Low-temperature scaling for systems with random fields and anisotropies

Amnon Aharony' and E. Pytte

IBM T. J. Watson Research Center, Yorktown Heights, New York, 10598 (Received 7 October 1982; revised manuscript received 2 March 1983)

Random fields (or anisotropies) shift the lower critical dimensionality of spin systems from d_c^0 to d_c . For dimensionalities $d_c^0 < d < d_c$ at low temperatures T, the magnetization has a discontinuity (from zero to M) when Δ (the average square field) approaches zero. The correlation length ξ diverges as $\Delta^{-\nu}$ ⁴. The structure factor is shown to scale as $S(q, \xi) = \xi^d \overline{S}(q\xi)$. Simple assumptions on scaling near $T = 0$ yield $v_{\Delta} = 1/(d_c - d)$, with $d_c = 4$ for continuous symmetry spins and $d_c = 2$ for Ising spins.

The critical behavior of magnetic systems with random quenched fields, of the form $\Sigma_i \overline{H}_i \cdot \overline{S}_i$, with dom quenched fields, of the form $\sum_i H_i \cdot S_i$, with $[\vec{H}_i]_{av} = 0$, $[\vec{H}_i \cdot \vec{H}_j]_{av} = \Delta \delta_{ij}$, has been the subject of much recent discussion. $1-5$ Arguments based on diagrammatic expansions valid at dimensionalities $4 < d < 6$ showed that the leading singular behavior in d dimensions is exactly the same as that of the nonrandom system in $(d-2)$ dimensions.³ However, this left the detailed behavior of the experimentally relevant cases $d < 4$ unresolved. For Heisenbergtype systems (with $n \ge 2$ spin components), it is widely accepted that the lower critical dimensionality (below which there is not long-range ferromagnetic order) is shifted by the random fields from $d_c^0 = 2$ to $d_c = 4$. Details of the behavior of thermodynamic functions at $d < 4$ have not been calculated.

At low temperatures, random uniaxial anisotropies of the form $D \sum_i (\hat{n}_i \cdot \overline{S}_i)^p$, where \hat{n}_i is a unit vector of random direction and $p \ge 2,$ ^{6,7} and random offdiagonal exchange interactions of the form $\sum_{\alpha\beta}J_{ij}^{\alpha\beta}S_{i}^{\alpha}S_{j}^{\beta}$ (Ref. 8) generate local random fields which also destroy long-range order at $d < 4$. We have recently shown^{7,9} that, to leading order in D , one has a phase with an infinite susceptibility. However, the effects of higher orders in D remained unclear.

The situation for the Ising model $(n-1)$ in a random field is even less clear. Domain arguments suggest that the lower critical dimension is shifted from $d_c^0 = 1$ to $d_c = 2$. This result is supported by a recent interface model,⁴ but disagrees with earlier interface models⁵ which gave $d_c = 3$. The Ising model in a random field may be easily studied experimentally by applying a uniform field to dilute antiferromagnets.¹⁰ Recent experiments¹¹ showed that such antiferromagnets exhibit modified properties and no long-range order at $d = 2$, but left many quantitative details, especially concerning the structure form factor, unexplained.

In the present Rapid Communication we formulate a low-temperature-scaling theory for systems with random fields (or random anisotropies) beiow their lower

critical dimensionality. We consider the behavior of the random field system in the limit of small T , h , and Δ , where T is the temperature (in units of J/k_B , J being the exchange coupling), h is a uniform magnetic field (in units of J), and $\Delta = [|\vec{H}_i|^2]_{av}/J^2$. For convenience, we refer to the ferromagnetic case.

For $d < d_c$, the zero-field spontaneous magnetization M is zero for all $\Delta > 0$, while $M \neq 0$ for $\Delta = 0$, $d > d_c^0$, and $T < T_c^0$, where T_c^0 is the ordering temperature of the nonrandom system. Thus there must occur for $d_c^0 < d < d_c$ a first-order transition when $\Delta \rightarrow 0$ for $T < T_c^0$ at which the magnetization changes discontinuously from zero to M . In what follows we use known scaling properties near discontinuity transitions¹² to analyze this transition.

Since *M* is discontinuous as $\Delta \rightarrow 0$, it may be written as $M = M_0(1 - \Delta^{\beta_{\Delta}})$ in the limit $\beta_{\Delta} = 0$. We next consider the correlation function $\langle S_i^{\mu} S_j^{\mu} \rangle$. The consider the correlation function $\langle S_t^{\mu} S_f^{\mu} \rangle$. The correlation length ξ , associated with this function,¹³ is infinite at $\Delta = 0$, $T < T_c^0$. At finite Δ , ξ is related to the size of the domains, and is thus expected to diverge, e.g., as $\xi \propto \Delta^{-\nu_A}$. If we assume the usual scaling form

$$
[\langle S_i^{\mu} S_j^{\mu} \rangle]_{\rm av} = r_{ij}^{-(d-2+\eta_{\Delta})} f(r_{ij}/\xi) ,
$$

then the scaling relation $\beta_{\Delta} = \frac{1}{2} v_{\Delta}(d - 2 + \eta_{\Delta})$ implies that $\eta_{\Delta}=2-d$. Fourier transforming $[(S_i^{\mu}S_i^{\mu})]_{av}$ we thus obtain the scaling form of the structure factor, ¹⁴

$$
\mathcal{S}^{\mu\mu}(q,\xi) = \xi^d \overline{S}(q\xi) \quad . \tag{1}
$$

This result is independent of the way in which ξ diverges. If one assumes for S a Lorentzian squared diverges. If one assumes for S a Lorentzian squared
form, $S = A / (\kappa^2 + q^2)^2$, as observed experimentally,¹¹ then by Eq. (1) A will be proportional to κ^{4-d} , where $\kappa = \xi^{-1}$.

Rescaling lengths by a factor b a discontinuity in M implies by the usual scaling relations that the corresponding ordering field h/T scales like b^d . From its definition, a discontinuity in the Edwards-Anderson order parameter¹⁵ $Q = [\langle S_i \rangle^2]_{av}$ is expected to accom-

5872

1983 The American Physical Society

pany that in M. This in turn implies¹² that its ordering field Δ/T^2 also scales like b^d .

For $n \geq 2$ the basic excitations at low T are spin waves. Simple dimensional counting shows¹⁶ that T scales like b^{2-d} . Collecting these results gives the following low-temperature recursion relations,

$$
T' = b^{2-d}T \quad , \quad \left(\frac{h}{T}\right)' = b^d \left(\frac{h}{T}\right) \quad , \quad \left(\frac{\Delta}{T^2}\right)' = b^d \left(\frac{\Delta}{T^2}\right) \quad . \tag{2}
$$

At $\Delta = 0$, the ferromagnetic fixed point $T = h = 0$ is stable for $d > 2$ and unstable for $d < 2$. This identifies $d_c^0 = 2$. Since Eq. (2) implies that $\Delta' = b^{4-d}\Delta$, this fixed point is unstable against $\Delta > 0$ for $d < 4$, i.e., $d_c = 4.$

Using these recursion relations, we conclude that the singular term in the free energy density will be of the form

$$
f(T, \Delta, h) = F_s/T = \xi^{-d} \bar{f}(T\xi^{2-d}, h\xi^2) , \qquad (3)
$$

where (for low temperatures) $\xi = \Delta^{-\nu_{\Delta}}$ with $v_A = 1/(4-d)$, consistent with $d_c = 4$. For $d = 4$, $\xi=e^{1/\Delta}$. Equation (3) also follows directly from fixed length spin (spin-wave) renormalization-group calcu-
lations.^{17,18} From Eq. (3) the susceptibility takes the lations.^{17,18} From Eq. (3) the susceptibility takes the form

$$
\chi(T, h, \Delta) = \xi^2 \overline{\chi}(T\xi^{2-d}, h\xi^2) \quad . \tag{4}
$$

When $T > \Delta^{(2-d)/(4-d)}$ we expect a crossover from the "random" behavior to the "thermal" behavior
This thermal behavior implies, e.g., $\xi = T^{1/(d-2)}$ for $d < 2$. Similarly Eq. (1) may be written more generally as

$$
S(\Delta, T, h, q) = \xi^d \overline{S}(q\xi, T\xi^{2-d}, h\xi^2) \quad . \tag{5}
$$

All the quantities of interest have been calculated explicitly in the limit $n \rightarrow \infty$.^{1,19} In particular, it was found that the transverse spin structure factor is given by $T/(q^2+r) + \Delta/(q^2+r)^2$, where $r = h/M$ is the solution of the equation

$$
r = (T - T_c^0) + AM^2 + BTr^{(d-2)/2} + C\Delta r^{(d-4)/2}.
$$

It is easy to check that these expressions obey all our scaling relations. For example, an explicit calculation¹⁹ of x verifies Eq. (4) with $\overline{\chi}(0,y) = e^{-y^2}$.

It is interesting to note that if one fits S by¹¹

$$
S = A/(\kappa^2 + q^2)^2 + B/(\kappa^2 + q^2) ,
$$

then Eq. (5) implies that $A/B = \kappa^2 s(T\xi^{2-d})$. If this $s(x)$ is finite as $x \rightarrow 0$ then A/B is proportional to κ^2 as observed experimentally.¹¹ We hope this paper will stimulate detailed checks of these results.

At low' temperatures, the random anisotropy coefficient $\Delta = (D/J)^2$ obeys exactly the same scaling as the random field, $\Delta' = b^{4-d} \Delta^{16}$. We therefore predict thc same scaling results for thc two problems for

 $T < T_c^0$. In particular we expect the susceptibility of the random anisotropy problem to obey the scaling form (4). If the function $\overline{\chi}$ is finite at T, $h \rightarrow 0$, this implies a finite value of χ for $T < T_c^0$, $\chi \rightarrow \Delta^{-2/(4-d)}$. In $d = 3$ the χ^{-1} intercept of the experimental Arro plots should therefore be proportional to $(D/J)^4$. Such a finite value could result from terms of high order in Δ , neglected in Ref. 9. It is, of course, possible that $\overline{x}(x,y)$ diverges when $x \rightarrow 0$ or $y \rightarrow 0$, in which ease one could retain the infinite susceptibility phase. However, experimental results²⁰ seem to favor a finite value of χ . It would be useful to have an explicit (experimental or theoretical) determination of the function x for this case. A linear specific heat has been observed in Dy-Cu at low tempera-
tures.²¹ From Eq. (3) it follows that if this term tures.²¹ From Eq. (3) it follows that if this term comes from the singular free energy F_s , then the coefficient of the linear term is proportional to $\xi^{2(1-d)}$ or in three dimensions to (D/J) .⁸

We now turn to the Ising case $n = 1$ in a random field. Both the interface model²² and many real-space renormalization-group calculations²³ give $T' = b^{1-d}T$ for $T \ll T_c^0$, consistent with $d_c^0=1$. As for $n \ge 2$ we assume that both M and Q are discontinuous for $d_c^0 < d < d_c$ such that $(h/T)' = b^d(h/T)$ and $(\Delta/T^2) = b^d(\Delta/T^2)$. Repeating the same steps as above we obtain

$$
f(T, \Delta, h) = \xi^{-d} \bar{f}(T\xi^{1-d}, h\xi) , \qquad (6)
$$

where $\xi = \Delta^{-\nu_{\Delta}}$ with $\nu_{\Delta} = 1/(d-2)$ for $d < 2$, and $\xi = e^{1/\Delta}$ at $d = 2$ as obtained from $\Delta' = b^{2-d}\Delta$. Given all the stated assumptions this yields $d_c = 2$.

The corresponding form of the susceptibility is

$$
\chi = \xi \ \overline{\chi} \left(T \xi^{1-d}, h \xi \right) \tag{7}
$$

with $\bar{\chi}(0, 0)$ expected to be finite and nonzero.

The result $\Delta' = b^{2-d}\Delta$ can be rigorously proven for $d < 1$. In this case there is no long-range order for any $T > 0$ and we may assume that the susceptibility is analytic in Δ . Writing

$$
T\chi = b^d\chi (b^{1-d}T, b^{\wedge \Delta})
$$

we find that

$$
\frac{\partial (Tx)}{\partial (\Delta/T^2)}|_{\Delta=0} \propto b^{\lambda_{\Delta}+3d-2}
$$

On the other hand, one can show rigorously²⁴ that

$$
\partial (T\chi)/\partial (\Delta/T^2)|_{\Delta=0} = - (T\chi)^2 \propto b^{2d} ,
$$

and thus $\lambda_{\Delta} = 2-d$. This proof probably breaks down for $d > 1$, when one is probably not allowed to expand in Δ for $\Delta \rightarrow 0$.

md in Δ for $\Delta \rightarrow 0$.
The result $d_c = 2$ is consistent with the domain arments.^{2,4} If one believes that $d_c = 3$, i.e., that guments.^{2,4} If one believes that $d_c = 3$, i.e., that $\lambda_{\Delta} = 3 - d$, then some of the above assumptions (e.g., that Q has a discontinuity, or that one may use T as the appropriate temperature scaling field) must be in*valid* and there must be no discontinuity in Q for $n = 1$, in contrast to $n > 1$. This question is left for future study. We exphasize, however, that the result (I) must still hold.

All the above results are expected to hold for $d_c^0 < d < d_c$ only for low temperatures, $T < T_c^0$. As T approaches T_c^0 , we expect a crossover to the scaling behavior associated with T_c , e.g.,

$$
\chi(t,\Delta) = |t|^{-\gamma} \overline{\chi}(\Delta |t|^{-\phi}) \quad , \tag{8}
$$

where $t = (T - T_c^0)/T_c^0$. In the random field case $\phi = \gamma^{24}$ and thus $\chi \sim \Delta^{-1}$, $\xi \sim \Delta^{-\nu/\gamma}$, etc. In the random anisotropy case²⁵ $\phi = 2\phi_a - d_v$ (=0.35 at d = 3),

- Permanent address: Tel Aviv University, Tel Aviv, Israel. ¹P. Lacour-Gayet and G. Toulouse, J. Phys. (Paris) 35, 425 (1974).
- ²Y. Imry and S.-k. Ma, Phys. Rev. Lett. 35, 1399 (1975).
- G. Grinstein, Phys. Rev. Lett. 37, 944 (1976); A. Aharo ny, Y. Imry, and S.-k. Ma, *ibid.* 37, 1367 (1976); A. P. Young, J. Phys. C 10, L257 (1977); G. Parisi and N. Sourlas, Phys. Rev. Lett. 43, 744 (1979).
- ⁴G. Grinstein and S.-k. Ma, Phys. Rev. Lett. 49, 685 (1982);J. Villain, J. Phys. (Paris) Lett. 43, L551 (1982).
- 5E. Pytte, Y. Imry, and D. Mukamel, Phys. Rev. Lett. 46, 1173 (1981);D. Mukamel and E. Pytte, Phys. Rev. B 25, 4779 (1982); K. Binder, Y. Imry, and E. Pytte, *ibid.* 24, 6736 (1981); H. S. Kogon and D. J. Wallace, J. Phys. A 14, L527 (1981).
- ⁶R. A. Pelcovits, E. Pytte, and J. Rudnick, Phys. Rev. Lett. 40, 476 (1978).
- ⁷A. Aharony, J. Phys. C 14, L841 (1981).
- 8A. Aharony, Solid State Commun. 28, 667 (1978).
- ⁹A. Aharony and E. Pytte, Phys. Rev. Lett. 45, 1583 (1980).
- ¹⁰S. Fishman and A. Aharony, J. Phys. C 12 , L729 (1979).
- ¹¹H. Yoshizawa, R. A. Cowley, G. Shirane, R. J. Birgeneau, H. J. Guggenheim, and H. Ikeda, Phys. Rev. Lett. 48, 438 (1982).
- ¹²B. Nienhuis and M. Nauenberg, Phys. Rev. Lett. 35, 477 (1975); M. E. Fisher and A. N. Berker, Phys. Rev. B 26,

where ϕ_a is the spin anisotropy crossover exponent. The crossover from $\xi \sim \Delta^{-\nu/\phi}$ near T_c^0 to $\xi \sim \Delta^{-\nu} \Delta$ for $T \ll T_c^0$ may complicate the analysis of the experiments.

ACKNOWLEDGMENTS

We enjoyed stimulating discussions with D. Mukamel, G. Grinstein, A. D. Bruce, A. N. Berker, M. E. Fisher, and Y. Imry. This work was supported in part by a grant from the U.S.-Israel Binational Science Foundation.

2507 (1982).

- ¹³Note that in this definition of the correlation function the long-range part $\langle S_i^{\mu} \rangle \langle S_j^{\mu} \rangle$ has not been subtracted off.
- ¹⁴Scaling of a structure factor near a first-order transition with the dth power of a characteristic length was recently suggested, in a dynamic context, by P. A. Rikvold and J. D. Gunton, Phys. Rev. Lett. 49, 286 (1982).
- ¹⁵For example, S. Edwards and \overline{P} . W. Anderson, J. Phys. F 5, 965 (1975).
- 16 For example, E. Brezin and J. Zinn-Justin, Phys. Rev. B 14, 3110 (1976).
- ^{17}R . A. Pelcovits, Phys. Rev. B 19 , 465 (1979).
- Young, Ref. 3.
- ¹⁹R. M. Hornreich and H. G. Schuster, Phys. Rev. B 26, 3929 (1982)[~]
- ²⁰S. von Molnar, B. Barbara, T. R. McGuire, and R. J. Gambino, J. Appl. Phys. 53, 1350 (1982); J. Appl. Phys. (in press); M. J. O'Shea, S. C. Cornelison, and D. J. Sellmyer, ibid. (in press).
- 'J. M. D. Coey, J. Phys. (Paris) Lett. 39, L327 (1978).
- $22D$. J. Wallace and R. K. P. Zia, Phys. Rev. Lett. 43 , 803 (1979).
- W. Klein, D. J. Wallace, and R. K. P. Zia, Phys. Rev. Lett. 37, 639 (1976).
- 24Y. Shapir and A. Aharony, J. Phys. C 14, L905 (1981).
- ²⁵A. Aharony, Phys. Rev. B 12 , 1038 (1975).