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An exact factorization of the partition function of the double-Gaussian model into Gaussian
and Ising components is exploited to derive an exact factorization of the block probability densi-
ty function. The block probability density function factors into a Gaussian, which describes the
phonons in the problem, and a block probability density function of a long-ranged Ising model.
This quantity is shown to be consistent with scaling assumptions near criticality. As long as the
correlation length and the block size are much larger than the phonon correlation length, the

scaling assumptions are satisfied.

The class of double models of structural phase
transitions! is defined by the potential energy

BUN=EBV(x,)+zf§(x,—xj)2 , )
J (ij)

where 8=1/kT, {xj] is the set of displacements of N
particles measured relative to the lattice sites of a d-
dimensional hypercubic lattice, and {(ij)} is the set
of all nearest-neighbor pairs on the lattice. The site
potential B8V has a double-well structure. The limit
where the well depth vanishes is called the displacive
limit. In the limit that the well depth diverges, the
model is equivalent to a nearest-neighbor Ising
model. I will be discussing the double-Gaussian
model? which is defined by
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The partition function for this model factorizes?-> ex-
actly into the partition function for the Gaussian
model* and the partition function for an Ising model
with long-range interactions.® This factorization has
been exploited to derive bounds on the critical line
T., and to locate the region where the Ising to Gauss-
ian crossover occurs.>

One quantity which is useful for describing the or-
dering process in the double-well models is block
probability density function (PDF). It is defined
by6,7

P(s) =<8 [S - Ef(r,)xj]> . 3
J

The angular brackets denote a thermal average over a
canonical ensemble, & is Dirac’s & function, {r;} is the
set of all lattice sites, and f(r) is a normalized non-
negative function which is sizable on roughly L?Ilat-
tice sites in a region of linear dimension L. P;(s)ds
is the probability that 3, f(r,)x; has a value between
sand s +ds. P, describes the character of configura-
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tions on the lattice when viewed with a linear resolu-
tion of order L. The Fourier transform of P, is
called the block characteristic function and is given

by
> . @

Sr(y) =<=xp
For L sufficiently large so that P, embraces many

lattice sites, scaling theories®’ indicate that the func-
tions P; and S; assume universal limiting forms.’
For temperatures T > T,, independent of the well
depth of the system, the distribution of the block-
spin variables tend to a Gaussian form as L — oo.
For L much greater than the correlation length, £, S;
takes the form’

iy jzf(rj)x_,

—kgTX7)y?
SL(y) = ], 5
L (y exp[ >4 (%)
where X7 is the isothermal susceptibility:
ksTXr=N7'3 (xx;) . 6

@)

The reason for this is that regions of volume L con-
tain roughly (L/£)9regions of independently fluc-
tuating variables, and by the mean value theorem the
probability density is Gaussian.

For T very close to T, scaling arguments®’ imply
that S; tends to a universal form for L >> R and
&€ >> R where R is the largest noncritical length in
the problem:

S.(y)=S(aL By L/E) . )

S is a universal function for the double-well models
and depends only on the dimensionality. The vari-
able o is a nonuniversal number which describes the
scale of variation in the order parameter (x;). The
variables B8 and v are, respectively, the exponents
which describe the power-law singularities of the or-
der parameter and the correlation length as 7 —T..
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The shapes of S have been determined for d =2, 3 by
Bruce et al.’ and by Binder.” In d =2 the block PDF
is doubly peaked but is singly peaked for d = 3.

In this paper I calculate certain features of the
block PDF for the double-Gaussian model by exploit-
ing the partition function factorizability. By using the
Fourier-transform variables

=N 3%y, ®)
J

S, (y)=—— lemg Zexpl——-w 2y, Z[f(rj)f(rk)G(r,—-rk)]’exp
7K

where {u} is a set of Ising spin variables, Z§" is the
partition function for the associated Ising model, Ky
is the (long-ranged) Ising interaction energy, and

(1
d— 2 cos(g,) l

n=1

G(r)=N"'3,
711 +2Kw?

is the lattice Green’s function. The sum on ¢ is over
the first Brillouin zone, and g, refers to the nth
Cartesian coordinate of ¢. S; can then be evaluated
as

S.(y) =exp

2,2
-2 56070
J

Ising
><<exp > , 12)
where

) =3rrpG(r—r) 13)
J

v 31 (r)u,
J

is the convolution of f with the lattice Green’s func-
tion and the angular brackets with superscripts *‘Is-
ing”’ is a thermal average over the Ising variables.
The function £ is normalized, non-negative, and de-
fines a different block size L on the Ising variables.
The result of this analysis is that the block charac-
teristic function for the double-Gaussian model is
(for all dimensions) exactly the product of a Gaussian
(coming from the phonons in the problem) and a
block characteristic function for the associated Ising
model, which describes the nonlinear ordering
features in the Hamiltonian. The Green’s function
G(r) is exponentially decaying for large r and has a
range of R = (Kw?)!2, where R is the range of pho-
non correlations.?3
_If L << R then the Ising-model block size is
L=R:

SA"8(yy), for L << R
(14)

Sy (y) =exp R

S, (y) can be written

SL(y) =<=xpliy Efq‘2¢]> : ©)
q

where f, is the Fourier transform of f(r). The as-
terisk denotes complex conjugation. Now, by using
the partition function factorization technique
described in detail in Ref. 3, I arrive at the result

iyv 3, %[f(rj)G(r/ — 1) i+ K
J

If L>>Rthen L =<L:

2 .
S.(y) =exp|- If’d Sj"8(yy), for L >>R . (15)

Now it can be shown that the block characteristic
function is consistent with the scaling assumptions of
Bruce et al.b near criticality and in the high-tempera-
ture (L >> ¢) limit.

For L >> ¢, assuming the validity of Eq. (5), I ar-
rive directly at the result

kBTxT —W2'+'](BTX%§Mg , (16)

which is exactly the result which can be obtained
directly from the partition function.

Near criticality, for L >> R, Eq. (15) gives [as-
suming the validity of the scaling form (7)]

w2 y2

s 2L

chGL'B/")’.%l ~exp|—

For this to be valid, oS and vo'*™ must be equal
and the Gaussian prefactor must be slowly varying
with respect to the variation of S. The variance of
the Gaussian is clearly L9 w?, whereas the variance
of the other factor is’
Ld

vkgTX,
where

ksTxe =L 3, 3, {mjme)

jerdkerd

is the susceptibility of a block of size L on the Ising
lattice. Therefore scaling will be valid as long as

kgTx, >>1 . (18)

This is trivially true if € >> L >> R. For the case
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L >> ¢, inequality (18) is identical to the criterion

£>> X, 19)

where v and y are, respectively, the exponents of the
power-law divergence of ¢ and Xr as T, is approached
from above, and £, and X, are the amplitudes of
those divergences. For large R, one would expect
that X+ does not scale with R because it is a measure
of the coupling of the spins to an external field. On
the other hand, £, is a measure of lengths on the lat-
tice, and therefore one would expect that £, =R as
R increases. Therefore scaling is valid if both

¢ >> Rand L >> R. This is, of course, what one
would have expected from the start. The phonon
correlation range R is the longest noncritical length in
the double-well models. Near the displacive limit on

the critical line the phonon correlation range is very
long, diverging in the displacive limit.> Nonlinear or-
dering effects begin to predominate only when the
correlation length is large compared to the phonon
correlation length.
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