to the
microscopic length p, ', we obtain the relation

of the Green's function G(x,x'): It is now singular
when x coincides with either x' or with the image of
x' with respect to the wall (i.e., when x and x' are
close to the wall). Consequently, correlation func-
tions with arguments near the suface acquire a new
multiplicative renormalization factor Z&. Further-
more, new linear and logarithmic divergences are
caused by the surface "temperature" term cp$2~, ~,
which are cancelled, respectively, by $8,@~,~ and

@ ~,~ counterterms. We have used the minimal sub-
traction scheme and the first counterterm has vanish-
ing coefficients. Then there is a simple multiplicative
renormalization of cp.

Consequently in terms of the renormalized field 4
the Hamiltonian reads

1

f ao

dx „d» 'x
2 Z», ('74) '+

2
Z 2t4&2

1+q
m(z;tc, h~, g, p) = z ' p m(l;tz't", cz ' htza' ";g', 1)

zp, »1 (10)

in which g' is the infrared stable fixed point and

v), = P(g) lnZ,d
dg

I

This establishes the scaling law

t

Z v/6 -(v/h))(1+q )
m(z;t, c, h~) =z a "F —,zh~, ch~

2A) = d —P(g) —InZ&Z»,
dg

which generalizes the de Gennes-Fisher' scaling law.
The critical profile (t =0) satisfies the same relation
with z/g =0. This scaling law shows that there are
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two new length scales in the special transition prob-
v/4)

lem, namely, lq proportional to h~
' and l, propor-

—i/(&+n, )
tional to c '. For the ordinary transition /q and

1

l, are of the order of molecular distances and m(z)
= rn0z 1 . This is the case of strong adsorption limit
discussed in Refs. 9 and 6, which has been realized
experimentally. ' For the special transition the critical
profile is a function with two length scales. If
z » lq, , l„again m(z) falls off as z & ". Close to

the wall for z (( lq, , l, (but z » p,
' the microscop-

ic length scale), the scaling law (11) is not sufficient
to make any conclusion since we have no indication a
priori on the possible short-distance singularities of
the function J'. A short-distance expansion of the
operator P(x) for x =(z, xq) next to the wall con-
sists at leading order simply of the relation

with

e = (d —rt —2ht/v) (14)

At lowest order in ~, the exponent 8 vanishes. We
did verify that in mean-field theory the special transi-
tion critical profile m(0) is finite. However, at first
order in e, 8 = —e/6 + O(e ) and the profile diverges
close to the wall (of course it is cut off again at atom-
ic distances).

In order to obtain the full crossover between the
large and small z regimes, which is in fact the cross-
over between the normal and special transition pro-
files, we have performed an explicit calculation at T„
to first order in e. The calculation is extremely tedi-
ous and full of technical difficulties overcome by
proper surface-operator renormalization. The details
will be presented in a longer publication. We give
here just the result for the critical profile

P(z, xt) —s(z)(g(0, xg)) s, (12) m(zch ) =z ~ "F((=zh ', y=ch ' ' )
V/~) —(V/4 )(1+g )

m (z) — z'
z « lp

1

z «1
(13)

in which s(z) is a c-number function and ($(0, xJ)) s
is the surface operator with its genuine renormaliza-
tion which makes its correlation functions finite.
This leads as usual to a differential renormalization-

group equation for s(z) from which we obtain that

F((,y) =Fp(~, y) +eF, (~, y)

Mean-field theory gives

Fp(~, y) = ~/~+ ~p(y)

in which

2~,(y) —= y+ (4+y') '"
Our calculation leads to

(15)

(16)

(17)

(18)

r t

F&(f, y) = —— in)+ —ln —————+ +I($, y)
1 2 1 x x'
2 $+(p fp (p 2 2 3(2+yap)

(19)

in which I = Ij + I2, where

2 ( " k(5y~p+22) +6(yap+3)
3 -2~~utp& k x+Skx +6x'

I, (~, y) =-—— dk u(k)— x' —e
3 (p al p 4k3(2 +yap) 4k

2 2k +11 + (py 2k +1 3yfp
+ " u(k)

4(2+y~, ) k k+1 (20)

I2($, y) = x [e —(yap+11)Ei( —2) +3(yap+1)(8 +ln2) —14ygp —9]+—x ln ——8+6, (21)
4(2+y( ) 2

and 6 is Euler's constant. Here x stands for

x =(g/gp+1)-'

and

u(k) =-e '"

k3 —(yap+3) k2+3(yap+2) k —3(y(p+2)
k3+ (y(p+3) k +3(y(p+2) k +3(y(p+2)

Remark: The integral over k is convergent for small

I

k since

u(k) —k'
0

and for large k because

u(k) —1 ——(y~, +3) .2

It is easy to verify that from this expression one re-
covers the expected large-z and small-z behavior. For
large (

F(g) = 1
g » g0
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and F~(]) vanishes as log(/(. Therefore m(z)
indeed falls off as z &~" [see Eq. (15)]. For small f,

and

Therefore we find, within the e-expansion formalism,
the expected behavior

profile as a function of the distance to the wall for all

values of the surface field h~ and of the surface
decoupling factor c. From the present experimerital
standpoint the physical distance to the wall is always
large compared to the lengths related to h~ and c and
one should observe a profile which varies simply as
z @"up to the bulk correlation length (. In other
physical systems with small effective c parameters
(such as ferromagnets with enhanced surface ex-
change interactions) one should expect to observe a

more complicated profile with a succession of length
scales up to the correlation length,

m(z) —z '
z small

(23)
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