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The high-frequency limit of the electrical conductivity of nonmagnetic transition metals is

calculated. The conduction electrons are assumed to be scattered by the spin fluctuations in

the partially filled d bands. The frequency-dependent conductivity has a Drude-type form,

in which the scattering rate is itself frequency dependent. The scattering rate is increased as

the magnetic susceptibility is enhanced by the spin fluctuations. The scattering rate exhibits

a complicated frequency and temperature dependence. However, in the dc limit it does fol-

low the low-temperature T law of electron-electron collisions followed at higher tempera-

tures by a linear dependence on T. On the other hand, at T=0, the scattering rate is pro-

portional to co for low frequency.

I. INTRODUCTION

The properties of transition metals have been the
subject of extensive research. As with most metals,
many of them undergo transitions, either to a mag-
netically ordered phase or to a superconducting
phase. Except in rare cases, the magnetic ordering
precludes further transitions to a superconducting
phase. There is a small, but important, class of
transition metals and alloys which remain paramag-
netic and nonsuperconducting down to the lowest
measured temperatures. In these systems it is be-
lieved that the interaction responsible for magnetic
ordering is just too feeble to produce a phase transi-
tion, but strong enough to produce low-frequency
spin fluctuations. These spin fluctuations are local
regions in which there is magnetic order, but they
are formed and decay over long periods of time. At
low temperatures these collective excitations are
good bosonlike elementary excitations of the system.
These spin fluctuations are held as being responsible
for suppressing s-wave superconductivity in these
systems (Berk and Schrieffer' }.

The spin fluctuations are alsq, expected to mani-
fest themselves in other properties: The dynamic
susceptibility should be peaked at low frequencies
(Izuyama, Kim, and Kubo and Doniach ) and the
specific heat should exhibit a large-y T term (Berk
and Schrieffer' and Doniach and Engelsberg }. The
spin-fluctuation contribution to the electrical dc
conductivity (Lederer and Mills, ' Rice, and Kaiser
and Doniach ) should give rise to a T law charac-
teristic of electron-electron scattering. This is in
quantitative agreement with the experimentally mea-
sured low-temperature dc conductivity (Schindler
and Coles ).

In this paper we calculate the high-frequency elec-
trical conductivity for these materials. The ac con-
ductivity can be observed from optical-absorption
measurements at the infrared end of the spectrum.
Our results can be expressed in the form of an intra-
band Drude conductivity. The scattering time, how-

ever, is different from the scattering time which
enters the expression for the dc conductivity in that
it is frequency dependent. In general, the ac scatter-
ing rate is larger than the dc scattering rate and can
have different temperature dependencies. The
scattering rate does reduce, in the limit of zero fre-
quency, to the usual T dependence characteristic of
the phase space available for electron-electron
scattering, followed at higher temperatures by a
linear dependence on T.

In Sec. II we shall introduce the model of the sys-
tem and summarize some relevant features of the
spin fluctuations. The high-frequency limit of the
electrical conductivity is calculated in Sec. III. The
calculation proceeds within the framework in which
the spin fluctuations are treated by the random-
phase approximation (RPA}. It is established that it
is not sufficient to calculate the transport scattering
weight, due to emission or absorption of spin waves,
utilizing the Fermi golden rule. It is shown that, in
a conserving approximation, other processes
representing the scattering of the spin fluctuations
can combine and cancel with the terms calculated
from the Fermi golden rule, in the absence of um-

klapp scattering. Physically, this means that in the
steady state both the spin fluctuations and the elect-
rons are dragged out of equilibrium by the electric
field. The spin fluctuations do not act as a momen-
tum sink as implied in the Fermi golden-rule calcu-
lation. In the presence of umklapp scattering pro-
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cesses, the crystal as a whole is able to absorb
momentum and a finite transport scattering rate re-
sults. In Sec. IV the results of the calculation and
its implications are discussed. We examine some
special limits of the ac scattering rate and compare
the results to those of the dc scattering rate found in
other theories of the electrical conductivity.

II. THE MODEL

(2.1b)

where d z and d z, respectively, create and destroy

an electron of spin cr in the state labeled by the
Bloch wave vector k. The interaction between two
electrons within the same Wannier orbitals is
described by H&, and is written as

We shall be considering the high-frequency elec-
trical conductivity in pure, paramagnetic transition-
metal compounds. In these materials there exist de-

generate, partially occupied d bands, which strongly
hybridize with conduction bands of s and p charac-
ter. Since the d-band wave functions retain a signi-
ficant amount of the character of the localized
atomic d orbitals, two electrons within the Wannier
orbitals of the same lattice site experience large
Coulombic interactions. It is these Coulomb in-
teractions between the d electrons which are respon-
sible for the magnetic properties of the transition
metals.

We shall model this system by a single hybrid
band, the states in which both have itinerant and lo-
cal character, and the electrons interact via a local
Coulomb repulsion U~. This picture should be con-
trasted with the two band models used by Lederer
and Mills and by Kaiser and Doniach. In those
two band pictures the conductivity occurs in a con-
duction band of s character, while the spin fluctua-
tions occur in the d band. The conduction electrons
are scattered from the d-band spin fluctuation via a
weak interaction that could be envisaged as a
Schrieffer-Wolf type of exchange interaction that in-
volves the hybridization of the bands. Our picture is
that of strongly hybridized bands and is complemen-
tary to that of Lederer and Mills, ' namely for two
weakly hybridized bands.

The Hamiltonian is written as the sum of two
parts:

H=HO+Hi . (2.1a)

The term Ho describes the motion of the nonin-
teracting electrons in a nondegenerate hybridized
band. It is expressed as

Ho ge( k }d-„d-„——
1c

gdA-8-A .
fn

In this expression d;~ and d;~ are the creation and
destruction operators for an electron of spin 0. in the
Wannier orbital at site i. Since the band is nonde-
generate the Coulomb interaction is restricted to
occur between up- and down-spin electrons via the
Pauli exclusion principle. The transformation from
the Wannier representation to Bloch representation
is given by

(2.1c)

i k ~ R id t
f

(2.2)

As mentioned previously, for values of U slightly
less than some critical value U„ the dominant low-
temperature excitations of the system are the spin
fluctuations. In the random-phase approximation,
the transverse spin fluctuations are described as an
electron and a hole of opposite spin, which interact
repeatedly {Fig. 1}. The multiple Coulomb interac-
tions tend to bind the electron-hole pair causing
them to form a bosonlike excitation with a spin one.

The spin-fluctuation propagator D(q, co) is found
from the solution of the Bethe-Salpeter equation,

D(q )= —g G(k+q I ~.+~)G{k
I ~.)

P G{k+ql~ +u)G(kl~ )

km„

X UD(q, ~), (2.3}

in which co„ is the Matsubara frequency
ra„=(e IP}{n+1), and n is an integer. If we intro-
duce X(q,co) as the susceptibility of a noninteracting
gas of electrons, we have

X(q,co)= —g G(k+q ~co+ra„)G(k ~co„) .
P -„„

{2.4a)

FIG. 1. Emission or absorption of spin fluctuation by
an electron of spin cr. The electron is represented by the
solid line =, and the spin fluctuation by the wiggly line
~~. The spin fluctuation is also represented in terms of
multiple scattering between an electron of spin 0 and a
hole of spin o.
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FIG. 2. Correspondence between a spin fluctuation and
multiple-scattering events.

Then the spin-fluctuation propagator can be ex-
pressed as

X(q, c0)
(2.4b)

1 —uX(q, c0 }

The spin fluctuations interact with the electrons, the
coupling constant being U (Fig. 2).

A spin fluctuation may be emitted or absorbed by
an electron. A coupling constant U is associated
with the electron-spin fluctuation vertex. The re-

1

III. THE HIGH-FREQUENCY
ELECTRICAL CONDUCTIVITY

The frequency- and wave-vector-dependent elec-
trical conductivity is calculated from the Kubo for-
mula

o,tt(q, c0)= . [F tt(q, co)—F tt(0, 0)],
lN

(3.1)

where F~tt(q, co) is the space and time Fourier
transform of the current-current correlation func-
tion. F(q, ca ) can be expressed as

peated interaction between an up-spin electron +sr
and a down-spin hole —a can be represented as a
spin fluctuation (see Figs. 1 and 2).

F~tt(q, co)= i f—dre' ' J dte'"'8(r)(j (r, t);jtt(0,0)), (3.1a)

in whichj~(r, t) is the a component of the paramag-
netic current operator

kqn k k q
k qcr

(3.1b)

2

cr p(0,a))= $ p+
&AN mNV

in which the effective mass m' is defined by

(3.2)

n

m'
c}f(k} k

'

Be(k)
(3.3)

where V k. is the velocity.
l

In the high-frequency limit we can evaluate

o~(0,co ) by diagrammatic expansion. We shall fol-
low Holstein's' work on the electron-phonon gas
quite closely. We find that the leading terms of the
conductivity are of the form

The diagrams in Fig. 3(a} constitute the Fermi
golden-rule expression for scattering due to the
emission or absorption of spin fluctuations. These
processes, by themselves, do not constitute a con-
serving approximation since they do not satisfy the
Ward identities. It is necessary to incorporate the
diagrams shown in Fig. 3(b) in order that the
momentum-conserving Coulomb interactions do not
constitute to the transport scattering rate. We shall
show that within this approximation only the um-

klapp scattering processes contribute to the scatter-
ing rate. In the umklapp scattering processes the
whole crystal acts as a momentum sink for the elect-
ronic system.

We shall evaluate the contributions to the scatter-
ing rate from Figs. 3(a) and 3(b) separately. The
spin-fluctuation self-energy correctian to the elec-
tran propagator contributes, ta ~ ', the term

(a)

The scattering rate ~ ' is calculated from the pro-
cesses depicted diagrammatically in Figs. 3(a) and
3(b). Thus the high-frequency conductivity exhibits
a Drude-type tail, and it is expected that the Drude
formula

(b)

ne r(1+icos )

Nl ]+co 7
(3.4)

cr(0)= m' (3.5)

will be a good intrapolation formula between the
high-frequency limit and the dc conductivity

FIG. 3. We depict diagrammatically the scattering
processes that result in a conserving approximation for
the transport scattering rate. In Fig. (a) we depict the
scattering of an electron by a spin fluctuation. These
terms constitute the usual Fermi golden-rule scattering
rate. In Fig. (b) we depict processes that are responsible
for dragging the spin fluctuations out of thermal equili-
brium.
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co g —
2 g V'-*„V~gU b(q( —q2)

n
k &1@2+ n e

Xlm[G (k
~
co+co„)G (k+qt

~
co+ co„+Q„)D(q2,Q„)G~(k

~

co+co„)G~(k
~
co, )],

(3.6)

while the self-energy correction to the hole propagator yields

Vq VqU 4(q) —q2)Im[G (k ~co+co„)G (k+q) ~co+Q„)D(qg, Q„)G (k ~co„)] .
k q ) q2a ~nnn

(3.7)

The first vertex correction contributes a term

X X Vq VqU ~(qi —qz)Im[G (k leo+co. )G- ("+ql I
a4+co+Q )D(q2 Qn)

k q&q2ai

XG (k ~co„)G (k+q)
~
co„+Q„)]. (3.8)

In these expressions 5(q~ —q2) represents the conservation of wave-vector modulo a reciprocal-lattice vector.
After some manipulations these three terms may be combined as

Im g ~ g V~s(V&q- —V&q)u b,(q, —q2)
pq q2+ „„q2n

— q2 n+

f(k) —f(k+qt)
X [X(q2,co+Q„)-X(q2,Q„)]

i(co+Q„)+e(k)—e(k+ q)

f(k) —f(k+ q))

iQ„+e(k)—e(k+ q)
(3.9)

We shall use this form of the scattering rate from the processes in Fig. 3(a) to combine with those of Fig. 3(b).
However, we shall first reexpress the rate for the normal scattering processes in a more recognizable form:

J dQ X Q ———~ Q+ g —iqi'[f(k) —f(k+q)]
nm @co o 2 2 . . kq

5 Q ——+e(k) —e(k+q) ImD q, Q+—
2 2

+ 5 Q+ —+e(k) —e(k+q) ImD q, Q ——
2 2

(3.10)

namely, the Fermi golden rule for frequency-modulated processes. We note the presence of the factor
~ q ~

which weighs large-angle scattering, as is typical of transport scattering rates. The terms depicted in Fig. 3(b)
represent processes by which the system of spin fluctuations is dragged out of equilibrium by the scattering
with the conduction electrons. The contributions from these processes are the following:
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Y~ V&~U h(qi —qg)
~s~m

g, q, ~a

xIm G~(k I ~+~a) G~(k 'I ~+~m)G-~(k+q21~. +Q. )
1 —uX( q i,co—Q„)

x G.(k l ~„) G~(k '
I
~~)G-.(k'+qi

I ~~+Q. )
1 —uX(qi, Q„)

Vq V&qU h(qi —qi)Im G(k lco+Q)G(k leo)G(k'+q leo+co)G(k'+q
l
co)

nco „„,Pi„„
CT JI Nl

1x Gp(k '
l
co~ —Q, )

1 —VX( q2, Q„+co)

x G (k '+ qi l
co+co„)G (k '+ qi l

co„)

Upon combining the spin-fluctuation drag terms we obtain

Im y —y V-„(V&.—V&. g )U LL( q, —q )
P n

+ ' 1 —uX(qi, Q„) 1 uX(—qi, Q„+co)
V~q2

(3.1 1}

f(k) —f(k+q, ) f(k) —f(k+q, )

i(Q„+ }c+o(ke}—e(k+q2) iQ„+e(k')—e(k'+qz)

f(k ') —f(k '+ qi) f(k ') —f(k '+ qi)

i(Q„+ }co+a(k'}—e(k'+q&) iQ„+a(k') —e(k'+q, )
(3.12)

Upon combining the terms of Figs. 3(a) and 3(b), we find

Im g —g Vq(V&q —V&q —V&q. +V&q, - }p h(qi —q2)

q&q&

f(k) —f(k+qi) f(k) —f(k+qi)
i(Q„+co)+e(k) e(k+q—i) iQ„+a(k') —e(k'+qi)

f(k ')—f(k '+ q2) f(k ') —f(k '+ qz)

i(Q„+co)+e(k ') e(k '+ q2—) i „Q+(ke') —a(k '+ q, )
(3.13)

Apart from the magnetic enhancement factors, this
is the scattering rate appropriate for electron-
electron collisions. As is discussed by Ziman, the
normal scattering processes conserve the total

I

momentum of the electronic system and thereby do
not contribute the the transport scattering rate. This
is most simply seen by separating out the normal
and umklapp contributions to the velocity
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V~ ——apk+QPk G,
G

in which G runs over the set of reciprocal-lattice
vectors. Then, the factor

(Vg+ —Vq+ Vq. —Vg, +-)=0
for the normal components of the velocity. As
shown in the work of Lawrence and Wilkens" a
proper treatment of the umklapp processes is very
complicated and depends critically on the close

proximity of the Brillouin-zone boundary and the
Fermi surface. Since we are only interested in the
frequency and temperature dependence of the
scattering rate, we shall not be interested in the ex-
act value of the scattering rate. It will be sufficient
for our purposes to utilize the result of the Lawrence
and Wilkens" calculations, which is that the scatter-
ing occurs mainly at wave vectors close to the
Brillouin-zone boundary. The scattering rate may
then be approximated by

'Im
" "N{Q)

1 gf /pe Q) ~ 277l
T

[X(Q+ic0) X(Q—+i')] [X(Q+ico) X(—Q iso—)]
[1—uX(Q+ico)][1—uX(Q+iri)] [1—uX(Q+ico)][1—uX(Q iri)]—

[X(Q+iri )—X(Q ice )—] [X(Q i') —X—(Q —a) )]
[1—uX(Q+iri)][1 —uX(Q —co)] [1—uX(Q iri)—][1—uX(Q ice—)]

(3.14)

where X(Q -X(q, Q ) for large q. After some manipulation we have
'I

—oc u dQ 1V 0 ———1V 0+— Imp 0+—ImX 0——1 iGi 2 CO N CO N

nm*co 2 2 2 2

1 1

I
1 —uX{Q —~ i2)

I

'
I

l —uX(~+~ n)
I

' (3.15)

ReX(co ) =Xp,

ImX(co =coXp .
{3.16)

The effects of a q dependence in X(q, rp) are dis-
cussed in the Appendix. This is consistent with the
large-q limit of the imaginary part of the dynamic
susceptibility, as calculated in RPA, being given by
a Lorentzian

CO+p
ImD(q, co )=

(1—uxp) +Co u yp
(3.17)

which is analogous to the scattering rate calculated
from the nonconserving approximation in which the
spin-fluctuation drag terms have been neglected [Eq.
(3.10)]. We shall follow Lederer and Millsss and
Kaiser and Doniachs by assuming X{co ) to have the
following co dependence:

1 —UXp)r=
u Jp

(3.19a)

while

1 —Ugp
D(o,o)-'=

Xp
(3.19b)

Upon substituting the assumed form for X(cp), we

may perform the 0 integration by expressing the
Bose-Einstein distribution function in terms of the
digamma function 4:

N(Q)= ——+1 1

I

that the width I of the inelastic neutron scattering
cross section ImD(q, co) correlates with the static
susceptibility D (0,0):

while the real part of the susceptibility is

Xp(1 —uXp)+co uXp
ReD(q, co ) =

(1—uX, )'+~'u'X' (3.18)

+ . $1+
27Tl 2'

iPQ
2'

(3.20)

This ansatz is in agreement with the observation
The final result for the frequency-dependent scatter-
ing rate is
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1 1 2+co pr .p~—2co + i—I 1( 1+ +i
r(co ) 4r pco P I' 2' 2' f—1+ pr

21T

p p ~ p p ~ p
2n 277

+ 2~ 2~ + 2~
(3.21)

where 7 p is a constant. This is the central result of
this paper. In the next section we shall exhibit the
temperature and frequency variation explicitly. We
shall also examine some asymptotic limits by analy-
tic methods. The experimental implications will
also be discussed.

IV. RESULTS AND DISCUSSION

B. High temperature PI «1
For temperatures much greater than I, the spin-

fluctuation temperature, the scattering rate is of the
form

1 1 2m.
1

I' e I
h

Pco
1 — + coth

r(co) 4~ PI ~ co 2

The high-frequency limit of the conductivity ex-
hibits a Drude-type tail, and the scattering rate is
frequency dependent. We shall now examine some
special limits of the ac scattering rate.

+2 Ref 1—2' +r —1

(4.4)

A. T=O

At zero temperature the scattering rate varies as

For high frequencies compared to temperature, the
above formula simplifies to

1 1 2m rcI Pco

1 1 2I i co
tan —+ln 1+ —2

CO

r(co) 4r p co I' r' Pco»1 (4 5)

1 1 co
ln ——1

r(co ) 2rp I' (4.2}

(4.1)

At large frequencies co/I »1, the scattering rate
varies logarithmically with co,

while in the opposite limit pco « 1 we obtain

1 1 2H 8n.

r(co } 4rp pr 411&+p~co~

2 2

+ [1—C(3)l (4.6)

while at low frequencies co/I &&1, the scattering
rate is proportional to co,

2

(4.3)
r(co) 12rp r~

The vanishing Of I/r(co) as co at T=o is a direct
consequence of the phase space available for
electron-electron collisions.

We note that in the dc limit the expression reduces
to the T law, found at high temperatures, in Kaiser
and Doniach's theory of the dc conductivity due to
spin-fluctuation scattering.

C. Low temperature pI'»1

In the low-temperature regime the scattering rate
is given by

1 1 2m. 2I
tan

r(co ) 47 p PI co

Pco /2m + 1+Pr/2~ » (P~/2~)'
+ln 1+

1+pco/2~ (1+pI /2m ) +(pco/2m } (1+pr/2e. )

(Pco/2n).
[(1+pI /2e ) +(pco/2m ) ][1+pI'/2m ]

(4.7)

We note that the dc limit gives

1 m. 1 4 m.
1 —— + (4 8)

3rp p&r& 5 p&r&

The T law as calculated by Lederer and Mills and

I

by Kaiser and Doniach. The T variation comes
from the phase space available for electron-electron
collisions.

Thus as we have shown, 1/~(co) can have many
different types of frequency dependences, which can
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be quite complicated. The scattering rate reduces to
the well-known form in the dc limit. The dc scatter-
ing rate shows a T law at low temperatures, fol-
lowed by a T law at higher temperatures. At even
higher temperatures one may suspect that I will be
temperature dependent. One may see this from ex-
amining the form of X(q, r0) as calculated for the
free-electron gas, or if one assumes that X(q, ro) is
roughly independent of q, then one may correlate
with the dc susceptibility. At low temperatures,
when the dc susceptibility D{0,0) is temperature in-
dependent, I should be temperature independent
too. At higher temperatures the susceptibility shows
a Cure-type tail; for these temperatures one expects
that I' should be proportional to T (Ref. 11}. We
model this dependence of I by

(4.9)

Thus at the temperature T & I, the dc scattering sat-
urates to a constant value the de Gennes —Friedel
limit of spin disorder scattering.

As Kaiser and Doniach have noted, the dc
scattering time shows a crude type of universality,
scaling with PI. As Mills' has shown, this is
marred by the q dependence of X(q, co} and by the
spread of q values which contribute to scattering. In
our single-band model the q dependence comes al-
most entirely from the scattering at the Brillouin-
zone boundary. Thus the scaling with pI should be
more precise. As seen in Eq. (3.21} this scaling
property should also be found in the ac scattering
time as measured in the infrared-absorption mea-
surements. Experimental data on the infrared con-
ductivity exists for Pd. ' ' The data is complicated
by the presence of interband transitions at co =0.46
eV, which makes the extraction of the Drude back-
ground quite difficult. For example, Duisbaeva
et al. ' have performed reflectance measurements on
Pd at room temperature, in the frequency range
0.14—1.4 eV. From the data they have extracted an
optical collision rate that varies from
1/~=3. 3&10' Hz at co=0.35 eV to 1/~=2. 23
X 10' Hz at co =0.14 eV. There is too much scatter
and too few data points to allow for a power law
and a logarithmic frequency variation to be dis-
tinguished. Weaver and Benbow' have performed
absorbance measurements on Pd at 4.2 K, in the fre-
quency range 0.15—4.4 eV. They find that the in-
terband structure at 0.46 eV is about 3 times smaller
than the structure found by Duisbaeva et al. ' Since
the slope near the Drude tail is strongly affected by
the interband transitions, it is no surprise that
Weaver and Benbow' find 1/r=20X 10' Hz,

(4.10)

for large q, or from the width of the NMR line. ' '
The NMR width is expressed as

IIQD(q, N~ )
/H{q)

/Tt P y, h

(4.11)

where H{q) is the strength of the hyperfine field and
to~-0 is the NMR frequency. The values of I' ex-
tracted from these measurements should have the

4.0

2.0

1.0

0.0 2 ' 0 4.0

2m
Bl'

6.0 8.0 10.0

FIG. 4. Scattering rate 1/v, in dimensionless units, as
a function of the dimensionless temperature 2rr!PI' for
various frequencies.

which strongly differs from that given by Duisbaeva
et al. In order that this discrepancy in the magni-
tude of 1/~ and its frequency dependence be re-
moved more measurements should be made. These
should be performed at the. longest wavelengths pos-
sible in order that the effects of the interband transi-
tions be minimized. The quality of the sample sur-
face should be strictly controlled.

A temperature-dependent study of 1/~ would al-
low the phonon contribution to be subtracted. The
temperature dependence of the spin-fluctuation con-
tribution is shown in Fig. 4. The spin-fluctuation
temperature I found from the optical collision rate
1/~ could then be compared with the halfwidths ob-
tained from the inelastic neutron scattering cross
section,

2

[N(ro )+ 1)ImD(q, co )
dtr h kf ye
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same temperature variations and allow the scaling
behavior of 1/r(co) to be exhibited. Of course, it is
not expected that the same type of scaling should
occur from the value of I taken from the static sus-
ceptibility, since D(q, 0) is expected to show a rapid
variation near -0. The larger enhancement of
D(q, O) near q-0 stems from the proximity of the
ferromagnetic transition for larger values of U.

In summary, we have calculated the high-
frequency ac electrical conductivity. The conduc-
tivity shows a Drude-type tail in which the scatter-
ing rate is frequency dependent. The dc limit of the
scattering time is of the form calculated by Kaiser
and Doniach. The scattering rate calculated is a
universal function of Pl and Pro. The temperature
dependence of the factor I is experimentally
measurable from either the widths of the inelastic
neutron scattering spectrum or the NMR width.
These may then be used to show the scaling of the
1/r(co) as should be found in infrared-absorption
experiments.

APPENDIX

In this appendix we shall discuss the effects of in-
cluding a q dependence in the noninteracting suscep-
tibility X (q, co). In general, the noninteracting sus-
ceptibility will be a complicated function that de-
pends on all the details of the electronic band struc-
ture. In this appendix we shall assume that X (q, co )

has the form associated with the low-frequency
behavior of the T=0 K Lindhart function,

2

ReX (q, co) =X 1—
3q

and

ImX (q, co)=
4p vq

The dc scattering rate can be written at low tem-
peratures as being proportional to

at higher temperatures where S is the Stoner
enhancement factor S=[1—UXc(0,0)] '. If one re-
tains the q dependence of the real part of X (q, co),
then one obtains the behavior

and

S2 S3/2 SI/2
1/r=T + tan

1+(S/3) 3 3

1/a=Tin 1+—S
3

at low and high temperatures, respectively. The
analogous case in which spin-fluctuation drag ef-
fects had been neglected has been considered by
Mills. ' Experiments have not been able to distin-
guish between the various dependences on the Stoner
enhancements S. Further complications set in since
it seems that it is necessary to use a screened
Coulomb interaction rather than the local Hubbard
interaction U in order to obtain smaller mass
enhancements as found in experiment. In view of
the model dependences of the ac conductivity we
have neglected the q dependence of ReX (q, co ) in the
main text. For reasonable values of S the differ-
ences will not be important.

1/rccT J dqq c 2,[1—UX (q, O)]

and at high temperatures to

I/r~Tfdq 1

[1—UX (q, O)]

The approximation made by Kaiser and Doniach is
that of neglecting the q dependence in the real part
of X (q,co). This leads to the scattering rate being
proportional to

1/7-=S T

at low temperatures, and to

1/z =ST
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