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Magnetization as a function of temperature has been measured for a number of amor-

phous Ni-rich transition-metal —metalloid alloys in the temperature range 4.2—300 K at
various constant applied magnetic field values. These data when analyzed with caution not

only yield reliable values for the coefficients 8,C of the T , T' terms appropriate for zero

spin-wave energy gap and the mean-square range (r ) of the exchange interaction but also

give g values in agreement with those determined directly from the ferromagnetic resonance

experiments. As a function of the Curie temperature Tc, the above parameters (B,C, (r ) }
are found to exhibit a systematic trend which is consistent with the predictions of a spin-

wave theory based on the nearest-neighbor (NN) Heisenberg model. An empirical relation

D=DO+mT~ is found to exist between the spin-wave stiffness coefficient, D, and T~.
While the collective-electron and NN Heisenberg models both fail to explain the finite posi-

tive value observed for Do, the latter model gives the observed slope, m, value for S=1. Be-

sides providing a theoretical justification for the observed relation between D and T~, it has

been shown that the Ruderman-Kittel-Kasuya- Yosida interaction plays a negligible role so

far as the exchange mechanism leading to the present magnetization behavior is concerned.

An estimate of the NN and next-nearest-neighbor (NNN) exchange coupling constants Jl
and J2 reveals that J2 is at least 1 order of magnitude smaller than Jl. Arguments are

presented to show that the superexchange interactions brought into play by the presence of
metalloid atoms and leading to an antiferromagnetic coupling between the spins localized on

the NNN transition-metal atoms cannot be present in the amorphous alloys in question.

I. INTRODUCTION

Over the past few years, ample experimental evi-

dence, based on inelastic neutron scattering, ' ' low-
temperature magnetization, " and Mossbauer'
measurements, has been gathered to demonstrate
that many amorphous ferromagnetic alloys exhibit
well-defined long-wavelength spin-wave excitations
which follow a normal ferromagnetic dispersion re-
lation'

E(k) =5+Dkt+Ek4+

where 6 &&Dk denotes an effective energy gap re-
sulting from the dipole-dipole interactions ' and
that at low temperatures, magnetization, as in crys-
talline ferromagnets, follows the Heisenberg-model
prediction

[M(0)—M(T)]/M(0) =6M(T)/M(0)

=ST +CT

For a ferromagnet in the crystalline state, crystal
momenta are quantized and the conventional spin-

wave theory, ' when applied to such a case, leads to
the following relations between the coefficients 8
and C of the T ~ and T ~ terms in Eq. (2) and the
spin-wave stiffness constant D:

8 =g( 2 )[gptt/M(0)](ktt/4trD) ~ (3)

and

C =g( , )[gptt /M (0)](—ktt/4rrD)

(4)

where g( —, ) =2.612 and g( —,) =1.341 are the
Riemann g functions and (r ) is the average mean-

square range of the exchange interaction. Despite
the fact that the translational invariance is com-
pletely absent in amorphous ferromagnets and the
crystal momentum is no longer a good quantum
number, Herring and Kittel, ' from field-theoretical
arguments, and Kaneyoshi, ' from a viewpoint that
amorphous magnets have a topological disordered
structure of the type given by the random closed
packing of atomic spheres, have shown that the
spin-wave theory leading to Eqs. (1)—(4) is of more
general validity than that suggested by the Heitler-
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London-Heisenberg model from which it was origi-
nally derived. The major points in which the results
reported to date on amorphous and crystalline fer-
romagnets differ and their implications have been
recently summarized by Kaul' and by Ishikawa
et aI. 19

An appraisal of the published low-temperature
magnetization and neutron-diffraction data on some
fcc and bcc crystalline ferromagnetic metals and al-
loys has revealed a linear correlation between Tc
and 1/B. From similar data reported on amorphous
Co-P and Fe75P15Cip alloys, it has been found that
such a direct proportionality between 1/B and Tc
still holds, but these data fall well below those for
the crystalline ferromagnets. In view of Eq. (3), this
observation implies that D ~ Tc. Recent magnetiza-
tion measurements '" on amorphous Fe-B-X
(X=P,C,Si,Ge) and Fe4cNi40B20 „P„alloys have
indeed shown that such a linear relationship between
D and Tc exists and that this linear dependence ex-
trapolates to zero D for the former set of alloys at
Tc-380 K and for the latter set at Tc-200 K. It
should be noted that the above observations have
been made from the data taken on alloys having Tc
values higher than 450 K. These results are found
to be inconsistent" with the predictions of a theory
proposed by Katsuki and Wohlfarth ' based on the
itinerant electron model. However, it is still not
clear whether this discrepancy between the experi-
mental findings and the theoretical predictions is a
result of an extrapolation from Tc values above 450
K or whether it is a genuine effect. In order to clar-
ify this point, a systematic low-temperature magnet-
ization study of particularly those amorphous alloys
which have low Tc values is needed. Keeping this
aim in mind, we chose to conduct this type of study
on nickel-rich transition-metal —metalloid amor-
phous alloys which do possess low Tc values.

II. EXPERIMENTAL PROCEDURE
AND DATA ANALYSIS

Amorphous alloy ribbons used in the present
work were prepared by the rapid-quenching tech-
nique and had cross sections varying from 0.02)(1.0
mm to 0.05)&2.5 mm . The glassy alloys known
commercially as Metglas" 2826, 2826A, and 2826 B
were procured from the Allied Chemical Corpora-
tion, New Jersey, whereas the remaining samples
were obtained from the General Electric Company,
New York. With the use of the Faraday method,
magnetization of several 10-mm ribbon lengths
(stacked in the sample holder) was measured as a
function of temperature from 4.2 to 300 K at vari-
ous constant applied field values in the range from 3
to 15 kOe. In order to minimize the demagnetizing
field effects, the magnetic field was applied in the

plane of the ribbon pieces parallel to their length. A
typical heating or cooling rate of 0.5 K/min and a
small positive pressure of the helium exchange gas
in the sample chamber were maintained to ensure a
good thermal contact between the sample and the
resistance thermometers. Details concerning the
Faraday apparatus and the temperature measure-

ment can be found in our previous reports. ' The
data taken on samples chosen from the different

parts of the same alloy ribbon in the "as-received"
condition are found to be reproducible to within

1%.
In determining the coefficients B and C appearing

in Eq. (2) from the magnetic measurements per-
formed in presence of an applied field H, the effec-
tive field

H,tt =H 4rtNM (0—) +Hg

(where N is the demagnetizing factor and Hq the an-

isotropy field), which contributes to the energy gap
in the spin-wave spectrum, must be taken into ac-
count by using a modified version of Eq. (2) given

b 15 24

bM(T)/M(0) =B3/2F( 2 yttt)t

+Csg2F( , , ttt)t —., (5)

where

B3/2 ——BTc, Cs/2 ——CTc, t =T/Tc s
3/2 5/2

Tg /T gP&Huff /kg T

and

F(s, tH) =[((s)] ' g n 'exp( ntH) . —
n=1

Since tH &&1 in the present temperature range, the
Robinson expansion of the functions F( , , tH) an—d

F( , , tH) given by—

F(-, .tH)=[0(-, )] '[0(2)—3.54tH"

+1 46tH —0. 10.4tH + . ]

(6)
and

F(-, tH)=[0(-, )] '[0(-, ) —2 61tH

+2 36tH 0 730tH+ ]

(7)
was used while fitting the data on various samples
to Eq. (5). At first, a least-squares fit of the data to
the spin-wave terms alone [Eq. (5)] was made over
the range 0—4 K of gap temperatures with B and C
allowed to vary independently. It was immediately
noticed that a very broad minimum in the standard
deviation cr vs Tg plot results, and corresponding to
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this broad minimum the range of the acceptable
values of B and C is also very wide. In order to ar-
rive at reliable values for these coefficients and to
narrow down the range of acceptable values, the
internal consistency conditions that the coefficients
B and C are independent of temperature and applied
field and that Tg varies with H,~~ according to

(8)Ts =(gya/ka)H, rr

were imposed (note that the applied field H has been
corrected only for the demagnetizing field and not
for the anisotropy field H& since a rough esimate of
Hq shows that Hq «H). The values for the coeffi-
cients B and C for the present alloys obtained by this
fitting procedure, originally adopted by Argyle
et al. for evaluating the values for these coeffi-
cients for crystalline ferromagnets, are given in
Table I.

With a view to test the validity of Eq. (8), the
coefficient C for each sample was kept constant at
its value given in Table I and both Tg and B were al-
lowed to vary. It is observed that consistent with
Eq. (8) the positions of the minima in o vs Ts curves
move progressively to higher values of Tz as H is in-
creased. The Tg values corresponding to these mini-
ma, when plotted against H,g~, yield a straight line
which passes through origin for each of the alloys
investigated. To illustrate this behavior, a Tg vs

H,rr plot for Metglas 2826 is shown in Fig. 2(a).
The values for g calculated from the slope of such
straight lines and included in Table I are found to be
in excellent agreement (see Table I) with those deter-
mined for the same or similar amorphous alloys
from the ferromagnetic resonance experiments. ' '

Realizing that besides the spin-wave excitations
there exist Stoner single-particle excitations which
also contribute to the low-temperature magnetiza-
tion of a ferromagnet, the next step of the data
analysis was to include in Eq. (5) an additional term
A T which denotes the single-particle contribution.
Based on the observation that the low-temperature
magnetization data fit reasonably well to a fictitious
T" term with n between 1.6 and 1.7 depending on
the applied field strength, it can be easily concluded
that the single-particle excitations do not give a
dominant contribution to the magnetization in the
presently studied amorphous alloys. That the ex-
ponent n is noticeably greater than 1.5 originates
partly from the energy gap and partly from the field
dependence of n and can be accounted for by using
BF(—,,t&) in place of B as the coefficient of the T
term. To ascertain whether or not the AT replaces
CT in the role of a second dominant term, C was
held constant at its previously determined value
(given in Table I}, and Ts was set equal to the
theoretical value calculated from Eq. (8} for each of

the four chosen field values 3, 5, 10, and 15 kOe,
whereas A and B were allowed to vary in order to fit
the data over three temperature ranges (different for
different samples): starting from 4.2 K and extend-

ing up to 0.9T~ and 300 K for alloys having Tz
values below and above 300 K, respectively. The re-

sulting values of both A and B were found to be very

much temperature dependent. The temperature
dependence of B was about 4 times larger than that
observed previously when A was set equal to zero
and B and C were allowed to vary. These results in-

dicate that the contribution arising from single-

particle excitations, if significant, is much smaller
than even the CT term.

III. RESULTS AND DISCUSSION

In Fig. 1(a} the typical low-temperature magneti-

zation behavior of the present amorphous ferromag-
netic alloys is exemplified by plotting for a few of
them the relative deviation of magnetization from
its value at 0 K (no distinction between the values of
magnetization at 4.2 and 0 K has been made in the
present work), i.e., r&f(T)/M(0) against the re-

duced temperature (T/Tc) at a constant applied
field value of —10 kOe. The solid curves through
the data points represent the temperature depen-

dence of magnetization predicted by Eq. (5) with the
choice of the coefficients B and C given in Table I.
This table gives, besides the magnetic and spin-wave

parameters, the values for the average mean-square

(ms) range (r ) of the exchange interaction calcu-
lated using the presently determined values of B, C,
and D in the relation

(r ) =[/( 2 )/g( —,)](16/3ks)(C/B)D .

With decreasing T~, different parameters, whose
values are summarized in Table I, present the fol-
lowing trend: (i) The upper temperature limit
(T/Tc)~, „, up to which the spin-wave contribution
to magnetization [Eq. (5)] alone accounts for the ob-
served low-temperature magnetization behavior,
shifts to higher temperatures. This is basically a
manifestation of the fact that the temperature range
over which the T law dominates becomes wider
and wider as Tc decreases. (ii) The calculated aver-

age ms range of the exchange interaction and D/T~
(which again is an approximate measure of the range
of exchange interaction) both show a slow increase.
This observation is further elucidated by the plots of
(r2) vs Tc and D/Tc vs Tc in Fig. 1(b). Despite
such an increase in (r2) with lowering Tc, the value
of the rms range for the alloy with the lowest T~
value barely exceeds the typical mean nearest-
neighbor transition-metal —transition-metal dis-

0
tance of 2.55 A in such amorphous ferromagnets.
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However, due to the large uncertainty limits for
(r ), the only conclusion that can be drawn with
confidence is that the exchange interaction in amor-
phous ferromagnetic alloys is short ranged and can
at best involve the next-nearest neighbors, whereas
its range in crystalline ferromagnets greatly exceeds
even the next-nearest-neighbor distance. (iii) The
normalized coefficient C5&2 remains apparently con-
stant at a value which compares favorably with the

corresponding values observed for crystalline Fe and
Ni, whereas the reduced coefficient B3/2 increases at
a very slow rate (which progressively decreases with
decreasing T~) until a value Tz=-300 K is reached
below which it becomes independent of Tz, and for
the present alloys possesses values that are roughly 4
times 1arger in magnitude than those found in crys-
talline ferromagnets. Similar deductions ' ' ' '
have been made in the past from a comparison be-
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FIG. 1. (a) Fractional decrease in magnetization with temperature above 4.2 K (EM=0 at T=4.2 K) for amorphous
Fe&ONi~p&9P&, Fe20Ni60P&/6, and FeoNi40P~/6 (Metglaso 2826) alloys in presence of an applied magnetic field value of 10,
11 and 10 kOe, respectively. The solid curves through the data points are the theoretical variations predicted by Eq. (5) of
the text with the choice of the coefficients B&ri and Cz~ given in Table I. (bi D/Tc vs Tc and (r ) vs Tc plots. The
dashed lines through the data points represent the least-squares fit to the data.
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D =Do+mTc (10)

where Do and m are, respectively, the intercept
on the ordinate and the slope of the straight-line
curve. In this figure, results of the recent mag-
netization measurements ' on amorphous
(Fe&,Ni )75P]&B&A13 and (Fe~,Ni )77Si]pB,3 al-
loys have also been included. These data are seen to
pass smoothly with the trend exhibited by the
present data. A least-squares fit to the complete
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FIG. 2. (a) Spin-wave energy gap temperature T~ plot-
ted against the effective magnetic field H~g for Metglas
2826. The solid line through the data points is the least-
squares fit to the data and the slope of this straight line
gives the value for g. (b) 1/8 vs T~ plot for the amor-
phous alloys used in this work. Results of Ref. 5 (filled
squares) and I/B values calculated using Eq. (17) of the
text (crosses) are also included for comparison.

tween the values of B3]p and C5gp observed in crys-
talline and amorphous ferromagnets.

Consistent with the above-mentioned variation of
B3/p with Tc, a plot of I/B vs T~ shown in Fig.
2(b) demonstrates that 1/Bac T& [dashed line in
Fig. 2(b)] only for Tc & 300 K; the data points devi-
ate more and more from this straight line as T~ in-
creases beyond -300 K. In view of Eq. (3), the
nonlinearity observed in the 1/B vs T~ plot at high
T~ implies that no direct correlation should exist be-
tween D and Tz particularly in the high Tz region,
but when the data shown in Fig. 2(b) are converted
into a D vs Tc plot using Eq. (3), a linear curve re-
sults for the entire range of Tc values (see Fig. 3). It
will be shown later that this apparent inconsistency
arises from the fact that D&0 at Tc ——0 and M(0) is
not constant for the alloys in question.

Returning to Fig. 3, it is found that the data can
be represented very well by the empirical relation
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data shown in Fig. 3 based on Eq. (10)
yields Do ——27+2 meV A and m =0.144+0.020
meVA K '. The error limits in these quantities
have been determined from the least-squares fits
through the upper and lower uncertainty limits of
the data points. A linear relation between D and Tc
of the type given by Eq. (10) has also been ob-
served ' ' previously for amorphous
(Fe~ Ni, )77Si&Q&3 and (Coi Ni„)7sP~sBsA13 al-

loys with the values for Dp(m) as 29 meV A (0.125
meVA K ') and 12 meVA (0.100 meVA K '),
respectively.

Before we proceed to discuss the above results
within the framework of the collective-electron and
Heisenberg models, both of which predict a linear
correlation between D and T~, it should be men-
tioned that the customary approach" of also in-
cluding the D values directly measured by the inelas-
tic neutron scattering technique in such a figure has
not been followed in the present work because
of the following reason. Recent inelastic
neutron-diffraction studies on amorphous
(Fei Ni„)75P]6B6A13 alloys in the concentration
range 0.6 (x &0.83 (these alloys exhibit at high tem-
peratures a transition to long-range ferromagnetism
which at low temperatures gives way to a spin-glass
behavior) have resolved the discrepancy between the
D values deduced from the magnetization measure-
ments, DM, and those values measured directly by

100 200 300 COO 500 600 700

C
(K)

FIG. 3. Spin-wave stiffness coefficient D as a function
of the Curie temperature Tz for the present amorphous
alloys; the results obtained on the other Ni-rich
transition-metal —metalloid alloys in Refs. 5 and 29 are
also included in this figure. The solid line through the
data points is the result of a least-squares fit to the com-
plete data shown in this figure. The dashed line denotes
the theoretical variation predicted by a nearest-neighbor
Heisenberg model for S=1.
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the inelastic neutron-diffraction technique, Dz, ob-
served earlier for the alloys with x in the vicinity of
0.7 by revealing that for the alloys just mentioned D
increases as usual with decreasing temperature up to
a certain temperature below which the spin-glass
state sets in and D begins to decrease with decreas-
ing temperature. Therefore, a meaningful compar-
ison between D~ and Dz is possible only when the
inelastic neutron scattering study is performed over
an extended temperature range rather than at a sin-

gle temperature (in most cases the room tempera-
ture), as is usually the case. The former type of
studies are available to date only on a few Fe-rich
(Fe,Ni)-metalloid amorphous alloys and their results
do indeed fall on the curve shown in Fig. 3.

With the assumption that the Curie temperature
Tz is determined by the Stoner single-particle exci-
tations alone, Katsuki and Wohlfarth, ' based on the
collective-electron model, have derived for weak
itinerant ferromagnets the following relation be-
tween D and T~.

D=ksTca f(n),
where a is the nearest-neighbor distance and f (n) is
a function of the number of electrons per atom
determined by the band structure. Equation (11}
reduces to a simple analytical form only when the
effective-mass approximation is used. In this ap-
proximation

D =[uk'/6(2)'i kp]TC, (12)

where k~ is the Fermi radius. Besides predicting
that D=O at Tc 0, Eq. (12) g——ives a value for the
slope as 0.014 meVA K ' when the typical value
of kF ——1.5 A ' is used. It is immediately noticed
that this theory cannot account for the finite value
observed for Dp and yields a slope value which is at
least 1 order of magnitude smaller than that ob-

served presently. In order to overcome the main

disadvantage of the effective-mass approximation,
that it concerns an open band, these authors have
extended the previous calculations to a simple cubic
metal with the result that beyond a certain critical
value of I,rr/W (I,rr and 8' are the effective interac-
tion between the magnetic carriers and the band-
width, xespectively), D as a function of Tc exhibits
the following behavior. Starting from D=0 at
Tc——0, D initially increases at a constant rate, goes
through a maximum and then decreases at a non-
linear rate to zero, again, but this time at a finite
value of Tc. Both the zeros of D correspond to a
ferromagnetic instability (for details, see Ref. 21).
Contrary to the above prediction, the recent investi-
gations ' have shown that in amorphous (Fe,Ni)-
metalloid alloys the ferromagnetic instability occurs
at a finite value of D. Although Katsuki, while re-

fining the earlier theory by taking into account both
Stoner single-particle and spin-wave excitations,
showed later that the theoretical D vs T~ curve
given in Ref. 21 gets modified so much so that it
resembles the observed curve for fcc Fe-Ni and Ni-
Cu alloys and that its initial part qualitatively
represents the trend found in bcc Fe-Cr alloys, this
modified theory, as its previous version, serves as an
illustrative guide only and is severely limited so far
as the interpretation of a finite value of Dp is con-
cerned.

The results are next discussed in the light of the
Heisenberg model. For a nearest-neighbor cubic fer-
romagnet, the Heisenberg model gives the spin-wave
energy as'

E(k)=Dk (13a)

with

D =SzJa /3, (13b)

where J is the exchange coupling constant between
the nearest-neighbor pairs, S is the localized atomic
spin, a is the nearest-neighbor distance, and z is the
number of the nearest neighbors. If the expression
for Tc obtained in the molecular-field approxima-
tion, ' i.e.,

Tc=[2S(S+ 1)/3ks]zJ (14)

is used to eliminate zJ in Eq. (13b},it is possible to
relate D and T~ as follows:

D =[ksa /2(S+1)]Tc . (15)

Equation (15) evidently shows that a D vs Tc plot
should be a straight line which passes through the
origin. Thus, the nearest-neighbor Heisenberg
model also cannot provide an explanation for the in-
tercept Dp observed in Fig. 3. We will return to this
point below. The next step is to see if this model
can correctly predict the observed slope. Using
a=2.55 A, Eq. (15} gives the slope, m =D/Tc,
values of 0.140 and 0.187 meV A K ' for S=1 and
S = —,, respectively. The former slope value is in ex-
cellent agreement with that determined experimen-
tally. A firm support to the argument that this
agreement between the observed and predicted slope
value is not just a coincidence is provided by the
theoretical calculations ' based on the nearest-
neighbor Heisenberg model. These calculations give
the numerical value for the normalized coefficient
+3/p in Eq. (5) as 0.587 for S = —, and 0.5 12 for
S=1. A glance at Table I reveals that the experi-
mental values agree strikingly well with those es-
timated from a nearest-neighbor Heisenberg model;
the present values being closer to the theoretical

l
value for S=1 than that for S = —,. Such an agree-
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ment between the theoretical and experimental
values looks more convincing when the above
Heisenberg values are compared with those observed
for crystalline Fe and Ni (see Table I).

Thomson and Thompson have recently shown
that the T behavior of the low-temperature heat
capacity, magnetization, and resistivity observed in
crystalline CuMn, AgMn, AuMn, and PdMn spin-
glasses can be understood in terms of a simple spin-
wave model in which the neighboring spins are
correlated through the Ruderman-Kittel-Kasuya-
Yosida (RKKY) interactions. Now that the spin-
glass behavior has also been observed in the amor-
phous transition-metal —metalloid alloys on the
nickel-rich side, ' it is logical to think that the
RKKY interaction may give an important contribu-
tion to the low-temperature magnetization behavior
for the present alloys too. Starting from a Hamil-
tonian which involves, in addition to the direct
nearest-neighbor Heisenberg exchange, the indirect
exchange interaction of the RKKY form, we show
in Appendix A that the introduction of the RKKY
interaction leads to a finite value of Dp but contrary
to the present observations this value is not only
negative but also negligibly small. From this result,
we conclude that the RKKY interaction has a negli-
gible role to play so far as the exchange mechanism
leading to the observed magnetization behavior of
the present alloys is concerned.

Other possible forms of exchange interaction that
are also expected to result in a finite value of Dp
could be either the Heisenberg interaction which ex-
tends beyond the nearest-neighbor distance or the
superexchange interaction between the next-nearest-
neighbor magnetic atoms mediated by a metalloid
atom separating them, or both. In Appendix B, we
treat the general case where the nearest-neighbor
and the next-nearest-neighbor spin pairs interact
through an exchange interaction of the Heisenberg
form with the corresponding exchange coupling con-
stants denoted by J~ and J2, respectively, and arrive
at the same relation between D and Tc as Eq. (10)
with the following expressions for the slope, m and
the intercept Dp.

m =kza &/2(S+1) (16a)

and

Do ——z2J2(a 2
—a

~ )S/3, (16b)

where a& and aq are the nearest-neighbor and the
next-nearest-neighbor distances, and z2 is the
number of the next-nearest neighbors. While Eq.
(16a) gives the observed slope value for S=1 and
a~ ——2.55 A, Eq. (16b) can be used to estimate the
value of J2. Taking a ~

——2.55 A, a2 ——4.35 A (corre-
sponding to the first and second peaks in the radial

distribution function ), z2-=6, S=l, and De 27——
meVA~ {the observed value), the value for J2 comes
out to be -1.1 meV.

Theoretical attempts to fit a wide variety of
experimental data taken on Fe,Co,Ni yield the
values for the nearest-neighbor exchange coupling
constant J& in the range 10—50 meV. Similar ef-
forts to estimate the value of J~ in amorphous fer-
romagnetic alloys are relatively few in number.
From our earlier magnetization study on amor-
phous (Ni& „Fe„)soBpo and (Ni~ „Fe )soP~4Bs al-

loys, we find that the values of J~ deduced using the
relation

(J)=(1—x)'JN;N;+2x(1 —&)JFeNi+& JFeFe

also fall within the above-mentioned range. A com-
parison between the estimated values of J& and J2
reveals that J2 in such amorphous systems is at least
I order of magnitude smaller than J&. Assuming
the functional dependence of the exchange integral J
on distance r of the form

J(r) =J
~ exp I a [(r/a ~ )—1]J

with J(r)=0 for r&1.25a~, Krey, within the
framework of the Heisenberg model, has shown that
with increasing ~a~ for negative values of a,Tc de-
creases, the normalized coefficient B3/2 shows a
weak increasing trend while the reduced coefficient

C5/2 remains practically constant, and the tempera-
ture range over which the (T/Tc) / term dom-
inates becomes wider whereas for positive values of
a, these parameters exhibit the opposite trend. Our
observations (i) and (iii) conform very well with the
theoretical variations predicted for Tgs B3/2 C5/2p
and (T/Tc)~, „by Krey's theory for negative
values of a. Again, such an agreement between the
theory and experiment is consistent with the finding
that the estimated values for J& and Jt, when used
in the above expression for J(r), yield the values of
a in the range from —3.3 to —5.5. Considering the
fact that J2 &&J&, it is not surprising to find that a
nearest-neighbor Heisenberg model gives a fairly
good description of the low-temperature magnetic
behavior of amorphous ferromagnets.

Although the extended Heisenberg model is cap-
able of giving a plausible interpretation for the
parameters (m, DO) in the empirical expression, Eq.
(10), it does not provide a straightforward explana-
tion for the observation that for crystalline fer-
romagnets, where the exchange is presumably as
long ranged as in the amorphous counterparts,
Dp=-0. In the text below, we suggest that this in-
consistency can be removed in case that superex-
change interactions that favor a parallel alignment
of the next-nearest-neighbor spin pairs exist in
amorphous ferromagnetic alloys containing metal-
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loid atoms.
Superexchange interactions brought into play by

the presence of metalloid atoms in these amorphous
materials are expected to lead to an antiferromag-
netic coupling between the moments of the next-
nearest-neighbor transition-metal atoms, and their
strength can be comparable in magnitude to that of
the direct Heisenberg exchange between the nearest
neighbors. In view of Eq. (16b), the superexchange
interactions of this type should result in an
anomalously large negative value of Do. This pre-
diction directly contradicts the observed behavior,
and hence we conclude that such interactions cannot
be present in the alloys in question. However, we
cannot rule out the existence of the superexchange
interactions that favor a parallel alignment of the
spins localized on the next-nearest-neighbor sites
and give a major contribution to the next-nearest-
neighbor exchange interaction J2 that we observe. If
such interactions exist, it is easy to understand as to
why Do=-0 only for crystalline ferromagnets and
not for the amorphous ferromagnetic alloys.

Finally, we return to the apparent paradox that in
spite of a nonlinear relation between 1/B and T~
[Fig. 2(b)], a direct correlation exists between D and
Tc (Fig. 3}. With a view to resolve this apparent
discrepancy between the plots depicted in Figs. 2(b}
and 3, Eqs. (3) and (10) are combined to yield the re-
lation

1/B =[M(0)/gpttg( , )](4am/k—tt) Tc

X [1+(D,/rnTC)]'" . (17)

If Tc is allowed to vary while keeping all other
parameters [including M(0)] that appear in the
above relation constant, Eq. (17) predicts that
(1/B) cc Tc only when Do ——0, whereas a nonlinear
relation between 1/8 and Tc should exist when Do
is finite. So it is not obuious from Eq. (17) as to how
one can reconcile to the present situation (Do+0)
where a relation (1/B)cc Tc [dashed line in Fig.
2(b)] holding at low Tc is no longer valid at high Tc
(where 1/B increases at a much faster rate than that
suggested by the Tc power law) unless one realizes
that there is a strong correlation between M(0),
which differs widely from one amorphous alloy to
the other, and [1+(Do/mTc)] ~ . This is easily
verified as follows: The values Do ——27 meVA,
m=0. 144 meVA2K ', and those of M(0}, g, and
Tc given in Table I and Ref. 5 for different amor-
phous ferromagnetic alloys when used in Eq. (17)
lead to the 1/B values, denoted in Fig. 2(b) by
crosses, which are found to reproduce remarkably
well the observed functional dependence of 1/B on
Tc [see Fig. 2(b)].

IV. SUMMARY AND CONCLUSIONS

The results of magnetization measurements per-
formed on amorphous ¹irich transition-
metal —metalloid alloys from 4.2 to 300 K at various
constant applied magnetic field values in the range
from 3 to 15 kOe when analyzed with caution yield
reliable values for the magnetic and spin-wave
parameters which, in turn, are found to exhibit a
systematic trend as a function of the Curie tempera-
ture T~. This trend conforms very well with that
predicted by a spin-wave theory based on the
nearest-neighbor (NN) Heisenberg model. Of partic-
ular interest among the observed relations between
various parameters and Tz is the direct correlation
D =Do+ m Tc observed between the spin-wave stiff-
ness coefficient D and T&. This relation has been
discussed in terms of the theories based on the
collective-electron and the NN Heisenberg models.
While both the models utterly fail to explain the fi-
nite value observed for Do, the latter model gives the
correct slope value m for S=1.

In order to arrive at the exchange mechanism re-
sponsible for a finite value of Do, we have con-
sidered two cases within the framework of the
Heisenberg model: (i) when both the RKKY and
direct NN exchange interactions are simultaneously
present and (ii) when the direct exchange interaction
involves not only the nearest neighbors but also the
next-nearest neighbors. We have then calculated the
modified spin-wave dispersion relations with the re-
sult that a negative but negligible value for Do is ob-
tained in the former case whereas in the latter case a
positive finite Do value results if the nature of ex-
change interaction is such that it favors a parallel
alignment of spins localized on the next-nearest-
neighbor (NNN) sites. The value for the slope m
predicted by a NN Heisenberg model is shown to
remain unaffected when in addition to the direct
NN exchange, either the RKKY or the NNN ex-
change interaction is also included. With the use of
the typical values for different parameters appearing
in the theoretical expression obtained for Do in the
second case [Eq. (16b}],the NNN exchange coupling
constant is found to be at least 1 order of magnitude
smaller than the NN exchange coupling constant.
This finding is consistent with the fact that a spin-
wave theory based on the NN Heisenberg model
gives a fairly good description of the low-
temperature magnetic behavior of the present amor-
phous alloys. Arguments are put forward to show
that the superexchange interactions leading to an an-
tiferromagnetic coupling between the moments on
the NNN transition-metal atoms cannot exist in the
alloys in question. In addition, Stoner single-
particle excitations have been shown to give a negli-
gible contribution to the temperature dependence of
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magnetization in these alloys.
Finally, the measured variation of the spin-wave

energy gap with the applied field strength permits
the determination of g values which are found to be
in excellent agreement with their corresponding
values obtained from the ferromagnetic resonance
experiments on the same or similar amorphous fer-
romagnetic alloys. and

Jp ———(9ir /2)AZ

~ =[
I J.s(O) I

'/&F)

Hsd = —g g JpF(2kpR~» )S~ 'S»
n n+m

with
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APPENDIX A

H =Hz+H~+Hs

where

H» = gPaHo—g S(»

(Al)

The Hamiltonian of interest is the sum of contri-
butions arising from {i)H„ the interaction of the lo-
calized spin with the external magnetic field direct-
ed along the z axis, the quantization direction; (ii)

H~, the direct exchange interaction between local-
ized spins; and (iii) H~, the indirect exchange in-

teraction between localized moments brought about
by conduction electrons, usually referred to as the
RKKY interaction:

F(x)=(x cosx —sinx)/x

Here Z is the valency and R „=
I R~» I

=
I
R —R„

I
while the remaining symbols have

their usual meaning. If we now restrict the direct
exchange to the nearest neighbors only and denote
the exchange coupling between the spin localized on
the site i and its z nearest neighbors at positions 5
relative to i by J, the exchange interaction Hdd be-
comes

Hee= —JQQS; S,.+s
i

= —Jg g[(S;+S,.+ s +S; S,.+~ s )/2
i

+S S(+s).~

Transforming the operators S+,S, and S, to b k

{magnon-creation) and b k (magnon-annihilation)

operators and neglecting for the low-lying excita-
tions the fourth- and higher-order terms in magnon
operators, the various contributions to the Hamil-
tonian H reduce to

H~ —gg JJS;——S~,
H, = gp, sH pNS +—gIJ sHo g b -„b k (A2)

and
(N being the nuinber of localized sites in the total
volume V). We have

(k k') R

l kk' kk'

k' ~ R

kk'
S —N 1 ~ '(k —k ). Ri i(k —k') S6~-b

k k'
kk'

i( k —k '). Ri
Using the relations g, e '=Nh(k —k ') and [b k, b k,]=5 (, k „
=z ' g s

e' " 's =y k, and noting that g-„y-„=O, the above expression simplifies into

Hdd = NzJS +2zJS g ( I —y k
—)b k b ~

k

defining y k

(A3)

In the long-wavelength limit, i.e., I

k.5
I
«1, y-„=1—(apk) /z for cubic lattices of lattice constant ap, and

Eq. (A3) takes the form

Hee= NzJS +2JSQ (a()k) b q—b ~ . (A4)

In case we neglect the boundary effects so that the spatial sums can be carried out independently, i.e.,



27 LOW-TEMPERATURE MAGNETIZATION AND SPIN-WAVE . . ~ 5771

and adopt the same procedure as above, H,~ finally reduces to

H~ = JpN—S g F(2krr) —JpS g QF(2kpr)e
' +2 g F(2krr)e

' —g F(2 kp r} b gb p
r k r r r

(A5)

Breaking the sum over r into a sum within a sphere of radius b plus an integral over the rest of the sample and

realizing that for the magnon wavelength A, &&b, the sum for a cubic crystal is zero and the sums over r ap-

pearing in Eq. (AS), in the limit b~0, simplify as follows:

QF(2k~r)=4m(N/V) f [[(2kFr)cos(2kzr) —sin(2krr)]/(2krr) ]r dr .

Introducing y =2kFr,

g F(2krr) =4n (N/V)(2k') f [(y cosy siny)/y —]dy
r

=4m(N/V)(2k') ' f (»ny/y)dy
dy

= —4n (N/V)(2kF ) (A6)

For
~

k. r
~

&& 1, e' "' can be expanded into a power series in ( k r ). Retaining only the terms up to (k.r),
we get

QF(2krr)e'"''= QF(2krr) e(N/V)k —f r F(2krr) f u du dr
r r

= QF(2krr) —(2n'/3)(N/V)k f [[(2kFr)cos(2krr)

—sin(2krr)]/(2kFr) ] r dr

= QF(2krr) —(2n /3)(N/V)k (2k') f (y cosy —siny)dy

= QF(2kFr)+(4m /3)(N/V)(2k+) sk2 . (A7}

The total Hamiltonian can now be written as

H =Ep+ QE(k)b „b-„

with

Ep — gpsHpNS N—zJ—S2 (3AZ/4—)S(NS+—1)+(3AZ /128m )NS

and

E (k) =gpsHp+Dk

where

D =(SAZ/SkF)+SzJa /3

(A8)

(A9)

(A10)

and a is the nearest-neighbor distance. Equations (A8)—(A10}have been obtained in this form by using the re-
lations

$( )=[V/(2n ) ] f d k( )
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and {nIV)=kp/3n, where n is the number of electrons, and Eqs. (A6) and (A7). Equation (A9) is nothing but
the usual ferromagnetic magnon-dispersion relation with the spin-wave stiffness coefficient D given by Eq.
(A 10}.

Next, we proceed to obtain the expression for the Curie temperature Tz in the molecular-field approxima-
tion starting from the Hamiltonian given by Eq. (A 1}.In the molecular-field approximation, Hamiltonian (A 1)
can be written in the form

Hp = gjis—HpN(S) zJN—(($)) —[JpN((Sj) l2) g F{2k+R „)

or (Hsi/V) = HpM ——(Allf /2), where M =(NIV)gjis($ ) and
r

A, =[2zJI(NIV)g hajji]+ (Jpl(N/V)g pji) g F(2kpR~„}

8+Nl

With the aid of the well-known molecular-field relation, Tc AC,——where C = [g psS{S+1)/3ks](N/V), and
Eq. (A6), we obtain Tc finally in the form

Tc (2/3ks )—S(S+ 1)[zJ +(3AZ/8) ] .

From Eqs. (A10) and (Al 1), D and Tc can be related as follows:

D=Dp+mTc ~

where

Dp = —(SAZ/8)(a —kp )

(Al 1}

(A12)

(A13)

rn =[ksa /2(S+1)] . (A14)

Using the typical values a=2.55 A, k~-1.5 A ', Ez-10 eV, Z=1, S=1, and J&(0)=0.1 eV, we obtain
Dp ——0.76 meV A2.

In order to obtain the maximum value of Dp, we restrict the RKKY interaction to the nearest neighbors
only. In this case, the Eqs. (A8), (A10), (Al 1), and (A13) are modified to

Ep =Ep +(3AZ/4)S (NS + 1 )[sin(2kj, a )l(2kFa)]
—(3AZ /256m }NS[(2kFa)sin(2kpa) +2 cos(2kFa)],

D'=D —(SAZ/8kF }[(k~a)sin(2k+a)+cos(2k+a}],

Tc Tc (AZ/4ks ——}S(S—+ 1)[sin(2ki;a) l(2kF a )],
Dp =Dp —(SAZ/8 )[(a /2ki; )sin(2k+a) +cos(2ki, a)Ik~]

(A15)

(A16)

{A17}

(A18)

where Ep, D, T~, and Dp are given, respectively, by
Eqs. (A8), (A10), (Al 1), and (A13). Substituting the
values for various parameters as done previously for
Dp in Eq. (A18}, we get Dp ———0.87 meVA'. Re-
cent resistivity calculations 8 on such amorphous
transition-metal —metalloid alloys have shown that
for these alloys the more appropriate value for Z is
approximately equal to 2. Even with this value of
Z, the maximum value for Dp comes out to be
—1.75 meVA. We therefore conclude from the
above calculations that the RKKY interaction gives
a negative but negligible contribution to the inter-
cept on the ordinate of the D vs T~ curve.

APPENDIX 8
We now consider the case when the Heisenberg

exchange interaction between localized spins in-
volves not only the nearest neighbors but also the
next-nearest neighbors. The Hamiltonian of interest
is then

H = gjjjiHp g Sa—g g Jij Si 'Sj

If the spin localized on the site i has z& nearest
neighbors and z2 next-nearest neighbors positioned
at 5& and Sq, respectively, relative to i, and if the
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corresponding exchange coupling constants are J~
and J2, the Hamiltonian (Bl) takes the form

H = gp—itH p g S —Ji g g S; S,.~ s

where D is the spin-wave stiffness coefficient and

Eq. (B4c) represents the normal ferromagnetic spin-

wave dispersion relation.
For bcc and fcc lattices, Eq. (B4d) can be rewrit-

ten as
—J2+QS; S,.

i
(B2} D =(z~J&a ~ +z2J2a2)S/3, (B5)

H = gpttH—pNS —(zi Ji +z2Jp)NS

+gpttHp gb t,b-k+ 2z, JStQ(l y-„)b—-„b i,
1

k k

+2ziJiS g (1—y k )b kb-„, (B3)

where

y'-„=zi ' g exp(ik. 5i}
5)

and

y-„=zz '+exp(ik 5z} .
5~

In the lang-wavelength limit, i.e., ~
k 5i

~
&&1 and

~

k.5z
~

&&1, y'& -—1 —(apk)2/zi, and y&
-—1

—(apk) /z2 for cubic lattices of lattice constant ap,
and Eq. (B3) finally simplifies into

H =Ep+ Q E(k)b-„b-„ (B4a)
k

with

Transforming to magnon operators and neglecting
the fourth- and higher-order terms as done previous-

ly in Appendix A, Eq. (B2) reduces to

3,=2(zi Ji+z2Ji)/Ng is, tt .

Employing the molecular-field relation

Tc=ANg pttS(S+I)/3ktt,

we obtain Tc as

Tc [2S(S+I)/——3ktt](zt Ji+ziJi) . (B6)

Equations (B5) and (B6) can now be combined to
yield the following relation between D and Tc.

where a& and a2 denote the nearest- and the next-
nearest-neighbor distances, respectively. Note that
the first term in Eq. (B5) is also valid for the simple
cubic lattice whereas the second term is not.

In order to obtain the expression for the Curie
temperature Tc in the molecular-field approxima-
tion, we start with the Hamiltonian (Bl) and adopt
the same procedure as in Appendix A. With the use
of the molecular-field approach, the Hamiltonian
(Bl) can be written in the Weiss form as

(Hw /V) = —M [Hp+ (A3f /2)]

with

M =Ngistt (S), N=N/V

and

Ep = gpttHpNS —(zi J—i +zz J2)NS

E(k) =gpttHp+Dk

D =2(J, +J2)Sap,

(B4b)

(B4c}

(B4d)

D =Do+mTc

where

Dp ziJi(a i —a——i )S/32 2

and

ttt =ktta t/2(S+1) .

(B7)
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