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Quantum fluctuations in quasi-one-dimensional superconductors
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A model for the lo~-temperature properties of quasi-one-dimensional superconductors, in-

cluding quantum effects, is investigated. Both long-range Coulomb effects and scattering by

nonmagnetic impurities enhance quantum effects. For strong quantum fluctuations the transi-

tion from a fluctuating to a long-range-ordered superconducting state obeys Bardeen-Cooper-

Schrieffer-like thermodynamic relations. Application to the tetramethyltetraselenafulvalene-X

[(TMTSF}2X]class of compounds is discussed. Our results also apply to other quasi-one-

dimensional systems.

Since the discovery of superconductivity in the
quasi-one-dimensional organic conductor tetramethyl-
tetraselenafulvalene phosphorous hexafluoride
[(TMTSF)2PF6] (Ref. I) considerable experimental
effort has been devoted to this and related com-
pounds. 2 Theoretically, there is by now a fairly com-
plete picture of the properties of a one-dimensional
(ID) interacting electron gas. ' In such a system ther-
mal and quantum fluctuations destroy long-range or-
der (I.RO), and only due to the finite interchain cou-
pling LRO can exist in a quasi-1D system. The tran-
sition temperature T„where (three-dimensional)
LRO sets in in a quasi-1D system, has been calculated
by several authors. 6 However, so far very little is
known on the behavior near T, and in the ordered
state. In the presence of some experimental results

(to be discussed below) it is of interest to have a
description of a quasi-1D superconductor in that tem-
perature region. It is the purpose of this paper to
give such a description.

Consider a square lattice (spacing d ) of N weakly
coupled 1D superconductors at temperatures well

below the mean-field transition temperature T, of an
individual chain. LRO is then destroyed by long-
wavelength, low-energy fluctuations of the phase (t)

of the superconducting order parameter, whereas its
amplitude b, o is essentially constant. At low tempera-
tures quantum effects are important, so we have to
include in our description the momentum density
conjugate to (ij, namely, the density of Cooper pairs. '
Coupling between chains is due to Josephson tunnel-
ing, so that the important phase fluctuations are
described by the Hamiltonian
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Here m and n number chains in the x and y direc-
tions, respectively, and (i), w„„are the phase and
its conjugate momentum density on chain (m, n ),
respectively. The coefficient p is related to the elec-
tronic compressibility, and for weak electron-electron
interactions one finds p = I/2ww~, where vF is the
Fermi velocity (for the effect of long-range Coulomb
interactions, see below). From microscopic theory

I

one has c = v F/2w (Refs. 6 and g) and )(J = tj /we F
(j=xy), '~ where 4tj is the transverse bandwidth in
a tight-binding picture. The amplitude of the order
parameter only enters via the condition T && 50,
necessary for the description of the system by Eq.
(I).

For A.„=A.„=0 the order-parameter propagator is
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where u =wc/p, y= 1/4n Jcp, s+= (iu+uq)/4nT,
B(x,y ) = I'(x) I'(y)/I'(x+y), and a ' is a short-
wavelength cutoff. At T=O one has X~co"y ", re-
flecting the absence of LRO. ' From the values for c
and p derived above one finds y = —,, in agreement

with microscopic results for weakly attractive short-
range electron-electron interaction (gi & 0 in the
language of Refs. 3). In that case it is known that
the low-energy excitations of a single chain are
indeed correctly described by a Hamiltonian of the
form (1}. On the other hand, for gi & 0 one finds

y & 1, and in the classical limit p ~ one has
0. In the following we consider y as given by

microscopic calculations. '
For finite interchain coupling we expect supercon-

ducting LRO to develop at low temperatures, charac-

terized by a finite expectation value (e'~). To
describe this situation we use a mean-field approxi-
mation for the interchain coupling, ' leading to a
1D quantum sine-Gordon model

H =N Jtdz + — —2lilIlcosItI+
n'2 c
2p 2 Bz 2(h.„+h.y)

(2)

The order parameter i[I=2(h. +Xr) (e'~) has to be
determined by minimizing the (free) energy. H can
be mapped onto the massive Thirring model. " Using
exact results for that model" we find that for y ~ 1

superconducting LRO exists, i.e., at T =0, (e'~)
takes a finite value:
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and the condensation energy is
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The coefficient b is exact for y =0, 1, and for inter-

In the classical case y = 0, Eq. (3a) gives (e'a) = n/4
instead of unity, due to the inequivalent cutoffs of
the sine-Gordon and Thirring models in that limit.
Therefore Eq. (3a} is only valid for y & h, /4. With
increasing y quantum fluctuations reduce (e'e) from
unity, and for weak coupling one has b (T) = do(e'a)
&( Lo. For y & 1 the quantum fluctuations com-
pletely destroy LRO.

Near T„ l [lisiismall, so that from Eq. (2) a
Ginzburg-Landau-type energy functional can be
derived by a perturbation expansion, assuming a

slowly varying Q:
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where C =0.577. Though the full temperature
dependence of ~k ( T) cannot be calculated from the
above, apart from the case y = 1, interpolating
between the results of Eqs. (3) ( T = 0) and (6)
(T = T, ) the curves shown in Fig. 1 for different
values of y can be obtained.

There is a jump in the specific heat at T,:
~kC = Va' /2bT, On the othe.r hand, the specific
heat of uncoupled chains is C„= Vn T/3d'u. For
y = 1 one then finds IkC/C„= 12/7](3) = 1.43, the
same as in BCS theory. With y decreasing, IkC/C„
increases first (Fig. 2), due to the sharper initial in-

crease of the ordering (Fig. 1); but below y = —, the

ratio decreases, due to the sharp increase of C„.
Combining Eqs. (4) and (6) we find E,
=A (y) T,C„(T,), with A (1)=0.75e = 0.24. This
numerical factor again agrees with BCS theory.

To check the consistency of our above calculation,
we look at the Ginzburg critical temperature region, '

defined by requiring that the first fluctuation correc-
tion to the specific heat should be comparable to hC,

mediate values has been obtained from renormaliza-
tion group arguments. " A functional like Eq. (5) can
also be derived from a mean-field treatment of inter-
chain coupling in microscopic models. The transition
into the long-range ordered state occurs for a = 0,
giving
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FIG. 1. Temperature dependence of the gap h(T)
-ho(e'~} for different values of y. X =0.25 for y-1 and

A. -0.1 othewise. The dashed line is the mean-field result.

l.e.,

strong quantum effects (y = 1) the thermodynamic
relations, including numerical factors, are those of
BCS theory. The nature of the transition is, howev-

er, quite different: it occurs from a state of strongly
developed short-range order on individual chains
(with a strong depression of the density of states at
the Fermi level, the "pseudogap"") to a long-range
ordered superconducting state. In spite of the strong
fluctuations on individual chains, the widths of the
transition, determined by the critical three-dimensional

fluctuations, is quite small.
The long-range Coulomb interactions between the

charge-density fluctuations can be included by an ad-

ditional term

H, - i X Jl dzdz'rr„(z) V( r —r ')e „(z')
I

in the Hamiltonian (1), where V( r ) = 4ez/r. For
X-0, X(q, re) remains diagonal in the chain indices,
and H, only changes y.

ht, = (3/8m) b T, /(a'c, c„c,)

in units of T, . From Eq. (5),
'2
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Thus, as long as y = 1, one has 4t' && ht„so that
the continuum approximation used in Eq. (5) is well
justified. It fails only for y = 0, where ht' = ht, .

It is worthwhile emphasizing that in the case of
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FIG. 2. Ratio hC/C„(T, ) and the function f(y),
parametrizing the critical width [Eq. (7)].

For y = 1 one has f(y) = 2(1 —y)' or hr, = 0.5Xz if
&„. The general form of f(y) is shown in Fig.

2, exhibiting a relatively narrow critical region even
for y-0 as long as A, =X~. On the other hand, the
crossover temperature above which the transverse
coherence length is smaller than d is given by

where ~,i is the longitudinal plasma frequency, e~~, eq

are the high-frequency dielectric constants parallel
and perpendicular to the chains, and A q is the area of
the Brillouin zone in the transverse directions. The
correction factor in Eq. (10) can be quite large, thus
decreasing the tendency to 3D ordering. Similar
results are found in microscopic calculations. '

The exponent y is also increased by scattering from
nonmagnetic impurities. This decreases the coefficient
c in Eq. (1),s and the effect is even stronger in a
quasi-1D system. ' Thus in the present model the
superconducting transition can be suppressed by non-
magnetic impurities, in marked contrast to the usual
BCS theory. Finally, X(q, re) and especially y are
strongly magnetic field dependent, '"and therefore a
straightforward use of Eq. (5) for critical-field calcu-
lations seems not reasonable.

Let us now try to apply our model to the organic
superconductors of the (TMTSF)iX class. First,
current microscopic models' imply y = 1. The band
structure is described by vp = 350 meV d„ t„=10
meV, rr = 0.3 meV (d, is the longitudinal lattice con-
stant), giving X = 3.10 'a'/d, '. For nonretarded
electron-electron interactions one has a = d„ leading
to an extremely small T,. However, if the retarded
electron-phonon interaction is included, ' a is in-
creased. Choosing a - Sd, we obtain T, = 2 K, the
order of magnitude of experimental T, 's. On the
other hand, tunneling, infrared, and heat conduc-
tivity ' measurements imply T, = 10—15 K, so that
our model should apply. We are then able to explain
some experimental findings: (i) The BCS-like ther-
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modynamics of the transition ' is expected in our
model for y = l. (ii) In the presence of a large x-y
anisotropy, instead of Eq. (7), one finds ht, = 0.1JX
for y = 1, explaining the small width of the transi-
tion. " (iii) The large sensitivity of the transition to
nonmagnetic disorder: alloying on the level of some
percent destroys the transition completely, whereas
the precursor regime is much less affected. "

In conclusion, our calculations show that: (i)
quantum fluctuations are important for the low-
temperature properties of quasi-1D superconductors
and especially may lead to BCS-like thermodynamics
of the transition to a 3D superconducting state; (ii)
long-range Coulomb interactions or scattering by im-

purities enhance quantum fluctuations; (iii) our
results allow one to explain the transition in the
(TMTSF)2X compounds as being one from a state of
1D fluctuations to a 3D superconducting state. A
model given by Eq. (1) also applies to weakly coupled
1D charge-density wave (CDW)'3 or magnetic sys-
tems. In the CDW case, however, the large phonon
effective mass usually leads to y (C 1, i.e., the clas-
sical limit.
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