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Low-temperature scaling for systems with random fields and anisotropies
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Random fields (or anisotropies) shift the lower critical dimensionality of spin systems from d,
to d, . For dimensionalities d, & d & d, at low temperatures T, the magnetization has a discon-

tinuity (from zero to M) when b (the average square field) approaches zero. The correlation

length g diverges as 5 ~. The structure factor is shown to scale as S(q, g) =(d S(qg). Simple

assumptions on scaling near T =0 yield v~ =1/(d, —d), with d, =4 for continuous symmetry

spins and d, =2 for Ising spins.

The critical behavior of magnetic systems with ran-
dom quenched fields, of the form XiH, S„with
[H;],„=0,[Hi H, ],„=hgi;, has been the subject of
nluch recent dlscusslon. Arguments based on d1-

agrammatic expansions valid at dimensionalities
4 & d & 6 showed that the leading singular behavior
in d dimensions is exactly the same as that of the
nonrandom system in (d —2) dimensions. ~ Howev-

er, this left the detailed behavior of the experimental-
ly relevant cases d & 4 unresolved. For Heisenberg-
type systems (with n ~2 spin components), it is

widely accepted that the lo~er critical dimensionality
(below which there is not long-range ferromagnetic
order) is shifted by the random fields from dP = 2 to
d, =4. Details of the behavior of thermodynamic
functions at d & 4 have not been calculated.

At low temperatures, random uniaxial anisotropies
of the form D X;(tt, S;)i', where ni is a unit vector
of random direction and p «2, and random off-
diagonal exchange interactions of the form

X s JsaSi Sjs (Ref. g) generate local random fields
which also destroy long-range order at d & 4. We
have recently shown'9 that, to leading order in D,
one has a phase with an infinite susceptibility. How-

ever, the effects of higher orders in D remained un-
clear.

The situation for the Ising model (n =1) in a ran-
dom field is even less clear. Domain arguments sug-
gest that the lo~er critical dimension is shifted from
d, =1 to d, =2. This result is supported by a recent
interface model, but disagrees with earlier interface
models5 which gave d, =3. The Ising model in a ran-
dom field may be easily studied experimentally by ap-
plying a uniform field to dilute antiferromagnets. '0

Recent experiments" sho~ed that such antiferromag-
nets exhibit modified properties and no long-range
order at d =2, but left many quantitative details,
especially concerning the structure form factor, unex-
plained.

In the present Rapid Communication we formulate
a low-temperature —scaling theory for systems with ran-
dom fields (or random anisotropies) beiow their lower

critical dimensionality. We consider the behavior of
the random field system in the limit of small T, h,

and 5, where T is the temperature (in units of J/ks,
Jbeing the exchange coupling), it is a uniform mag-
netic field (in units of J), and 5 = [~Hi~2],„/I2. For
convenience, we refer to the ferromagnetic case.

For d & d„the zero-field spontaneous magnetiza-
tion M is zero for all 5 )0, while M WO for 5 =0,
d & d,o, and T & To, where To is the ordering tem-
perature of the nonrandom system. Thus there must
occur for dP & d & d, a first order transi-tion when

0 for T ( T, at which the magnetization changes
discontinuously from zero to M In what follows we
use known scaling properties near discontinuity tran-
sitions' to analyze this transition.

Since M is discontinuous as 4 0, it may be writ-

ten as M =MD(1 —5 ) in the limit pa=0. We next
consider the correlation function (S,"S,"). The
correlation length g, associated with this function, "is
infinite at 5 =0, T & To. At finite 6, g is related to
the size of the domains, and is thus expected to

diverge, e.g. , as g~h ~. If we assume the usual

scaling form
-(dl-2~&)

[(S;"S,")].,=ra f(rij/g)

then the scaling relation pa= —,i a(d —2+pa) im-

plies that q~=2 —d. Fourier transforming
[ (S,"S,")],„wethus obtain the scaling form of the
structure factor, '4

This result is independent of the way in which g
diverges. If one assumes for Sa I.orentzian squared
form, S =A /(it'+ q') 2, as observed experimentally, "
then by Eq. (1) A will be proportional to K4 ~, where

Rescaling lengths by a factor b a discontinuity in M
implies by the usual scaling relations that the corre-
sponding ordering field it/Tscales like b . From its
definition, a discontinuity in the Edwards-Anderson
order parameter" 0 - [ (Si)'],„

is expected to accom-
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pany that in M This in turn implies'2 that its order-
ing field 5/T~ also scales like b».

For n ~2 the basic excitations at low Tare spin
~aves. Simple dimensional counting shows' that T
scales like O' . Collecting these results gives the fol-
lowing low-temperature recursion relations,

Tr b2-gT h by h

T T T2
bd

T2
!

(2)

where (for low temperatures) g = 6 with

va = I/(4 —d), consistent with d, =4. For d =4,
g=e'ta. Equation (3) also follows directly from fixed
length spin (spin-wave) renormalization-group calcu-
lations. ""From Eq. (3) the susceptibility takes the
form

(4)

%hen T & 5' ~'~' ' we expect a crossover from
the "random" behavior to the "thermal" behavior.
This thermal behavior implies, e.g. , (= T' '~ "for
d (2. Similarly Eq. (I) may be written more gen-
erally as

S(tt, T, h, q) =$S(»q(, Tg», hg )

All the quantities of interest have been calculated ex-
plicitly in the limit n ~."9 In particular, it was

found that the transverse spin structure factor is

given by T/(q'+r) +/s/(q'+r)', where r = h/M is

the solution of the equation

At 4=0, the ferromagnetic fixed point T=h =0 is
stable for d & 2 and unstable for d & 2. This identi-
fies d,'=2. Since Eq. (2) implies that 6'= b' »tt„ this
fixed point is unstable against 4 & 0 for d (4, i.e.,
d, =4.

Using these recursion relations, we conclude that
the singular term in the free energy density will be of
the form

f(T, /s, h) =F/T=g» f(T$' », hf')

T & To. In particular we expect the susceptibility of
the random anisotropy problem to obey the scaling
form (4). If the function x is finite at T, h 0, this
implies a finite value of g for T & To, X

In d =3 the X ' intercept of the experimental Arrot
plots should therefore be proportional to (D/J)4.
Such a finite value could result from terms of high
order in 5, neglected in Ref. 9. It is, of course, pos-
sible that x(x,y) diverges when x 0 or y 0, in

which ease one could retain the infinite susceptibility
phase. However, experimental results' seem to
favor a finite value of X. It would be useful to have
an explicit (experimental or theoretical) determina-
tion of the function X for this case. A linear specific
heat has been observed in Dy-Cu at low tempera-
tures. " From Eq. (3) it follows that if this term
comes from the singular free energy F„then the
coefficient of the linear term is proportional to g"'
or in three dimensions to (D/J).

%e now turn to the Ising case n =1 in a random
field. Both the interface model" and many real-space
renormalization-group calculations" give T'= b' T
for T && To, consistent with d,0=1. As for n ~2
we assume that both Mand gare discontinuous for
do & d & d, such that (h/T) ' = b»(h/T) and
(5/T~) = b»(5/T'). Repeating the same steps as
above we obtain

f(T, h, h) =g f(T$' », h()

where (=1k a with vs=1/(d —2) for d &2, and
(=e»a at d=2 as obtained from 6'=b' »/s. Given
all the stated assumptions this yields d, =2.

The corresponding form of the susceptibility is

x=gx(T&' »hg)

with x(0, 0} expected to be finite and nonzero.
The result 5'= b 5 can be rigorously proven for

d ( 1. In this case there is no long-range order for
any T & 0 and we may assume that the susceptibility
is analytic in h. %riting

It is easy to check that these expressions obey all our
scaling relations. For example, an explicit calcula-
tion'9 of x verifies Eq. (4) with x(0,y) =e r'.

It is interesting to note that if one fits 5 by"

S =W/( '+qn')'+a/( '+nq')

then Eq. (5) implies that A/8 = tt s(T$
s(x) is finite as x 0 then A/8 is proportional to tt

as observed experimentally. " %e hope this paper
will stimulate detailed checks of these results.

At low' temperatures, the random anisotropy coeffi-
cient 5 = (D/J) ~ obeys exactly the same scaling as
the random field, 5'= b ~h. '6 %e therefore predict
thc same scaling results for thc two problems for

we find that

On the other hand, one can show rigorously2~ that

&( Tx)/&(&/T') I a~ = —( Tx)' ~ b",
and thus A.q=2 —d. This proof probably breaks down
for d & 1, when one is probably not allo~ed to ex-
pand in 5 for d 0.

The result d, =2 is consistent with the domain ar-
guments. " If one believes that d, =3, i.e., that
A.a =3 —d, then some of the above assumptions (e.g. ,
that Q has a discontinuity, or that one may use T as
the appropriate temperature scaling field) must be in
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valid and there must be no discontinuity in Q for
n =1, in contrast to n )1. This question is left for
future study. We exphasize, however, that the result
(I) must still hold.

All the above results are expected to hold for
d, & d ( d, only for low temperatures, T ( T, . As
T approaches T, , we expect a crossover to the scaling
behavior associated with T„e.g. ,

where t = ( T Te)/—Te. In the random field case
and thus x —5 ', g —5 "t", etc. In the ran-

dom anisotropy case's tt =2/, —d„(=0.35 at d =3),

where Q, is the spin anisotropy crossover exponent.

The crossover from g —5 "& near Te to g
—5

for T (( T, may complicate the analysis of the ex-
periments.
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