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Explicit density functionals are constructed for the ground-state expectation values of ar-

bitrary quantum-mechanical operators in terms of the solutions of the Kohn-Sham self-

consistent equations and well-defined correction terms. The one-particle Green function,

and consequently quasiparticle excitation energies, and the one-particle density matrix are,

for example, expressible in this way. Implications for the practice of electronic structure

calculations are discussed.

I. INTRODUCTION E [p]=g e(p —e,. )e;.

.p(r)=pe(p —~;)
~
P;(r)

~

', (3)

where 6 is the unit step function and p is the chem-
ical potential determined by the particle-number
constraint

+e(p E;)=N . — (4)

The total energy may be written

The importance of the Hohenberg-Kohn-Sham
density-functional formalism' stems mainly from
the Kohn-Sham self-consistent equations, which
provide a rigorous algorithm for the calculation of
the ground-state total energy E and the ground-state
electronic charge density p(r) of a nonrelativistic
electron gas which is subject to a static and local
external potential V,„,( r ). Generalizations are possi-
ble. In atomic units e /2=2m, =h/2~=1,
which will be used throughout, the Kohn-Sham
equations with square brackets denoting the func-
tional dependence read

I
—V + VH[p](r)+ V,„,(r)+ V„,[p](r)JP;(r)

=et/;(r), (1)

where VH is the Hartree potential of the electronic
charge density and V„, is the exchange-correlation
potential, i.e., the functional derivative of the
exchange-correlation energy E„,[p]:

V„,[p](r)=
5E„,[p]

(2)
5p(r )

The electronic ground-state charge density is given

by

pr —,~0 r+V„, p r

Xdr+E„,[p] . (5)

One should keep in mind that Eqs. (1)—(5) rely on
the assumption of noninteracting wave function V

representability.
In electronic structure calculations the eigenvalues

and eigenvectors of the Kohn-Sham equations (1)
are often and successfully interpreted as
independent-particle wave functions and quasiparti-
cle excitation or orbital energies. However, this
practice lacks rigor because the P; and e; in (1) are
formal variational functions and Lagrange multi-

pliers which have a meaning only for the electronic
charge density and the total energy by Eqs. (3) and
(5). In Sec. II some light will be shed on the prob-
lem by the derivation of a rigorous density function-
al for the ground-state expectation value of an arbi-
trary quantum-mechanical operator in terms of the
solutions of the Kohn-Sham equations and a well-

defined correction term. This is accomplished by a
generalization of the I.am-Platzman theorem on
electronic momentum densities, employing the con-
struction of the exchange-correlation energy func-
tional by the integration over the Coulomb coupling
constant. ' The correction term is analyzed in Sec.
III by diagrammatic perturbation theory, ' which
results in another derivation of the theorem. Select-
ed applications in Sec. IV are density matrices and
Green functions. Approximations will be discussed
in Sec. V, while Sec. VI concentrates on conceptual
and practical consequences.
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(0)=(qpIO Iso) (6)

is a functional of the electronic charge density
which will be denoted by O[p]. The Hellmann-
Feynman theorem, " a fictive interaction, ' ' and
the exchange-correlation energy functional as pro-
posed in Refs. 8 and 9 form the ingredients to obtain
an explicit expression of 0 [p].

Consider an effective Hamiltonian as a function
of the Coulomb coupling constant g (Refs. 8 and 9):

H(g) =g I
—V; + V,„,( r;)+ V,ff[p](r;;g) I

II. FUNCTIONALS

It is a corollary of the Hohenberg-Kohn theorem'
that the ground-state expectation value of the opera-
tor o

E(g) = (Pp(g) I
II(g)

I
q'p(g) )

E iIg~ I+=o~zt X '4(g)) . (10)

and the exchange-correlation energy is by compar-
ison with (5)

E-[p]=f, "'E;.,(g)

—f d r d r 'p( r )p( r ')I
I
r —r '

I
. (11)

The effective Hamiltonian is now augmented by the
operator o via a scalar coupling constant A,:

where V,~~ is a hypothetical local potential which
generates the physical charge density for g between 1

and 0, i.e., the charge density of the ground-state
wave function %p(g) of H(g) equals the charge den-
sity corresponding to the physical ground-state wave
function. The total energy may then be written as

' dgE(g =1)=E(g =0)+f E;„,(g)
0 g

—f d rp( r ) V,ff[p]( r,g =0), (8)

H(A, ,g)=g j —V; +V,„,(r;)+V,ff[p](r;;A, ,g)j

+g +Ao .

V ff is supposed to generate the physical charge den-
sity for all relevant values of the parameters A, and g.
The total energy is then obtained as a function of A,

as

' dgE(gg =1)=E(kg=0)+ E;„,(A, ,g)+ dr p(r)t Verr[p](r;iLg =1)—Vrr[p](r;A, ,g =0)} .
0 g

(13)

The derivative of the ground-state energy expectation value is, according to the Hellmann-Feynman theorem, "
d

d&«~ g)=&'4(~ g) I d&H(~ g)
I

q'o() g)&=&'4(~ g) IO+p Vff[P](~i'~ g) I
q'o(~ g)& (14)

Substitution of (14) into (13) and taking the limit of A, ~O yields

' dg
&q'o(g = I)

I
0

I
q'o(g = I) & = &q'o(g =0)10

I
q'o(g =0)&+

" f "gE;.,(&,g)
dA, o g

The left-hand side is identical to the desired
ground-state expectation value (6). The first term
on the right-hand side is the expectation value of 0
for a system of noninteracting fermions moving in
an effective field equal to the sum of the Hartree
and exchange-correlation potential as in (1), and will
be denoted by Op[p]. The static Coulomb energy
part in E;„, is not A, dependent by construction and,
from (11)and (15), the central result is established:

O [P]=Oo[P]+ d~
E [P](~)

d
(16)

A, =O

Whereas the original Hohenberg-Kohn theorem'
requires only N representability of p(r), '4 the ex-
istence of the effective p-generating potential, i.e., an
extended V representability, must be assumed for all
relevant A, for Eq. (16) to be valid. The V represen-
tability problem of the Kohn-Sham equations comes
down to the special case A, =g=0. Note that V
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representability of p for g =0 and A&0 is a neces-
sary condition for the existence of the partial deriva-
tive in Eq. (2.19) of Ref. 7 also.

where g is a positive infinitesimal constant and the
subscript kk' denotes matrix elements with respect
to a complete orthonormal one-electron basis. The
interaction energy

III. CORRECTION TERM

The correction term as derived above,

b,o[p) = E„,[p](A, )
A, =O

(17)

E;„,));g)=(% , )gg
)+I I

r —rj I

qgp(A, ,g)

(20)

gets more transparent if analyzed by diagrammatic
perturbation theory. ' Moreover, this approach pro-
vides an alternative derivation of Eq. (16). The sys-
tem is assumed to be normal and complications con-
cerning the adiabatic hypothesis in the zero-
temperature diagrammatic perturbation expansion
for inhomogeneous systems, ' ' which can be
resolved by taking the zero-temperature limit of the
finite temperature formalism, ' ' will be ignored.
The effective potential V,ff is assumed to keep the
charge density p and the chemical potential p con-
stant as a function of the parameters A, and g. One-
particle operators 0 will be treated only, but the gen-
eralization does not give any new insights. For this
case the fictive interaction may be absorbed into the
one-particle part h (A, ,g) of the effective Hamiltonian
(12}:

h (A,,g) = —V + V,„,(r)+ V,ff[p](r;))),,g)+Ao .

(18)

The noninteracting one-particle Green function cor-
responding to (18) is

(Gp )kk (e Ag) = [ E'h(A, g)' —

is by the Galitskii-Migdal formula' '
E;„,(A, ,g) = . f de+ g Gkk (e;A, ,g)

1

47Tl

—1X (Gp 4k'(e) ~' ' (21)

or simply

E;„,(A, ,g) = —,tr
G(A, ,g)
Gp(A, ,g)

(22)

E;„, is proportional to the sum of all unlinked, unla-
beled, and connected diagrams':

+ + + ~ ~ i 23

d q d V,ff(A,g)
Gp(A, ,g)=Gp(A, ,g) o~

where a line = denotes a noninteracting Green
function (19) and —stands for a Coulomb in-
teraction vertex of strength g. The nth-order dia-
grams E,"„, of (23) contains n vertices and 2n lines.
Only the latter are A, dependent and all equivalent
with respect to differentiation:

(19)
I

(24)

The derivative of E;„, is hence

E;„,(A,,g)=g E,"„,(A, ,g)=intr G"(A,,g) o+ V ff(A, ,g}di (25)

diagrammatically veniently expressed by diagrams:

dA 2 d
dg

0
n

+2A

(0 p(A, g)
~
o

~
q p(A g) ) =tr[G(A, ,g)o] (27)

(26)

The expectation value of the operator o is in terms
of the Green function

(28)

The two-particle Green function is involved in the
second term on the right-hand side. The expectation
value of

The derivative of (27) with respect to g is con- d =%' (r)%'(r), (29)
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where %t(r),%(r) denote creation and annihilation
field operators, is the electronic charge density
which does not depend on A, and g, hence

=Z 2A&

(31)
equal zero. By combining (26), (28), (30), and (31),

and

(30}
1

4A 2 4gg

The integration over g is now carried out easily:

(32)

'dg dE„[p] =f "g "
E,.„,(p,g) =tr[G(A, =O,g)o]

~

'
g dA, g o

(33}

or

60 [p]=0 [p]—Oo[p]

which is identical to the result of Sec. II.

IV. APPLICATIONS

A. Density matrix

(34)

I

the electronic charge density, the electronic momen-
tum density, and the kinetic energy. The charge
density is represented by the diagonal elements of I ~

in position space, and the correction term is zero by
construction. The Kohn-Sham equation result for
the momentum density, i.e., the diagonal elements of
I

&
in momentum space, must be augmented by a

correction term identical to that in Eq. (3.29) of Ref.
7:

I I

N(pb ' ' & PN&pl»' ' PN)

=a . . a a . a
P1 PN P] P~

(36)

in the conventional notation for creation and annihi-
lation operators. Equation (16) is a formal density-
functional expression for the N-particle density ma-
trix if the operator o is substituted by (3S) or (36).

The one-particle density matrix is of special in-
terest because it determines important properties as

l

The ground-state N-particle properties are reflect-
ed in the S-particle density matrix I ~, ' which
apart from a normalization factor may be expressed
as the ground-state expectation value of the N-

particle density operator pN in position space:

/ ~ ~ ~l ~lN(r„. . . , rN, r &, r N)

=4 (r&) 4 (rN)%(r&) 'P(rN), (3S)

and in momentum space:

5E„, p~l [p](p, p) —=

P

(37)

The relevance of the momentum-density correction
term for crystalline copper will be discussed in Ref.
19 in more detail (cf. Sec. VI). The kinetic energy
contribution of the exchange-correlation energy
functional is recovered by a simple integration over
the momentum density:

~T[p]=f dP I P I'~l'[p](p P) .

The rigorous kinetic energy functional lost in the
derivation of the Kohn-Sham equations is thus re-
stored a posteriori.

The noninteracting ground-state wave function is
necessarily a Slater determinant and not a simple
product function because the adiabatic generation of
the ground state by turning on the Coulomb interac-
tion conserves the permutational symmetry. Ex-
change terms reflectin the Fermi hole are thus
present in the zero-order term of I'2..

[EI 2(r~, r2, r ~, r 2)]o——$8(p e;)8(p ej)[—P;'(r~)PJ(—r2)P;(r I )PJ(r 2) —&I),'(r~)PJ(r2)P;(r 2)PJ(r I)] .

(39)
In general, the zero-order term of all two-particle operators contains an exchange term. An alternative
ground-state energy functional to Eq. (S) is obtained, for example, if o in (16) is replaced by the Hamiltonian:

E [p]=+8(p —e; )e; —f d rp( r ) [ —, VN [p]( r ) + V„,[p]( r ) j

—+8(p e&)8(p ej—)f dr dr—'P';(r)PJ(r ')PJ(r)P;(r ')/~ r —r '
~
+EE[p],

l,J
(40)
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which is a generalization of the exact-exchange ener-

gy functional in Ref. 2.
G[p](r, r ';e)=GO[p](r, r ',e)+bG[p](r, r ', e) .

(43)

B. Green function

Attention will be restricted in the following main-
ly to the one-particle Green function, but generaliza-
tion to the N-particle case is accomplished analo-
gously to the density matrices. The causal one-
particle Green function is defined as the ground-
state expectation value of the time-ordered product
of creation and annihilation operators, ' in position
space:

The relevance of the Green function is due to its
poles ez, usually identified as quasi —particle-hole
excitations, where the real part defines the energy
and the imaginary part the damping. ' By Eq. (43)
it is shown rigorously that the ground-state density-
functional theory may be employed for the calcula-
tion of excitation properties. The problem of singu-
larities in (43},which do not properly cancel if b G is
known only approximately, can be cirumvented by
replacing (43) by a set of equations for the Green-
function poles and its residues:

i%(r;t)% (r',0), t&0
i%'t(r;0)V(r ', t), t &0

(41) ~, [p) =(~,)o[p]+~~, [p],
ResG[p](r, r ';ez) =ResGo[p](r, r ';ez)

(44)

'k(r't)=e' '%'(r)e (42)

In the limit t~0, the density operator is
recovered. After Fourier transformation into the
energy domain the "Green density functional" is, by
Eqs. (16) and (41),

+ReshG[p](r, r ';ep) . (45)

The poles of Go are real but not equal to the eigen-
values of the Kohn-Sham equations. This is again a
consequence of the permutational (anti)symmetry of
the noninteracting pseudofermion wave function
and the two-particle operators in (42). The poles are
found instead at

(~, )0[p) =e; f dr—
I
A(~~

I
'[-, I'H[p](r)+ ~,[p](r) I

which includes an exchange term. The correction
term he& describes the shift in energy and the
damping of the stationary Hartree-Fock-type quasi-
particles and will introduce new poles due to collec-
tive effects. The residues of Go are simply

ResGo[p](r, r ', ez) =P*;(r)P;(r '), (47)

U. APPROXIMATIONS

Both the exchange-correlation potential V„, and
the correlation-correction term 50 are derivatives of

hence normalized to unity. In general, the correc-
tion will introduce a deformation and renormaliza-
tion.

An important special form of the two-particle
Green function is the polarization propagator or
dynamical susceptibility, which is closely related to
the dielectric function. Following the terminology
of Ref. 20, the zeroth-order term for this quantity is
a random-phase approximation with exchange in
density-functidnal context.

the exchange-correlation energy E„, by Eqs. (2) and
(17). It appears consistent to use the same approxi-
mate form of E„, for both quantities. By far most
band-structure calculations are carried out in the
local-density approximation (LDA) to the
exchange-correlation energy functional2:

E„,"[p]=f dr p(r)e„,(p(r)), (48)

where e„,(p(r)) is the exchange-correlation energy
per electron of the homogeneous interacting electron
gas as a function of the (local) density p(r). The
I.DA correction tern to the result of the Kohn-
Sham equations is thus

bo [p)=f dr p(r)[op, {p(r)} oo(p(r)—)] .

(49)

If the expectation values of o (per electron) for the
homogeneous interacting electron gas os(p(r)} and
for the homogeneous free-electron gas oo(p(r)) are
available, obtained preferably by the same method as
e„„ho" is easily evaluated from the self-
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f p;(r)dr=i, (50)

which suggests a modification of b 0" in the spir-
it of the self-interaction-correction (SIC) approach2:

b, O ' [p]=60" [p]—+8(p —e;)b,O [p;],
(51)

where

(52)

The combination of a SIC exchange-correlation po-
tential and Eq. (51) guarantees exact results for one-

electron systems. Another improvement of bO"
could possibly be achieved taking into account non-

local effects by the introduction of an effective aver-

age p" ( r ) over the electron density in the proximi-

ty of r (Ref. 23):

b,O" [p]= J d r p( r )

X[oi,(p" (r))—00(p" (r))] . (53)

Both (51) and (53) would not introduce additional
computational difficulties once the Kohn-Sham
equations are solved. Note that (51) and (53) reflect
the philosophy but are not identical to the explicit
derivatives of the respective exchange-correlation
energy functionals. In general, a further improve-
ment of b.O" is expected to be tedious.

VI. DISCUSSION

The above results establish the Hohenberg-Kohn-
Sham density-functional formalism' as a general

purpose many-body theory, which can be employed
in principle to calculate any ground-state property
of an inhomogeneous electron gas except the wave
function itself. To some extent excited-state proper-
ties are obtainable also via the Green function. As a
by-product, the Kohn-Sham exact exchange density
functional is derived. In Ref. 2 the exact exchange
functional [Eq. (40) in the LDA], furnishes the
starting point for the derivation of a set of Hartree-
Fock-type self-consistent equations. However, the

consistent electronic charge density which is an out-
put of the Kohn-Sham equations. Note that (49) is
identically zero in an exchange-only treatment.

An exact theory of electron correlations must be
free of spurious self-interactions, which in the
present context can be formulated as

60[p;]=0

present result gives a theoretical justification
combine the advantage of the exact exchange formu-
lation as the lack of spurious self-interactions with
the computational simplicity of a Hartree-type po-
tential. The well-known deficiencies of the
Hartree-Fock method will be present in the zero-
order term, but should be canceled by the correlation
correction. Excited-state properties from the poles
of the Green function as band structures and Fermi
surfaces are treated analogously. In contrast to the
Kohn-Sham equation eigenvalues, Eq. (46) is a
rigorous self-interaction free formulation of quasi-
particle excitation energies.

The popularity of the Kohn-Sham equations for
the calculation of electronic structures stems largely
from the apparent success and the computational
simplicity of the LDA of the exchange-correlation
energy functional. According to Eq. (49), a neces-

sary input for the LDA calculation of a property of
the inhomogeneous system is the value of this prop-
erty for the homogeneous electron gas for an ap-
propriate range of densities. If these data are avail-

able, ' the calculation of b,O" is not difficult and
the independent-particle result should be augmented

by this term at least for consistency.
The Hohenberg-Kohn-Sham theory is obviously

optimized for the calculation of the electronic
charge density, because in this case everything un-

known is lumped together into a single term V„,
which is then approximated. For other properties,
however, the introduction of the somewhat artificial
correction term which has to be approximated also
will increase the uncertainties. Anisotropic correla-
tion effects which are not appropriately described by
the Kohn-Sham equations (see, e.g., Refs. 19 and
27—32) do thus not necessarily prove the failure of
the approximate potential employed. The experi-
mental momentum density of copper is, for exam-

ple, not well reproduced by state of the art band-
structure calculations. ' There is indeed evi-
dence' that it is not the crystal potential but the
correction term which is badly described by the
LDA. A way out could in this case be provided by
the application of the variational principle to an en-

ergy functional of the momentum density which
would render the correction term obsolete.
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