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Within the framework of an effective-field theory we discuss the phase diagram

(ferromagnetic-phase stability limit) and magnetization of a quenched bond-mixed spin- —,

Ising model in an anisotropic simple cubic lattice for both competing and noncompeting in-

teractions. Although analytically simple, the present formalism is superior to the standard

mean-field approximation regarding at least two important features, namely, it is capable of
providing (i) vanishing critical temperatures for one-dimensional systems, and (ii) expected

nonuniform convergences in the highly diluted and highly anisotropic limits. The generality

of the model under consideration permits the exhibition of a certain amount of physically

interesting crossovers (dimensionality changes, dilute-nondilute behavior, or even mixed sit-

uations) at both the phase diagram and magnetization levels. Whenever comparison is pos-

sible a satisfactory qualitative (and to a certain extent quantitative) agreement is observed

with results available in the literature.

I. INTRODUCTION

During the last decade a considerable theoretical
and experimental effort has been dedicated to the
study of quenched random magnetic crystalline
systems. Two basic problems are usually dis-
cussed, namely, the site-random and the bond-ran-
dom ones; the former has been illustrated through
several substances, such as Mn&Zni &F2 (Ref. 1),
Rb2Mni &F4 (Refs. 2 and 3), Fe&Mgi &C12 (Ref. 4),
RbzCo&Mgi &F4 (Ref. 5), K2Mn~Fei &F4 (Ref. 6),
Fe~Coi ~C12.2H20 {Ref. 7), Fe~Coi ~C12 (Ref. 8),
Cdi &Mn&Te (Ref. 9), among others; although ex-
perimentally more complicated, a bond-random-like
problem has been exhibited at least in one case,
namely, the Co{S&Sei z)2 (Ref. 10), in which the Co
atoms interact essentially through superexchange via
the S or Se atoms (thus simulating coupling con-
stants J and J'). Most substances present isotropic
or anisotropic Heisenberg-type interactions; howev-
er, if a strong uniaxial spin anisotropy (due, for in-
stance, to the crystalline influence) is present, the Is-
ing model can be a convenient representation with
the further advantage of being theoretically more
tractable. Concerning random versions of this
model, several frameworks have been used such as
Monte Carlo, "' high-temperature expansions, ' '
variational method, ' perturbative methods'

(effective-medium, coherent-potential, random-
phase approximations), duality and/or replica trick
arguments, exact arguments, and renormal-
ization-group approaches ' among others (see
also Ref. 41}.

Recently Honmura and Kaneyoshi presented,
for the Ising model, a new type of effective-field
theory which, without introducing mathematical
complexities, substantially improves on the standard
mean-field approximation (MFA). This framework
(see Ref. 43 for a pedagogical version}, based in the
introduction of a differential operator into the exact
spin-correlation-function identity obtained by Cal-
len, provides in particular a vanishing critical tem-
perature for one-dimensional systems as well as non-
trivial nonuniform convergences in complex phase
diagrams; it is well known that the MFA fails in re-
covering this type of results. This procedure shares
with the MFA a great versatility and has already
been applied to several situations such as pure,
site-random, bond-random Ising bulk prob-
lems as well as surface ones.

All three Refs. 50—52 refer to the quenched
bond-mixed spin- —, isotropic Ising model (the
nearest-neighbor coupling constant associated with
each bond is assumed to take values J or J' with ar-
bitrary concentrations; a:J'/J); in Ref. 50 the-
vanishing-temperature square-lattice problem for
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a = —1 (competing interactions) is discussed; the ex-
tension to all temperatures and all values of a (i.e.,
noncompeting as well as competing interactions} is
performed in Ref. 51. Finally in Ref. 52 we present
a preliminary report concerning the finite-
temperature simple cubic lattice problem for non-
competing interactions (a & 0}.

In the present paper we follow along the lines of
the three preceding references and consider, for all
temperatures, the anisotropic simple cubic lattice
problem for noncompeting as well as competing in-
teractions. Two (mutually nonexclusive) main
sources of crystalline anisotropy may exist, namely,
anisotropic coupling constants or anisotropic bond
occupancy probabilities; we are herein particularly
concerned with the former (the latter will be the sub-

ject of a forthcoming paper). We calculate the spon-
taneous magnetization as a function of temperature
and bond concentration for a large class of cases and
specifically exhibit the most interesting situations (in

particular, those related to linear chain square
lattice=-"ubic lattice crossovers}. By imposing the
condition of vanishing magnetization, we obtain the
critical surfaces associated with the ferromagnetic-
phase stability limit (within the present theory the
ferroparamagnetic phase transitions are obtained to
be of the second-order one in agreement with com-
mon expectations; the discussion of eventual
ferromagnetic++spin-glass phase transitions at rela-
tively low temperatures are beyond the scope of the
present work). All the phase diagrams appearing in
Refs. 50—52 are herein recovered as particular cases.

In Sec. II we introduce the general model we are
interested in as well as the theoretical framework
within which we discuss it; in Sec. III we treat a
great amount of important particular cases; the
overall conclusions are presented in Sec. IV.

II. MODEL AND FORMALISM

a„—=J„'/J3 (r =1,2,3),

yq —=Jq/J3 (q =1,2),
(3)

where we can verify that 0&y& &y2&1, ai &yi,
az &y2, and a3 &1.

The starting point for the statistics of our Ising
spin system is the following Callen identity (see
also Ref. 55):

(x;)=(txnhpX J;;sr,.
j

(4)

where p—:1/ks T, ( ) indicates the canonical
thermal average for a given configuration of the

{J~& ), and j runs over the nearest neighbors of the
site i. Following Honmura and Kaneyoshi we in-
troduce the differential operator D =BIBx into rela-
tion (4) and obtain

&~;) = exp 'pDX J;,xx, jxxxbx ~, x
J

cosh DJ,jj

couples of sites of a simple cubic lattice; JJ is a ran-
dom variable associated with three different distri-
bution laws along the three crystalline directions
(denoted by 1, 2, and 3},namely,

P, (J,J ) =(1—p„)5(J~J—J„' }+p,5(J;J —J, )

(r =1,2,3), (2)

where we assume 0 &p„& 1 (Vr). 0&J, &J2 &J3 & 0
and J„' &J„(Vr). Note that by imposing these con-
ditions we are not physically restricting the model
(we recall in particular that in the simple cubic lat-
tice, all other choices of the signs of {J, ] correspond
to models which are isomorphic to the ferromagnet-
ic one we are considering here}.

Before going on let us introduce the following
convenient notation:

Let us consider a system whose Hamiltonian is
given by

+o& sinh(pDJJ)] tanhx
~ „ (5)

A = —g J;Jo;o~ (o;,o~=+1),
(, )

"''
where (ij ) runs over all the nearest-neighboring

I

6

(o;)= g (oJ) sinh(PJJD) +cosh(PJkD)

When applied to our model this relation may be,
through tedious but straightforward algebra, rewrit-
ten in the following compact form:

+ —,g g (ojokcr~) sinh(P'JJD) sinh(P'J;kD) sinh(PJ~D) g cosh(PJ; D)
1

' k~j l~j,k m+j, k, l

+ —,XX X X1

k+j l+j,k m+j, k, l n+j, k, l, m
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Xsinh(pJJD) sinh(plkD) sinh(pJ]D) sinh(pJ~ D) sinh(gl;„D)

X g cosh(PJ~D) tanhx
~ „

p+j, k, l, m, n

(6)

((cr; ))J=m =2Am +2Bm +2Cm

with

(7)

where the subscripts run from 1 to 6 in order to
refer to the six nearest-neighboring sites of the ith
one, and where we have used the property
f(D) tanhx ~„0——0 valid for any even function

f (D). Note that the exact equation (6) yields a set
of relations between the magnetization of the ith site
and associated multispin correlation functions once
the bond configuration IJJ j is completely specified.

The central scope of this work is to estimate,
from Eq. (6) and for arbitrary values of the tempera-
ture and the bond concentration, the spontaneous
magnetization of the system, and to extract from
this knowledge the critical frontier which separates
the ferrotnagnetic phase from any other (to be more
precise, we intend to determine the limit of stability
of the long-range ferromagnetic order}. It is clear
that, if we try to exactly treat all the spin-spin corre-
lations present in Eq. (6) and to properly perform
the configurational averages which are still to be
done, the problem becomes mathematically untract-
able (see also Ref. 55). We shall therefore proceed as
follows: We take on both sides of Eq. (6) the config-
urational average (denoted by ( . . )J), then com-
pletely decouple the multispin correlation functions
and use the fact that our model is a quenched one
and therefore the distribution laws associated with
different bonds are independent among them. It is
clear that within these approximations (where spin-
spin correlations are neglected}, the strict criticality
of the system is lost (in particular, the critical ex-
ponents are going to be the classical ones, and the
real dimensionality of the system is only partially
taken into account through the coordination number
z}; nevertheless, the present framework is, as already
mentioned, quite superior to the standard MFA:
this point has already been verified in several
models ' ' and, for the present one, will be exhibit-
ed further on. The magnetization satisfies

I

C =($]C]$2$3+$2c2$2$] +$2css]$2) tanhx
~ ~ O

2 2 2 2 2 2

where

s, = ( sinh(PJJD})q

= (1—p„)sinh(PJ,
' D) +p„sinh(PJ, D)

(10)

and

c,—= ( cosh(PJijD) )J

(r =1,2,3) (11)

The critical surface characterizing the
ferromagnetic-phase stability limit is determined by
m =0, hence

2A =1. (14)

We can verify in all physically meaningful cases
that B &0 and C&0 and that A & —, (A & —,} in the
ferromagnetic (nonferromagnetic} phase; these facts
are related to the second-order phase-transition
behavior of the magnetization we have observed
(several illustrations are presented further on). We
can also verify that the square lattice case
(J] ——J]——0) leads to C =0 and

A —($2c2c3 +$3c3c2 ) ta1111x
~ & 0

2 2

B =($2c2$2+$2c2$2) tallllx
~

0,2 2

(15)

and that the linear-chain case (J~ ——Ji ——Jq ——Jq =o)
leads to B =C =0 and

=(1 p„)c—osh(PJ,
' D) +p, cosh(PJ, D)

(r =1,2, 3), (12)

where we have explicitly used the distribution laws
(2). Equation (7) admits two solutions, namely,
m:—0 (nonferromagnetic phase) and a nontrivial one
(associated with the ferromagnetic phase) given by

—B —[B —2C(2A —1}]'~
2C

A =($]c]c2c2+$2c2c2c ] +$2c2c]c2) tanhx2 2 2 2 2 2

A —$3c3 tanhx
~ x 0 (17)

B=—[s]c]($2c3+$3c2)+$2c2($3c]+s]c3 )
2 2 2 2 2 2 2 2

+$3C3($]C2+$2C] }
2 2 2 2

+4$]$2$2c]c2c2] tanhx

This last situation deserves a few comments. By
replacing Eq. (17) into Eq. (14) we obtain

(1—p2) tanh2pJ2 +2p2(1 —p2) tanhp(J3+ J3 )

+p2 tanh2pJ2 ——1 . (18)
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We remark that (a) in the case J3 & 0 (we recall that
J3 &J3&0 by convention) the unique solution is

T, =0 and it exists for all values of p, and (b} in the
case J3 &0 the unique solution is (p, T, )=(1,0).
Both predictions of this theory are exact as it is well
known.

As anticipated this is a substantial improvement
on MFA, which can be herein recovered (see, for
example, Ref. 54) by introducing in Eq. (18)
tatthx~, which, if J3 &0, leads to

ks T, " =2[(1 P3 }J3—+P3J3],

and, if J3 &0, leads to

0 if p&p,TMFA (20}
2[—(1—p3) I

J3
I +p3J3] if p &p, ,

general and the magnetization is a function

rn (t pl p2 p3 tz i tz2 tr3 yl Y2}

where t =kz T/J3,' the stability limit we are interest-
ed in corresponds to an eight-dimensional hypersur-
face in a nine-dimensional parameter space. It is
therefore clear that we must restrict ourselves to the
(sequential) discussion of many particular cases. In
the present paper we will be concerned with the
model which is isotropic in the bond-occupancy
probabilities (i.e., p i ——p2

——p3 —=p). In a forthcoming
paper we shall present another set of important par-
ticular cases corresponding to general values of Ip, I.

2.0—
II

where p, =
I J3 I

/(
I
J3

I
+J3). All these results ex-

hibit the well-known failure of MFA-type theories
for one-dimensional short-range-forces systems.

The model introduced in Eqs. (1) and (2) is very
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FIG. l. Critical reduced temperature of the pure (p =1) ferromagnet in anisotropic simple cubic lattice (z =6). (a)
t, =k~T, /J3 as a function of y] —=J~/J3 and y2—=J~/J3. (b) T, /T, (z =4) along convenient lines, namely, y] ——0 and

y2 K [0,1] [exhibition of the crossover between d =1(z =2) and d =2(z =4)], yq
——1 and yi 6 [0,1] [exhibition of the cross-

over between d =2(z =4) and d =3(z =6)], and finally yi ——y2E [0,1] [exhibition of the crossover between d =1(z =2)
and d =3(z =6)]; for square lattice the exact result (Ref. 56) tanhJ3/kz T, =exp( 2J, /kaT, ) (dashed —line) as well as the
MFA one (0) are indicated as well; for simple cubic lattice the series (~) (Ref. 57) and MFA (~ ) are also indicated. (c) We
have indicated (out of scale) in the (y],y2) space the physically interesting (and nonequivalent) situations, namely: I, asso-
ciated with y] ——yq ——0 (d =1); II, associated with y~ ——0 and 0&y2&&1 (crossover d =1~=2); III, associated with

yI ——0 and 0 & y2 & 1 (d =2 region; in particular, y2 ——1 corresponds to the pure d =2 isotropic model); IV, associated with

0&y& «y&«1 (sequence of crossovers d =1~=2~ =3); V, associated with 0&y]&&y2 &1 (crossover d =2~ =3);
VI, associated with 0 & y~ & y~ && 1 (crossover d =1~=3); VII, associated with 0 & y~ & y2 & 1 (d =3 region; in particu-
lar, yI ——y2 ——1 corresponds to the pure d =3 isotropic model).
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III. PARTICULAR CASES: RESULTS
AND DISCUSSION

Herein we intend to present and discuss the re-
sults (phase diagrams and magnetization) corre-
sponding to several interesting models (within the
restriction p ~

——pz ——pq =p as anticipated}.

A. Pure anisotropic models

These models correspond to the particular situa-
tion p =1, VJ&gzgq (i.e., Va&, az, as} or equivalent-

ly a& ——yi, az ——yz, and aq ——1'. The associated
phase diagram in the (r~, rz, t) space is presented in
Fig. 1.

The critical temperature associated with z=2
(which corresponds to a linear chain, i.e., d =1) is
obtained by i~posing yi ——y&

——0: It vanishes in
agreement with rigorous arguments [we recall that
the MFA leads to t, " (z=2}=2]. The critical
temperature associated with z =4 (which within the
present description corresponds to the square lattice,
i.e., d =2), is obtained by imposing r& ——0 and

yp ——1; it satisfies the equation

well known and given by

tanht, '=exp( 2r—z/t, ),
which leads to the result indicated in Eq. {21)
[which is therefore exact and responsible for the
good agreement between dashed and solid lines in—2/f,
Fig. 1(b}] as well as to rz-t, e ' in the limit

yz —+0. The discrepancy we observe between this
asymptotic behavior and the one appearing in Eq.
(22) is such that, as before and for the same reason,
the corresponding critical temperature is overes-
timated.

Along the line yi ——yz we obtain

2

y)
—i 3

(23}

and, in the limit r~ ~0 (hence t, ~0),
—4/Ey)-t e (24)

The value —, can be compared with 1, obtained for
both MFA and series (from Ref. 6).

Finally, along the line y&
——1 we obtain

4 2
tanh —+2 tanh —=2,

tc c

dT, (ri, 1)

T(0, 1) dr i
(25)

dT, {0,rp)
r, (0, 1) dy,

1

y~
—i 2

(21)

and, in the limit yz~0 (hence t, ~0),
—4/E

yz -2t, e (22)

The exact critical line associated with yi ——0 is

hence t, (z=4)=3.0898, which is to be compared
with the exact result t,'" '=2.2692. . . [MFA leads
to t, " (z =4)=4]. The present value for t, coin-
cides with those obtained in Refs. 42, 51, 58—60.
Finally, the simple cubic lattice (z =6; d =3) herein
corresponds to y& ——y&

——1; its critical point satisfies
(in agreement with Ref. 49)

6 4 2 16
tanh —+4 tanh —+5 tanh —=

tc t tc 3

which leads to t, (z =6)=5.0733 [to be compared
with t,"" =4.5112 (Ref. 57), and with

t, " (z =6)=6]. We remark in both z =4 and z =6
cases that the present framework tends to overesti-
mate (however, quite less than the MFA) the critical
temperatures: This fact comes from the negligence
of multispin correlations. We shall come back to
this point in Sec. III B3.

Let us now discuss T,(r„rz) in the neighbor-
hoods of the points z =2, 4, and 6 [see Figs. 1(a) and
1(b)]. Along the line r ~

=0 we obtain

and

dT, {r),1}

T,(1,1) dry y) —i 3
(26)

The value 0.7968 can be compared with
1

(MFA), 1 (Bethe-Peierls approximation ) and the
much larger value (=4) given by series calcula-
tions. ' Finally, the value —, can be compared
with the MFA value (also —, ), the Bethe-Peierls ap-
proximation one (=0.203 from Ref. 62), and the
series ones (=0.345 from Ref. 61 and =0.366 from
Ref. 62}.

Concerning the distinct physical regions schemat-
ically indicated in Fig. 1(c), let us clarify a few
points. Region I is a single point (and corresponds
to the strictly one-dimensional model}; regions II
(quasi-one-dimensional models) and III (fully-two-
dimensional models) are linear; regions IV, V, and
VI are very small in surface (IV and VI correspond
to quasi-one-dimensionality and V to quasi-two-
dimensionality); and the (big} region VII corre-
sponds to full three dimensionality. In region II (re-
gion VI) the general behavior is typically one dimen-
sional, except for quite low temperatures where the
two dimensionality (three dimensionality) is expect-
ed to emerge; in region III (region VII) no such
d =1~=2 (d =1~=3) crossover exists.
Analogously in region V the behavior is typically
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1.0—

0.8—

0.6—

0.4—

0.2—

E K[ KL

1 if T=O, VpE[0, 1]
0 otherwise,

and, in the case a & 0, by

1 if T=O and p =1
0 otherwise .

All these results are well known to be exact.

2. Square lattice (z=4)

(27)

(28)

I

0.5 TiT, (Za6]

FIG. 2. Examples of the thermal behavior of the re-

duced magnetization for the pure (p =1) ferromagnet in

anisotropic simple cubic lattice. The roman numbers are
associated with the regions appearing in Fig. 1(c), and
herein, respectively, correspond to [y&,y2}= [(0,0.05);
(0.1,0.1); (0,1); (0.4, 1); (1,1) J for the curves II, VI, III,
VII', and VII.

two dimensional except for quite low temperatures
where the three dimensionality will emerge; no such
d =2~ =3 crossover exists in region VII. Region
IV is particularly interesting: One-dimensional
behavior is expected for intermediate temperatures
(comparable with J3), two-dimensional behavior is
expected for quite low temperatures, whereas three
dimensionality will emerge at much lower tempera-
tures. Later on these facts will be specifically illus-
trated, in particular by considering diluted systems.

In Fig. 2 we present several examples of the ther-
mal behavior of the magnetization. We can follow
therein the progression from the z =2 case (where
m=1 for T=O, and rn=Ootherwise) to thez=6
case (isotropic simple cubic lattice pure ferromagnet)
passing through the z =4 case (isotropic square lat-
tice pure ferromagnet). The z =6 case has also been
discussed in Ref. 49.

Herein we consider J
&
——J~

——0 and J2 ——J3
—:J0 &J2 ——J3=J0(a —=J0/J0). The associated
phase diagram is presented in Ref. 51. In
the present section we discuss the magnetization
as a function of temperature and Jp-bond concen-
tration. The magnetization is given by
m =[(1 2A)/2B—]'~.

The condition (14) determines the critical surface
in the (p, t,a) space (see Fig. 3). The critical line as-
sociated with the bond-diluted model (a=O) is
given by

4(1—p) p tanh —+6(1—p) p tanh-
tc tc

+3(1—p)p tanh —+tanh—3 1

tc c

+ 2p tanh —+2tanh —=1, (29)4 4 2

tc tc

which provides a bond-percolation critical probabili-

ty p, —:p, (a =0)=0.4284. This value coincides with
that obtained in Ref. 55 and is to be compared with

a at

B. Random-bond isotropic models

This family of random-bond models correspond
to the particular situation where all axes are
equivalent in what concerns the coupling constants.

Ct'
II

fV

0.5
~V

1. Linear chain (z=2)

Herein we consider J~ ——J2 ——J~
——J2 ——0 and

J3 &J3 (a —=J3 /J3 & 1). The associated phase dia-
gram has already been discussed in Sec. II: We re-
call that a&0 implies T, =O, Vp&[0, 1], and that
a &0 implies that the critical frontier is reduced to
the single point (p, T, )=(1,0). The magnetization is
given, in the case a )0, by

p
0.2 0.4 0.6 0.8 P

FIG. 3. Examples of critical lines (ferromagnetic-phase
stability limit) associated with the quenched random-bond
Ising model in square lattice (z =4) for both competing
(a=Jp/Jp &0) and noncompeting (a &0) cases.
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mathematical artifact of the present approximation.
Within this context, a = ——,, —1,—3 constitute ex-

ceptional points. Let us conclude our discussion of
the square lattice phase diagram by saying that, ex-

cepting for the low-temperature region associated
with almost all negative values of o, , the present pre-
diction (Fig. 3) can be given a reasonable degree of
qualitative (and to a certain extent quantitative} con-
fidence. In what concerns our results for the mag-
netization m, we indicate in Fig. 4 the evolution of
m(t, p) as a function of a; in Figs. 5 and 6 we

present illustrative sections of the same surface.

3. Simple cubic lattice (z=6)

Herein we consider J
&

——J2 ——J3 =J0(J& ——J2 ——J3 =J0 (a—:J0/J0). The associated
phase diagram for a&0 (noncompeting case) is
presented in Ref. 52. In the present section we ex-
tend this diagram to a & 0 (competing case) and dis-
cuss the magnetization as function of temperature
and J0-bond concentration as well as the phase dia-

gram in the (p, t,a } space (see Fig. 7}. The critical
line associated with the bond-diluted model (a =0)
is given by

p tanh —+4 tanh —+5 tanh —+ 10p (1—p) tanh —+3 tanh —+2 tanh—6 4 2 5 5 3 1

t

+40p (1—p) tanh —+2tanh —+80p (1—p) tanh —+tanh—4 p 4 2 3 3 3 1

t t

+80p (1—p} tanh —+32p(1 —p}'tanh —= . (32}j j 3

The equation leads, in the limit t~0, to the
bond-percolation critical probability p, —=p, (a=0)
=0.2929, which is to be compared with

, " =0.247, p, = i (Ref. 70} (CFA is th
coherent-potential approximation}, and p,

" =0.
We verify that, contrarily to what happens for the
square lattice, p, (a=0} is higher than p,

"""(as-
sumed almost exact}, and therefore the present
framework now understabilizes the ferromagnetic
phase. This is the first time in this work that we are
facing a counterexample of the general tendency (of
the present approximation) to overestimate the sta-
bility of the ferromagnetic phase. What happens is
that the negligence of multispin correlations intro-
duces a tendency towards ferromagnetic overstabili-

CD

0.5
I—

I

zation which is, however, strongly modulated by
topological considerations, and can euen be reuersed.

The situation is illustrated in Fig. 8, where several
z =4 and z =6 cases are presented. By remembering
that a Bethe tree corresponds to an infinite effective
lattice dimensionality we remark that (i} the present
approximation has an overall tendency to overesti-
mate (underestimate) the ferromagnetic stability for
sufficiently low (high) dimensionalities; (ii} the
overestimation tendency increases with temperature
(or equivalently the underestimation tendency de-

creases with temperature}, and consequently eventu-

al "crossings" (see three examples in Fig. 8) are a
priori expected to occur in such a way that
T, (z) p T,'*'" and p, (z}&p,'""', (iii} excepting the
MFA, the dispersion of the results associated with a
given coordination number z tends to be smaller at
low temperatures (i.e., the incompleteness of z as
topological information tends to be less crude at low
temperatures}. It is possible to partially overcome
these types of difficulties by incorporating ' into
the present formalism multispin correlation effects
(this is, however, out of the scope of this work).
Equation (32}also yields

0
0 0.5 p and

1 c p
1 200

dT( )

T,(1) GIp
(33)

FIG. 7. Examples of critical lines (ferromagnetic-
phase-stability limit) associated with the quenched
random-bond Ising model in simple cubic lattice (z =6)
for both competing (a —=Jo /Jo & 0) and noncompeting
(a )0) cases.

dp p =pc
1.596 . (34)

The first of these results is to be compared with
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(0, I ) (O.I; I ) (O.I;O. I) (0;0.05)

0.5—
', ~I-.OI

-ll
p=0.4 . p&0.8:

0
0 0.5

0 0.5 1 p

FIG. 11. Examples of critical lines associated with the
quenched bond-diluted anisotropic model; the pairs of
numbers represent (yi', y2), where y; =J;/J3 (i =1,2). Al-
though not graphically visible in all the cases, all the criti-
cal lines satisfy (dT/dp)~ p ( ) 00 The (1;1)and (0.4;1)
lines correspond to region VII of Fig. 1(c) and are clearly
d =3; the (0.1;1) line can be considered as belonging to re-
gion V of the same figure and exhibits the d =2~ =3
crossover; the (0;1) and (0;0.5) lines correspond to region
III and are clearly d =2; the (0;0.05) line can be con-
sidered as belonging to region II and exhibits the
d =1~=2 crossover; finally the (0.1;0.1) line can be
considered as belonging to region VI and exhibits the
d =1~=3 crossover. Within the present scale it is im-
possible to satisfactorily represent the region IV (let us say
yi ——0.005 and y~

——D. 1) in order to exhibit the
d =1~=2~ =3 crossover; however, it corresponds to
a line whose critical temperature practically vanishes at
p =p, (z=4) but nevertheless exhibits a thin tail which
strictly vanishes only at p =p, (z =6).

FIG. 13. Fixed-concentration sections of the family of
surfaces represented in Fig. 12 for various values of
(y&;y2).

tion obtained in the z =4 case, namely, that large
classes of critical lines share (at T =0) single points.
As before we consider this result as mathematical
artifact of the present approximation. Let us con-
clude our discussion of the simple cubic lattice
phase diagram by saying that, excepting for the
low-temperature region associated with almost all
negative values of a, the present result {Fig. 7} can
be given a reasonable degree of qualitative (and to a
certain extent quantitative) confidence.

Our results for the z =6 magnetization rn(t, p}
evolve, as a function of a, similarly to the z =4 case
(see Fig. 4); in Figs. 9 and 10 we present illustrative
sections of the z =6 surfaces m {t,p) for different
values of a.

7I

7I

7=0
(z=

&71,78& 1

71 OIO&7zs1

0»i "~'7i

7I =7z='
(z =6)

p, (z=6)

=(Z e4)

1

I

1-p

p {z=4) 1 p

1

TC p /'TC(Za6)

FIG. 12. Evolution of the magnetization m(t, p) as
function of (yi, y2), where y;=J;/J3 (i =1,2), for the
quenched bond-diluted anisotropic z =6 model. The
two vanishing-temperature curves are universal. The
d =1~=2 and d =2~ =3 crossovers are exhibited.

FIG. 14. Selected critical lines (out of scale) associated
with the quenched random-bond anisotropic model with
Jf'/Jf=a (i =1,2, 3) and 0&y& &y2&1 with y;—=Jf/J3
(i =1,2). The roman numerals refer to the regions de-
fined in Fig. 1(c). Notice the richness of crossovers
[in particular the IV line exhibits the d = 1~=2~ =3Mnondilute) crossover].
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m"

1&c &0

ed in Fig. 15 (out of scale) for the model 0&yt
& y2 «1.

1

1
I
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FIG. 15. Out of scale illustration of the influence of
a =—J /J; (i =1,2, 3) on the magnetization m(t, p) for the
quenched random-bond model in the anisotropic z=6
model. The present example refers to 0&@~ &y2&&1
[y;=J;/J3 (i =1,2)]. Notice, for 0&a «1, the
d =1~=3~(nondilute) crossover.

C. Bond-diluted anisotropic models

Herein we consider J t
——Jz ——J3 ——0 (hence

a 1
——a2 ——a3 ——0) and 0 &Jt &J2 &J3 (hence 0 & y~

&y2 &1). The magnetization is given by Eq. (13).
Equation (14) provides the phase diagram in the
(p, t, yt, yq) space. Selected critical lines are present-
ed in Fig. 11, where, in particular, we
can note the d =1~=2, d =1~=3, and
d =2~ =3 crossovers. The evolution of the mag-
netization m (t,p) as function of (y &, yz) is represent-
ed in Fig. 12, and illustrative fixed-concentration
sections of this family of surfaces are represented in
Fig. 13.

D. Random-bond anisotropic models

Herein we consider (quite briefly) our last particu-
lar case, namely, J

& /Ji ——J2/J2 ——J3 /J3 (hence
a ~

——a2 ——a3 =—a & 1) and 0 & J& &J2 &J3 p 0 (hence
0& y~ &y2 & 1). The most interesting situations ap-
pear for 0&a «1; however, the numerical and ap-
propriate graphical scales are such that, instead of
presenting quantitative results, we shall restrict our-
selves to the qualitative description of the phase dia-
grarn: Its main properties are illustrated in Fig. 14
(out of scale). Furthermore, the evolution of the
magnetization m (t,p} with a is qualitatively indicat-

IV. CONCLUSION

We have discussed the phase diagram (stability
limit of the ferromagnetic phase) and the magnetiza-
tion of a quite general random system, namely, the
quenched bond-mixed first-neighboring spin- —, Ising
model (with both competing and noncompeting in-

teractions) on an anisotropic simple cubic lattice.
To perform these calculations we have adapted to
the present situation an effective-field framework
(based on the use of a convenient differential opera-
tor) introduced by Honmura and Kaneyoshi in 1978.
This formalism is, from the analytical standpoint,
almost as simple as the standard mean-field approxi-
mation (and, because of negligence of multispin
correlations, shares with it the fact that the critical
exponents are all Landau-type, and the related fact
that the topology of the system is only partially tak-
en into account, essentially through the coordination
number}; nevertheless, we verify that its results are
quite superior in at least two important senses, as it
is capable of providing (i) vanishing critical tem-
perature for one-dimensional systems, and (ii) ex-

pected nonuniform convergences in the highly dilut-
ed and highly anisotropic limits. We have illustrat-
ed both properties through many examples in which
interesting crossovers [d =1~=2, d =1 ~=3,
d =2~ =3, d =1~=2~ =3, (dilute)-(non-
dilute) as well as mixed situations] occur. Instead of
recalling here the main results associated with the
variety of physically important particular cases con-
sidered herein, we rather refer the reader to Figs. 1,
3, 4, 7, 11, 12, 14, and 15 where the most relevant
situations are exhibited.

The calculations of several particular values and
various asymptotic behaviors (essentially in the
low-temperature, quasi-pure- and high-anisotropies
limits) and, whenever is possible, their comparison
with those available in literature (and obtained
through other techniques) supports the belief that
the results provided by the present framework can
be given qualitative (and to a certain extent quanti-
tative) confidence. In a forthcoming paper we in-
tend to discuss effects which have not been analyzed
herein, namely, those due to anisotropy in the bond-
occupancy probabilities.
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