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Computer simulation of the low-frequency spin dynamics in Eu„Sr& S

W. Y. Ching
Department ofPhysics, University ofMissouri —Kansas City, Kansas City, Missouri 64J10

D. L. Huber
Department ofPhysics, University of wisconsin —Madison, Madison, wisconsin 53706

(Received 22 October 1982)

We report the results of a computer simulation of the low-frequency harmonic magnon modes
in Eu„Sri „S for x =0.8 and 0.4. No evidence of hydrodynamic spin-wave modes is found in

the spin-glass phase (x =0.4) for wave vectors q & ma/6 (where a is the lattice constant), in

contrast to the ferromagnetic phase (x =0.8) where ferromagnetic spin waves are present.
Comparisons are made with experimental results for the reentrant spin-glass Fe026Crp 74.

I. INTRODUCTION correlation function F(q, t) defined by

Magnon excitations in Heisenberg spin-glasses are
believed to make significant contributions to the
magnetic specific heat and dynamic spin susceptibility
in the )ow-temperature regime. ' Despite the impor-
tant role they play little is known about the nature of
the excitations at very low frequencies. Hydro-
dynamic models' as well as equation-of-motion calcu-
lations' have suggested that the low-frequency mag-
nons are weakly damped, propagating modes with a
linear relation between frequency and wave vector.
However, neither experiment nor a variety of com-
puter simulations have given any evidence for such
modes. Instead it was found that the structure in the
imaginary part of the dynamic susceptibility,
X"(q, t«), collapses to an apparent central peak in the
limit as the wave vector q approaches zero.

The computer simulations have involved numerical
studies of the dynamics of the Edwards-Anderson
model4 (a periodic array of spins with a Gaussian dis-
tribution of nearest-neighbor interactions) and the di-

lute fcc antiferromagnet with nearest-neighbor in-
teractions. 5 In this paper we extend the numerical
studies to a realistic model of the dilute fcc magnet
Eu Sri „Swhich in the low-temperature regime
shows spin-glass behavior for 0.13 (x & 0.65 and
ferromagnetic ordering for x )0.65. Simulations of
the spin dynamics of this system have been reported
in several earlier publications. 7 I In Ref. 7 the densi-
ty of spin-wave modes was calculated along with the
corresponding specific heat while in Ref. 8 X"(q, «i)
was obtained from a continued fraction expansion.
However as discussed in Ref. 4 due to finite "instru-
mental resolution" it is difficult to distinguish
between a central peak and a very-low-frequency pro-
pagating mode. It was found that this problem could
be largely circumvented by considering the sine
transform of X"(q, ru) which is proportional to the

F(q, t)- (i/rr) g([S (qt),S,( q—0),]), (I)

where S (q, t) (a =x,y, z ) denotes the spatial Fourier
transform of the local spin operator:

N

S (q, t) = S t(t)e
j»

r j being the position of the jth spin. Were the sus-
ceptibility to be dominated by the contribution from a
single, weakly damped propagating mode, F(q, t)
~ould vary as

sin[«&(q) t] exp[ —X-t]

where A. ~ is a measure of the width of the corre-

sponding peak in t« 'X"(q, «&).

In Sec. II we display results for F (q, t), x = 0.8
and 0.4, for a variety of wave vectors. In the spin-
glass phase (x = 0.4) we find no evidence of weakly

damped hydrodynamic spin-wave modes. Rather, it
appears that the modes become overdamped as

q 0. These results are in contrast to the behavior
in the ferromagnetic regime, x =0.8, where there are
hydrodynamic spin waves.

II. RESULTS

In this section we display our results for F(q, t)
for various values of q and x. The calculations were
carried out for a dilute fcc (magnetic) lattice using
experimentally determined values for the nearest-
and next-nearest —neighbor exchange interactions
which appear as parameters in the Heisenberg Hamil-
tonian
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JNN=0. 221 K,
JNNN —0.100 K .

(4)

(5)

Since the procedures followed were identical to those
outlined in our analysis of the Edwards-Anderson
model we will not discuss them in any detail. All cal-

culations were carried out on arrays of 4 x 12 6912
sites with a fraction x of them occupied at random by
Eu2+ (S =

2 ) ions. We assumed periodic boundary

conditions so that the range of wave vectors was lim-

ited to (2n/12) (nt, n2, n3) (nt integers). Thus the
smallest wave vector corresponded to (e/6) (1,0,0)
in units of the reciprocal of the lattice constant
tt -5.97 A.

FIG. l. (i/m) X i[Sa(q, t),S~(—q, 0)]) (a xyz)
vs t for x 0.80. Time is measured in units of E/K (7.64
& 10 s). Results from a single configuration of an array

of 4 & 12 sites occupied by a fraction x of Eu ions. (a) q
(~/6)(2, 0, 0); (b) q=(m/6)(2, 2, 0); (c) q (w/6)(2, 2, 2).

FIG. 3. Same as Fig. 1 except x-0.4. (a) q (m/6)

(2, 0, 0); (b) q (m/6) (2, 2, 0). Note the contraction of the
time scale relative to Figs. 1 and 2.

fo)q =Dq (6)

with D -18 + 2 K A'. This value is to be compared
with the result for x = I (EuS) D = 30 K A'. The

We calculated F(q, t) for wave vectors q (e/6)
(n, 0, 0) (n/6) (n, n, 0), and (n/6) (n, n, n) with

n 1, 2 and x =0.8 and 0.4. The results are shown
in Figs. 1—4 where the correlation functions are plot-
ted against time measured in units of g/K (g/K
-7.64 x 10 "s). Particularly noticeable is the quali-
tative change in the behavior between x = 0.8 and
x = 0.4. The well-defined oscillations characteristic of
the ferromagnetic phase become overdamped in the
spin-glass regime. Calculations of the dynamic struc-
ture factor for x = 0.8 indicate that the oscillations
are associated with a spin-wave mode having a qua-
dratic dispersion relation
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FIG. 2. Same as Fig. 1. (a) q (n/6)(1, 0, 0); (b)
q (m/6)(1, 1, 0); (c) q- (m/6)(1, 1, 1).

FIG. 4. Same as Fig. 1 except x = 0.4. (a) q = (m/6)
(1,0, 0); (b) q-(~/6)(1, 1, 0); (c) q-(m/6)(1, 1, 1). Note
the contraction of the time scale relative to Figs. 1 and 2.
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behavior displayed in Figs. 1—4 is analogous to that
found in inelastic neutron scattering studies of the
reentrant spin-glass Feo.26Cr074 where there are spin
waves in the ferromagnetic phase which become
overdamped as the temperature is lowered to the
point where the system becomes a spin-glass. '

III. DISCUSSION

The low-frequency harmonic excitations in the
spin-glass phase of Eu„Sri S resemble those in the
other spin-glass systems which we have studied in
comparable detail. As in the Edwards-Anderson
model and the dilute fcc antiferromagnet the modes
are overdamped at small q. We find no evidence for
weakly damped spin-wave modes down to wave vec-
tors

q = (rr/6) (8.8 & 10 2A ')

Two points must be kept in mind. First, the ab-
sence of hydrodynamic spin-wave modes in the spin-
glass phase does not preclude the existence of high-q
oscillatory modes mirroring the short-range order in
the system. Second, it must be emphasized that

the term "damping" is being used in connection with
the zero-temperature dynamic susceptibility. Since we
are working within the harmonic approximation the
excitations have an infinite lifetime. The decay of
F(q, r) reflects the dephasing of the various modes
which contribute to the response at a particular wave
vector. In contrast, in a translationally invariant sys-
tem where q is a good quantum number only a single
mode contributes so that F(q, t) is an undamped
sine wave.

It is apparent that there continues to be a signifi-
cant gap in our knowledge of the magnon modes in
spin-glasses. While the computer simulations have
given quantitative information about the excitations
they do not lead to a detailed understanding compar-
able to that provided by analytic theories of magnons
in translationally invariant systems.
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