
PHYSICAL REVIEW B VOLUME 27, NUMBER 9

Comments

1 MAY 1983

Comments are short papers l/t/hich comment on papers of other authors previously published in the Physical Review. Each Comment

articles isfollol/ved, and page proofs are sent to authors.

Self-similarity and fractal dimension of the devil's staircase

in the one-dimensional Ising model

R. Bruinsma
IBM T. J. Watson Research Center, Yorktoen Heights, ¹~ York 10598

P. Bak
H. C. Srsted Institute, DK-2100 Copenhagen 8, Denmark

(Received 20 December 1982)

The one-dimensional Ising model with long-range antiferromagnetic interaction in an applied

field is known to exhibit a complete devil s staircase in its T 0 phase diagram. In this Com-

ment we discuss its self-similar properties and determine the fractal dimension.

Recently, ' Bak and Bruinsma determined the T = 0
phase diagram of the one-dimensional Ising model
with long-range antiferromagnetic interaction in an

applied field H. This model has found applications in

intercalated compounds, ferroelectrics, dipolar cou-
pled antiferromagnets, and neutral-ionic transitions.
As a function of the applied field the model passes
through an infinity of commensurate phases with the
periodicity assuming all commensurable values. It
was the first time that such a structure, a devil' s
staircase, was proven to occur in a physical model
although it had been speculated before for the
Frenkel-Kontorova model. In this Comment we will

discuss the mathematical properties of the devil' s
staircase in view also of the recent attention in appli-

cations of the concept of "fractal dimension"4 in

physical models.
The Hamiltonian is

X - XHS~+ —, XJ(i —j)(SI+1)(SJ+I), (1)
I lj

with S&= +1. For H large and negative, all spins are
aligned and SI= 1. This phase becomes unstable at
H Hr where Hr 4 Xi —

&
J(i ). For larger H, the

magnetization (S ) passes through an infinity of
values: (S) -2q —I with q any rational number
between 0 and I (Fig. I). For H positive, S~ —l.
The stability interval for q -m/n is'

EH(q m/n) =2 XlpnJ(pn+ I)
pm] +pnJ(pn —I ) —2pnJ (pn ) ]

(2)

/tH(m/n) =y/n +', (4)

where y = 2n(a+1)f(a+ I ) and g(x) is the
Riemann f function. With n -2» we calculate the
stability intervals for k = 1, 2, 3. For k = 1, we cut out
4H(

~ ) from Hr(2). Hr(2) is the combined stabili-

If J(i ) is convex, then hH is positive and the phase
diagram is a devil's staircase. The most stable inter-
mediate phase is the antiferromagnet with (S) -0.
The importance of the other phases may be measured

by the "fractal dimension" DF of the collection of H
values where a phase transition occurs. More pre-

cisely, if in an experiment one would measure a
phase diagram such as Fig. 1 with a precision hH and
observe NqH phase transitions, then

DF- lim In(NaH)/In(Hr/4H)
hH ~0

For a very-short-range interaction, only the (S) -0
antiferromagnet occurs, and so DF =0. For infinite-
range interaction, e.g. , J (n ) = I/n, we would expect
DF = 1. Another important characteristic of a devil' s
staircase is its self-similarity illustrated in Fig. 1. If
we expand the scale of a small section LLH of the
phase diagram and reproduce the large-scale phase di-

agram exactly, then we would call it "self-similar, "
rather like scaling at a second-order phase transition.
We will now calculate DF and discuss the self-
similarity assuming an interaction I( [i [)- I/(i [ .

The devil's staircase maps all rationa1 numbers
onto the rea1 axis. We first discuss the subset of a11

integer multiples of I/2~. The stability interval hH
for a phase with q = m/n is, from Eq. (2),
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FIG. 1. Devil's staircase. The ratio of up spins over the total number of spins q [-—1(S)+1)]vs the applied field H for
2

an interaction J(i) =1/i . Inset: the area in the square magnified ten times.

ty interval of all phase with q integral multiple of
1/2". For k -2, we cut out hH ( , ) two times—from

the remaining part of Hr(2); and for k = 3, we cut
out hH( s ) four times from the remainder, etc.
Since

hH(2) hH(q)
Hp(2) ' [H (2) hH( ')]

aH(-,')
—,[Hr(2) —hH (—,) —25H (—,) ]

fractal dimension DF = I/(I + a). In general, with

every prime number p we can associate a devil's stair-
case with q assuming integral multiples of 1/p" and
fractal dimension DF = 1/(1+ u). Each of these sub-
sets is self-similar. However, since each requires a
different scaling factor, their combination is not. To
find the fractal dimension of the complete devil' s
staircase, we argue as follows: The number of ration-
al numbers with denominator less than M is propor-
tional to M'. The precision scale needed to observe
steps with q =N/M is M'+ from Eq. (4). Thus the
fractal dimension is from Eq. (3):

= I —(—,)i (5)
Dq= lnM'/lnM'+ = 2/(1+ u) (7)

we always are cutting out the same fraction of the
remaining part of Hz (2) and the construction is
self-similar. It is, in fact, a variety of Cantor's devil' s
staircase4 and

DF = In2/In[bH( —,)/ittH( 4 )]= I/(I +a)

from Eq. (3). Next we turn to integral multiples of
I/3s. This is again a self-similar construction with

A numerical check on Eq. (3) using Eq. (2) reveals
that DF weakly depends on EH with a mean value in

good agreement with Eq. (7). This was expected
since the devil's staircase is not strictly self-similar.

In conclusion, the devil's staircase of the long-
range antiferromagnetic Ising model in a uniform
field is not self-similar but consists of an infinite col-
lection of self-similar subsets. An "average" fractal
dimension was found which gives a measure of the
importance of the additional intermediate phases.
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