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%'e present a renormalization group for kinetic Ising models. Recursion relations for flip

rates are established through double series in powers of the inverse temperature and a self-

consistently determined time-scale ratio. A static transformation is obtained as a subset of re-

cursion relations in which only the inverse temperature appears as expansion parameter. Our

best second-order value for d =2 is z =2.2 (with an uncertainty of roughly 10'k), awhile for the

simple cubic lattice in d 3 we find z =1.98 if T, is adjusted to the known numerical value.

Glauber's kinetic Ising models, ' defined by flip
rates for Ising spins on lattice sites, enjoy an increas-
ing importance for computer simulations of critical
phenomena. Analytic treatments of their critical
behavior with the help of the real-space renormaliza-
tion group (RSRG) have also been attempted. How-
ever, relative to its impressive success in the deter-
mination of static critical exponents, ' the RSRG has
yielded results of rather limited reliability for the
dynamical exponent z.'

The RSRG transformation for kinetic Ising models
relates the flip rates for site spins (o;= +1) to flip
rates for "cell" spins (p,„=+1) which are associated
with cells of lattice sites. The corresponding recur-
sion relations must usually be constructed perturba-
tively, the intercell coupling serving as an expansion
parameter. Since intracell bonds are not distinguished
physically from intercell bonds, however, such pertur-
bation expansions are nonsystematic unless the intra-
cell interactions are treated perturbatively as well ~

The distinction between systematic high-tempera-
ture series4 and usual cumulant expansions2 is of lit-
tle importance for the static RSRG. In the dynamic
case, on the other hand, nonsystematic expansions in
terms of intercell bonds have been shown to yield, of
necessity, fewer recursion relations than are needed
to construct unique fixed-point flip rates; they there-
fore do not allow the calculation of the dynamical ex-
ponent z unless ad hoe assumptions are introduced. 5

%e shall now present a systematic implementation
of the dynamic RSRG. %e start by representing the
flip rates of spins by high-temperature series, neglect-
ing third- and higher-order terms. %e illustrate the
further procedure for a triangular lattice in d =2.
Groups of three lattice sites which are all nearest
neighbors to one another are taken as cells. The cells

form a triangular lattice, too; the ratio of the two lat-
tice constants being b =J3.

Intending to find the most general flip rates possi-
ble in second order we recall that the corresponding
static transformation4 involves pair interactions
between first (1N), second (2N), and third (3N)
neighbors; the dimensionless 1N bond strength E1 is
of first order in 1/T, while the 2N and 3N couplings,
E2 and E3, are of second order. %e must therefore
expect the order of any term in the flip rates to be
equal to (or larger than) the minimum number of 1N
bonds necessary to connect all spins involved. Ac-
cording to such a rule, not only single spin flips
(SSF) but also double (DSF) and triple (TSF) spin
flips can occur in second order.

The probability P (cr, r ) of finding a certain confi-
guration of site spins obeys a master equation of the
form P =LI'. The generator of infinitesimal time
translations L can most conveniently be expressed
with the help of the operator A& which antisymme-
trizes functions of the spin on the ith lattice site o.I as

&;f(;)= —,
' lf( ) f( ))- —

The rule described above then yields an ansatz for L
involving 17 parameters. Three of these are the
bond strengths E& already mentioned; their presence
manifests detailed balance and thus Le 0=0, with

1N 2N 3N
H- —Ei X+EC2 X+It'3 X a.;a~+const,

i

to within corrections of order 1/T'. Another param-
eter I sets the overall time scale for all flip processes;
the remaining 13 parameters describe the detailed
structure of TSF rates (xi, xi, xq), DSF rates
($0, Qi, . . .Q6), and SSF rates (Pi, P2, P3). The gen-
erator in question reads

1N 1N 2N 3N
r-'L, = —(1+3m,') gW, —y, xa,a, + ~, x+v, X+,Xa. . .—@, X +y, X +d, X a,~,~,

i o', Q tI ij ~( ~k Jj J
1N 2N 3N i

Qi X+ii2X+iQi X AiAJa';o'g —
Q4 X +$5 X +$6 X AiAJo'Jo'k —xi X+x2 X +xi X Ai+J+kjo'k,

~j 0 tj, .~j j~k j~k .~j j~k j~k
k 1)
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where barred variables are to be summed over.
The definition (2) implies, for t =0, the identity

RR =1 . For t ~, on the other hand, when P
and P go over into the static distributions e '"' and
e H' ', respectively, we conclude that (i) R (o, p, )
= I and (ii) R is the matrix defining the static RSRG.

Since R attaches an Ising spin p,„ to the vth cell in
which there are three site spins o-„~, 0-„2, and o-„3, we

may specify R as a direct product of matrices R „, one
for each cell. For the free energy of the site spins to
be equal to that of the cell spins we must impose
R„(p,„,o„~, a„2, o„3)=1. Symmetry considerations
then dictate

R„=
2 [I +p„@(o„t,,o„2, cry3)] (3)

where @ is an arbitrary linear combination of the
sum s„=(a.„t+o„q+o„3)424 and the product

(r gt coT 3/ J8 There ar.e thus two free parame-
ters in R, one of which can be fixed by the following
dynamical argument.

When going over from site spins to cell spins as in

(2), we change the unit of length by a factor b = J3.
At criticality, however, the lifetime of order-param-
eter fluctuations increases with their wavelength. For
the transformation (2) to be physically sensible the
cell spin p,„must be associated with the slowest one
among the four linearly independent odd-under-
spin-reversal functions we can form with ~„~, cr„2,
and 0-„3. Surely, among those four functions, we
must expect one of the two which are symmetric
under site.permutations within the cell to be slower
than the other two, the latter ones living on a shorter
length scale. In order to find the most long-lived
function of the form described we should, in princi-

ple, diagonalize the generator L. It is more in the
spirit of the RSRG, however, to base the distinction
between slow and fast on the part of L which
describes the dynamics within the vth cell L„. The
diagonalization of L„ is easily achieved and yields a

with the abbreviations vt =Kt + Pt/2 —PtK~,
F2=K 2+/ 2/2

—Q)Kt, u3=K3+Q3/2 —QtK)/2.
The rule used to find L requires all of the 17

parameters except I', Kt, Po, and Pt to be of at least
second order; the RSRG to be discussed now gives
rise to those other 13 parameters as well as to $0 in
second order, while Pt, together with Ktt appears in

first order; the time scale factor I must, of course,
be of zeroth order.

We now consider the conditional probability
P(a, t] o.'), i.e. , the matrix representative of the
operator e '. With it we associate a conditional pro-
bability P(y„t ~ y, ') for cell spins, with the help of
suitable rectangular matrices R (p„a) and R (cr, p),
as the product

P(p. , t]p, ') =R(p„o)P(o.,.t~a )R(cr, p, '), (2)

slowest left-hand eigenfunction of the expected form,

4= (s„+ft„)p, (4)

where Q and d are two right-hand eigenfunctions of
the intracell generator L„, P is the stationary eigen-
function, and $ pertains to the eigenvalue to which $
is the left-hand eigenfunction.

Since we want to establish the RSRG as a set of re-
cursion formulas for the 17 parameters given in (I),
we proceed from the conditions probability P (p„t I p ')
to its generator of infinitesimal time translations:

l(t, p„p, ') =P (p. , titl. )P (P, tip, ')

= (RLe'% ) [(Re"R ) ']-
This generator is a time-dependent matrix.

In expressing the generator l(t) in terms of the
original one L we intend to perform an adiabatic
elimination. The site-spin problem contains "slow"
variables (one per cell, @) and "fast" ones (six per
cell); the slow ones are associated with the cell spins
and the fast ones are to be eliminated. The time
dependence in l(t) is a fast one, characterized by the
six largest eigenvalues of the intracell dynamics.
After the decay of such fast transients the generator
becomes a time-independent matrix l(~, tt„p, ').
With the construction of l(~, p„p, ') the intended
adiabatic elimination of the fast variables is achieved.
By using the matrix representations

2
(I + p, „p,„'),

2 p, „p,„', —, p,„, and —(p„+p, „') for the operators 1„,
A „, A „p,„, and p,„, respectively, the matrix
l(~, p„p, ') may be replaced by an operator identical
in structure to L as given by (I). In order to com-
plete the definition of the dynamical RSRG we intro-
duce, as usual, a time dilation factor b'=3' and
write

L'= b' lim (RLe 'R)(Re 'R)

where the right-hand side is to be understood in the
operator sense just explained.

For the explicit evaluation of the transformation
(6), we must expand in powers of I/T. However, the

with arbitrary p and a uniquely determined coefficient
fwhich turns out to be of order I/T' Th.ere is thus
one free parameter left in R.

Due to the fact that the generator L has unique
stationary right- and left-hand eiyenfunctions (e "
and 1, respectively) the matrix R (a., p, ) need not be
specified. Any choice consistent with the restrictions
mentioned yields the same RSRG transformation. A
choice which simplifies all calculations is a product
R =g„R„with

R„((r,p, ) = jr(tr„(, o.„2, o.„3)/J8

+ pt v4( o'a 1 i trv2. o'v3) /p
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infinite temperature version of L, —I' X,A;, has in-

tracell pieces with eigenvalues 0, —I, —2I', and
—3I', the second and third of which are triply degen-
erate. A naive perturbation expansion of the right-
hand side of (6) in powers of L +I' X,A; is thus
bound to produce resonance divergencies. s Clearly,
such dcgeneracies must be lifted by diagonalizing a
larger part of L, to be called L' ', before we can start
expanding in L —L' '. In consistency with our
choice for the transformation matrix 8 (p, o ), we
take L'O' = XL„, i.e., diagonalize the full intraceII

dynamics and expand in powers of the intercell part
of L, keeping linear and quadratic terms.

Necessary as the partial diagonalization may be, it
still tends to yield slightly nonsystematic recursion re-
lations since it distinguishes intraccll from intcrcell
bonds. Therefore, in order to deviate as little as pos-
sible from a strict 1/T expansion, we break up aII

resulting expressions, with one exception, in their
high-temperature series, again dropping all third- and
higher-order terms. The exception mentioned con-
cerns terms which would produce resonance diver-
gencies; these terms have in their denominators
differences of eigenvalues of L„.

It would not even make much sense to keep the
terms with dangerous denominators in the form pro-
duced by the formal expansion in L —L'0. The adi-
abatic elimination inherent in (6) is sensible only
inasmuch as the eigenvalue pertaining to the slow
eigenfunction P of L„has small ratios with the six
nonzcro eigenvalues. %e therefore use that ratio as
a second expansion parameter, treating it, in counting
orders, iike 1/T.

Having laid out our strategy we may leave the de-
tailed calculation, which is lacking neither charm nor
algebraic complexity, to a separate paper and turn to
the results.

A most satisfactory feature of our RSRG is the
strict separation of statics and dynamics. The 17 re-
cursion relations include a closed subset for the bond
strengths E&.'

2 4

E] =—(—E]+E2+ E3+4E] ) — E]—P 2 2

8 3 3 72
2 4

E2 = (E3+E]2)— E]2 (7)

&i2
144

These equations contain no terms with dangerous
denominators. They could have been obtained by us-

ing (3) and (4), with f= O(l/T'), in the static
RSRG of Betts et al.4 Since the free parameter p ap-
pears in the static RSRG it can be fixed by adjusting
the critical temperature to the exact value. This pro-
cedure yields a correlation length exponent v =0.87,
a result 13/o off the exact one, v =1.

An alternative way of fixing p which does not in-

volve information alien to thc RSRG is the following.
Our transformation can bc written either as a set of
recursion relations for the 17 parameters E;, P;, ]f];,
and X&, or as a set in which the equations for the stat-
ic parameters K& arc replaced by those for auxiliary
quantities, v, —]I];/2. The two versions of our
transformation are, of course, equivalent to within
corrections of O(1/T3). They can, however, yield
different numerical results since the two sets of
parameters are related nonlinearly. Since the fixed-
point value of v~ turns out to react sensitively to such
changes of formulation it is natural to fix p by the re-
quirement that both formulations yield the same v~.
This choice of p gives a T, off the exact value by 2'/o

and a critical exponent v differing from the one
found by adjusting T, by less than 1'/o.

In order to determine the dynamical exponent z we
do not need all 17 recursion relations. In fact, there
is, beyond (7), a larger closed subset of seven rela-
tions involving the K;, the auxiliary quantities v;, and
the time-scale parameter I. The four remaining
equations contain the "slow" eigenvalue of L„,
I'y] = I'(I —2v] +3E] ), and one "fast" one,
I'y2= I (I +V]+3E]'), and read

b 'I"(1+3E]' ) =I'y] —
3

1"v]/y2,

I vl = I (—v] +v2 + v3) + I v]/y2—
I] 'I'» = —,&V3 ——,I'vj/y2,

b 'I"V3=—
9 I'V//y2

A pocket calculator can be used to locate the
fixed-point values E&' and v&' and then to determine,
from the first of Eqs. (g), the dynamical exponent.
The result is z =2.27 if p is chosen through the self-
consistcncy argument described above; if p if fixed so
as to give the right T, thc same value for z results, to
within less than 1'/o.

In extending our method to other lattices and to
three dimensions wc should expect the results to bc
less trustworthy the larger the two expansion parame-
ters are, I/T (in practice, v] turns out to be a con-
venient measure for 1/T) and the time-scale ratio for
slow and fast intracell variables. %e have done, with
this thought in mind, some explorations for the
planar square lattice and the simple cubic lattice in
d =3. %e are led to believe that two-step transfor-
mations are most promising.

For the planar square lattice we first group two
neighboring sites to a cell and, in a second step, two
such neighboring new sites to a new cell (so that the
original lattice may be thought of as covered with
squares). After restoring, by hand, the original sym-
metry we find, with p fixed self-consistently, thc
correct T, to within 6'/o and z =2.03. If wc choose p
by adjusting T, we obtain z =2.18 +10% as the mean
and the scatter of the values resulting form the two
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different sets of recursion relations mentioned.
The average of our three numbers for z in two

dimensions is z,„=2.16; we take it as our "best"
one. Their scatter may serve as a measure for the ac-
curacy of our second-order calculation.

For d =3, we first form square cells of four neigh-
boring sites in planes and then cubic cells by combin-
ing pairs of squares. After restoring the cubic sym-
metry we get z =2.24, v =0.69, and E~, -0.26 (the
best available numerical values are v =0.63 and

E~, =0.22), if p is fixed self-consistently. For a p

that adjusts T, our results are z =1.98 +20% (mean
and scatter defined as in the planar case) and v =0.74.
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