
PHYSICAL REVIEW B VOLUME 27, NUMBER 9 1 MAY 1983

Short-range spin-glass model with discrete bonds
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The replica-trick method and an infinite-order summation have been used for the theoret-

ical description of the spin-glass-state model with discrete and chaotic bonds in a simple cu-

bic Ising lattice. A new order parameter defined with the use of the four-spin correlation

has been introduced and in this approximation the entropy of the spin-glass state at T=O is

zero. The characteristic thermodynamic quantities and the phase diagram have been ob-

tained for different temperature regimes at equal concentrations of the negative and positive
bonds.

I. INTRODUCTION

The theoretical treatment of the spin-glass state
(SG) has received a great deal of interest in the last
few years. The simple case of the system consisting
of a spin coupled by a random infinite-range interac-
tion, distributed with a Gaussian probability, has
been treated by Edwards and Anderson' using a new
order parameter. The problem has been recon-
sidered by Sherrington and Kirkpatrick, Thouless,
Anderson, and Palmer, and other authors. The
stability of the spin-glass model treated in Ref. 2 has
been analyzed by Almeyda and Thouless, Pytte and
Rudnick, and Chen and Lubenski, and in order to
overcome the difficulties which appeared the idea of
the replica symmetry breaking has been introduced.
The new models proposed by Parisi, Bray and
Moore, and other authors' '" present other incon-
sistencies in spite of the sophisticated mathematical
methods used.

On the other hand, the experimental investiga-
tions on some compounds suggested the existence of
the spin-glass state, which appears due to the short-
range discrete interaction between the magnetic mo-
ments. The attempt to describe the spin-glass state
with the use of the Sherrington and Kirkpatrick
method gives rise to real mathematical difficulties. '

In this paper we try to explain the spin-glass
behavior of the compounds Co(Ss Set „)2 and
CrTe~ „Sb„observed by Adachi et al. ' and Lotger-
ing and Goster. ' The main idea of the model is the
existence of the competitive ferro- and antifer-
romagnetic interactions between the nearest-
neighbor magnetic atoms. Indeed, in Co(S„Se& „)2
the Co atoms situated in the fcc lattice sites have six
metalloid nearest neighbors which form a nearly oc-
tahedral ligand. Between all adjacent Co atoms are
intercalated a nonmagnetic atom, which can be S or

Se. These nonmagnetic atoms mediate a superex-
change, and the Co-S-Co interaction is ferromagnet-
ic, but the second interaction Co-Se-Co is antifer-
romagnetic. Thus we have competition between two
different interactions, which may give rise to the
spin-glass state. A simple model which will describe
our spin-glass state can be imagined as consisting of
a lattice which contains two kinds of nonmagnetic
atoms that mediates a ferromagnetic and an antifer-
romagnetic interaction between the magnetic ions.
We will denote one of these interactions by Iz
(which will be called bond), and let us consider that
the concentration of the Iq bonds is n~/n =1—c.
The other type of interaction will be described by
the nz coupling constants Iq and will have the con-
centration c =n2/n. If Iz and Iz have different
signs, the system is frustrated, and for a lattice with

y sites the frustration probability is given by the fol-
lowing equation' if y &5:

p =yc(1 —c)"

+—(y —1)(y —2)c'(1—c)"
6

We consider that between the nearest-neighbor
magnetic atoms which are responsible for the mag-
netic behavior of such compounds as Co(S„Se~ „)
and CrTe& „Sb„, with competitive ferromagnetic
and antiferromagnetic interactions, the density of
probability for two kinds of bonds Iq and I~ is

P(Jtt ) =(1—c)5(Jtj Iq )+c5(J~ Itt ), — —

where Jtj J(R,J ); and R—,—J ——
~
R; —RJ ~

-a, where a
is the lattice constant. In this model the disorder is
given by the bond distribution, which is chaotic, and
there are no problems with the equivalence between
this model and the model with the site disorder.
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Such problems appear for the long-range cases."
The occurrence of the spin-glass state in a system
with short-range interactions can be treated by using
the interactions between nearest-neighbor atoms, but
using for this interaction a Gaussian density of
probability. In the critical region there are no
differences between these two models, ' but far from
the critical region there are essential differences' as
at the low temperatures.

Before presenting our model we will discuss the
main results obtained by different authors for the
problem of the magnetic order given by the short-
range discrete interaction. In the first papers treat-
ing the disordered ferromagnet with short-range in-
teraction, Katsura et al. and Veno and Oguch' and
later Matsubara and Sakata' did not use the spin-
glass and frustration concepts.

Important results have been obtained by Grinstein
et al. by solving the one-dimensional Ising model
and by Veno and Oguchi ' for the random Ising
model with Iq ——~Is ~. They predicted the oc-
currence of the spin-glass phase for the intermediate
range of concentrations. Katsura also obtained an
analytical result for Iq ——~Is

~

but in Ref. 22 the
magnetic susceptibility presents a singularity in the
zero-temperature limit. The model with IA&

~
Is

~

has been treated by Medvedev in the molecular
field approximation, and a critical temperature was
obtained (similar to the freezing temperature of Ref.
2), which is different from zero for Iz ——I~, thus in
absence of frustration, indicating an incorrect result.

Medvedev started with a density of probability
given by Eq. (2), but all his calculations have been
performed with different supplementary supposi-
tions about the quantities that have to be calculated,
in spite of the fact that all averages must be per-
formed for this model using Eq. (2).

The two-dimensional Ising model with random
bonds have been studied by Jayaprahash et al.
using the Migdal-Kadanoff recursion relation and
a maximum in the specific heat above the ferromag-
netic critical temperature was obtained; this max-
imum can be caused by the short-range order.

Grinstein, Jayaprakash, and Wortis reconsidered
the analysis from Ref. 28, and using an expansion as
a function of the concentration, obtained for T =0
and Iq ——~I~

~

a spin-glass state, above a critical
concentration. Different attempts concerning this
problem are contained in Refs. 29 and 30.

The theoretical treatment of the three-dimensional
model is poor and does not contain any relevant re-
sults. For T&0 the majority of the results have
been obtained for I„=

~
I~ ~; even if these results are

interesting, they are not enough to obtain the phase
diagram with the parameter Iz/I~. The calcula-
tions performed by Medvedev ' in order to obtain

the phase diagram contained too many approxima-
tions and it is considered a very difficult solution to
this problem.

The Monte Carlo simulations have been extensive-
ly used in order to study the spin-glass state given
by the short-range discrete interactions. These
simulations reproduce generally the ex'perimental re-
sults, but we must note that these results reflect an
obvious ambiguity. ' All the theoretical descrip-
tions ' try to demonstrate the correctness of a
model by comparing the results obtained by the
Monte Carlo simulations. The common feature of
these simulations is contained in Refs. 17 and 34;
the main result consists in the fact that the spin-
glass phase defined in Ref. 17 can appear above a
critical concentration. However, recently Morgen-
stein and Binder, performing a static and dynamic
average, obtained an interesting result, namely, that
the order parameter defined by Edwards and Ander-
son' vanishes below the freezing temperature for the
models in two and three dimensions. This result can
be explained as follows: For a finite time of the
simulation the system will remain near a metastable
minimum. For small simulation time the metastable
minimum will give a nonzero value for the order
parameter, but the average order parameter given by
these metastable minima gives a zero value in two or
three dimensions.

Kirkpatrick and Young, using the results from
Ref. 35, introduced a new order parameter related to
the four-spin correlation (S; SJ~SrSJ ), where
a,P, y, 5 are the replica indices. With the use of the
Monte Carlo simulation it was shown that a spin-
glass phase characterized by the new order parame-
ter can appear. In spite of the fact that this idea
seems to be useful in the theory of the spin-glass
state, Kaplan, performing analytical calculations,
obtained interesting results that the number of the
metastable states in the one-dimensional Heisenberg
model is zero, and concluded that a large number of
low-lying minima in certain vector-spin models are
without physical foundation. All these results,
which have been considered in this short review of
our paper, demonstrate that the results obtained by
the Monte Carlo simulation can be a basis for a dis-
cussion of some analytical results, but cannot be the
decisive test of the validity of one model or of a
method.

In Sec. II we wi11 use the replica-trick formalism
for a short-range model with I&+I~ &0, but the
summation will be performed considering an infinite
number of terms. The calculation performed in Sec.
III following the Edwards and Anderson' method
will reproduce even the unphysical Sherrington and
Kirkpatrick result. In Sec. IV we will use the new
order parameter introduced by Kirkpatrick and
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Young in order to describe the new spin-glass
phase. Section V contains the discussions of these
results.

II. THE MODEL

We start with the Hamiltonian

4 = —g' J~)S;SJ Hg—S;, S;= + 1 (3)

which describes the Ising cubic lattice of spins,
which are randomly distributed and which interact
by the exchange integral JJ. The suminations in (3)
denoted by g' mean that we consider the spin-spin

I

P(JJ ) =(1—c)5(JJ I„)+—c5( J& Is) .— (4)

In the thermodynamic limit, the free energy of the
system can be written in the replica-trick formalism
as

interaction at the distance
l
R; —R& l

=a, where a is
the lattice constant. Then we have g',"1=Nz,
where N is the number of sites and z the number of
the nearest-neighbor bonds per site, v will be the
number of the nearest-neighbor bond for a magnetic
atom; we will call v the number of active bonds. In
the Hamiltonian (3} H is the external field and JJ
the random coupling constant distributed according
to the density of probability

f= —ksT lim lim Tr„ f g'[P(J,J)dJ;J]exp
N~co n~O AN

(5)

where

= —g' J; S; Sq Hg S;~,—P =
k~T

(6)

a is the replica index and Trn denotes the trace, which will be performed separately in each of the n replicas.
Using the results given by Eqs. (Al), {A10},and (Al 1},we get for (5} the equation

k

f= ksT lim —lim Tr„exp PHQS; + g' g ai, P+S;SJ
N~ce n~O )lN

&a
~ ~ ~ 7 ~

lJ k=1 a

where

c (1 c}fi,(c)—
a, ={1 c)Ig+cIs, ak lk—&2=

i
(I„Is)". —

From (All) we can see that the function fq(c) is a polynomial of a (k —2) order in c. Another important ob-
servation is that in the three limiting cases c =0, c =1, and Iz ——Iq the two or the superior replica interaction
terms in the free energy (7) vanish and then the spin-glass state cannot appear.

In this paper we will be interested in obtaining the phase diagram and other thermodynamic quantities at
T&0 for different values of the ratio Iz/Iz. The phase diagram for the systems, which can be described by
"Iq —I~ model, "' ' has been obtained for c = —,. This concentration is above the critical threshold obtained
for Iq ——

l
I~

l
at T=O. The spin-glass phase defined in the Edwards and Anderson sense may appear for any

favorable values of the parameters T and Iz/Iz. It is clear that it is easier to study this problem if we fix
1

c =—,; using (A16), we get for the free energy

OO n

f= k&T lim lim — Tr„exp PHQS; +aiPQ'gS;SJ +g' g a2~ P+S;SJ
ij a ij k =1 a

The interaction within the saine replica gives rise to the magnetization I = &S; & and

y'S;S, =—2y'(&S; &S, ——,'&S; &&S,'&) .

2k

(10)

If we define

T2i, g' g Sg SJ. ——
ij a

2k

then, Eq. (9) becomes
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f= k—&T lim lim exp( —zNna~Pm )Tr„exp P(H+2a~zm) gS;+ g azkP
w ~~ onN ia k=]

(12)

From this equation we can see that in order to calculate the free energy we have to calculate explicitly the term
Tqk. Next, we will consider the contribution of this term up to infinite order. Before performing such a calcu-
lation with the new order parameter introduced in Ref. 36, we will present the results obtained using the
Edwards-Anderson approximation, but for the short-range model.

III. EDWARDS AND ANDERSON APPROXIMATION

We obtain the Edwards and Anderson approximation if the term Tzk given by Eq. (11) is written as

T g g S l. . . S 2kS I. . . S 2k

'J ~&'''~ca

=2+' g ((S;' S;")S' S'"——(S;' S;')(S'. S'")) (13)

and the 2k replicated average can be expressed as

k

1=1

where

{14)

(15)

is the Edwards and Anderson order parameter. ' After some algebra we get from Eqs. (13)—(15)
'2 k

T~k=vg n(1 q)+q g—S; Nz[n+(n——1)nq ]" (16)

and from (A14)—(A19)

hu(g) '

exp vg g P(I~ Is)vq gS;—
{2k)!

'2k
We= f P&[J}d[J}exp [Jj [I& Is i

g—S;
ia

where P~(J) has been given by (A19) and
T

f,„,P, [ jJd[J}f([J})—= f g[P, (J;)dJ;]f gJ;
i=1 i=1

(17)

On the other hand, in Eq. (12) the contributions containing n& with p &2 vanishes for n~0 and we obtain for
the free energy the equation

f= ksT lim lim —~ exp[zNnaqP (1 q) zNna&Pm—]-
@ ~n on%

II"—Is IXTr„ f.,
P&{J}d[J}expP H+2a&zm+[Jj vq gS —1, .

ia

{19)

In this case the average of the configurations reduced all the problems to a one-site problem. In fact, if one
spin in the Iq —I~ model interacts only with v nearest-neighbor bonds we have for one spin only v active
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(20)

bonds, which can randomly take the value Iz or IB. This means that in this model, and using the Edwards-
Anderson concept of the order parameter, the average of the configurations can be performed using Eq. (4)
over all v active bonds.

From the free energy given by (19) we obtain in the usual way'i the following equations:

Ii (1—q}f=zIpm z — kz—T f Pi {Jj1{J j ln(2 coshX },
2kBT (v)

ksT f Pi {Jjd {J j(tanhX ) {Jj,
m= f P i{ Jjd{ Jjt anhX,

q=1—

where

I~+Is
I I„Is I

—
1Ip= I

2
'

2
'

kBT
X= (vmIp+H+ {JjIi~q) .

From (20}—(23) we obtain the internal energy U and the entropy S of the system,

2
2 zI1

U= —zm Ip+mH+ (1—q )
kBT

(21)

(22)

(23)

(24)

m(vmIp+H)S=-
T

I1 z
i(1—q)(3q+1)+k, f P, {Jjd {Jjln(2cosh&) .

2kBT2 (v)
(25)

With these results and using (B5)—(B7) we can cal-
culate the magnetic susceptibility in the high-
temperature limit. The phase diagram obtained in
this way is given in Fig. 1. The order parameter q
can be calculated at the transition from the phase
with q+0 and m =0 (the spin-glass phase) in the
paramagnetic phase with m =0, q =0. In this ap-
proximation we get

Xp

kB T—vIpXO

Pi{Jjd{Jj
Xp-

cosh X m =8=0

(27)

At the transition from the paramagnetic phase to
the random ferromagnetic phase (q+0, m&0) we

obtain
160 Tf 4I1

q—= 1—,kBTf ——
141 T ' v 3

(26)

The occurrence of the cusp in the magnetic suscepti-
bility will be given by the following equations:

m =3

T
'

Tf

Tf 8

vIp
C

C B

(28)

2 T
'

q=m
f

2 —1

T —1
Tf

(29)

From Eq. (27) we can see that at the transition point
between the spin-glass and random ferromagnet the
magnetic susceptibility is divergent.

Using Eqs. (B8)—(B10)we obtain

15 kBT 5 1
q =1—,m —=—+ Uexp ——,T~O48Iv T

0.5 1

FIG. 1. The phase diagram for the Edwards-Anderson
approximation. Ip/I, =(I„+Ia)l

~
Ig Ia

~

. —and the entropy becomes

(30)
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kg 128

It can be proved that the heat capacity presents
linear temperature dependence in the low-
temperature domain. The heat capacity showed a
cusp at Ty, but in this case this behavior can be con-
sidered as a characteristic feature of a concentrated
spin-glass.

Thus, in this section we showed that the Edwards
and Anderson' description gives similar results with
the Sherrington-Kirkpatrick' mean-field solution
for the long-range case. If we analyze the
Edwards-Anderson method applied to this model,
we must note that in the explicit calculation of the

Tik terms of Eq. (13) and 2k-order replicated aver-
age, given by Eqs. (14) and (15), we assumed that
only the Edwards-Anderson one-site averages are
different from zero and all the other spin correla-
tions vanish. The reason for this approach is the
tradition of the spin-glass theory, and in fact this
approach is supported by the results ~resented in
Refs. 1—7, which seem to be overcome. ' In Sec.
IV we will try to solve the difficulties that appear in
the traditional theory, using a new order parameter
that will give zero entropy for T =0. This impor-
tant result is in agreement with the Monte Carlo cal-
culation, but it has been obtained using an infinite
summation; with this approximation we will obtain
better results than the mean-field approximation.

IV. DESCRIPTION WITH THE NEW ORDER PARAMETER

The T2k terms from Eq. (11) can be treated in such a way that the introduction of the two-site —four-spin
average becomes possible:

T2k —2y' y [ (s. 's. ~ ~ ~ s. ik 's. i )s. 's. ~ ~ ~ s. k 's.
iJ' a, a2&

—-'(s 's ' s "-'s ")(s 's ' . s "-'s ")] (31)

To make the 2k-order replicated correlations explicit, we take in consideration the following:
(a) In agreement with the Monte Carlo simulations ' the Edwards-Anderson-type average vanishes.
(b) Without the one-replica average, from Eq. (10), which gives the bulk magnetization, the only nonvanish-

ing correlation is

Q = lim (S; SJ SPSJ')
~ ~~@, (32)

where Q is the new order parameter. In this situation, Eq. (14) becomes

P

i=1

where

1 if k=2p,
0 if k =2p+1;

(33)

and p is an arbitrary integer. Using Eqs. (32) and (33), the T2k term from (31) becomes

T2k =25I(k, 2p) g' n (n —1)+Q g S; S~ S; SJ —, [n (n —1)+Q—(n 2n +n )j—
EJ a~p

any

(34)

In the approximation of the four-spin coefficient in (34) we take into account that
——g p„5~ii5~r and that

1

g S; SzspSJ'=4 gS; Sp g Sfsj +4n g S; Sz~+n2 gS; Szs(—SJ', (ap):a&pAa &p-
apy (ap) (Q ) (ap) a+5,p, y

and neglecting the irrelevant two- and four-spin terms, we obtain

(35)
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g S; S SPSJ=n+4 QS;
a~P a
a+@

+sf'
P

'2
{36)

In this way from Eqs. (12), (34), and (36) we get

1f= k~T—lim lim exp[ zNn—aiPrn zN—na4P (1—Q)~]
N~~ n~O nN

XTr„exp P(H+2aizm)gs;

oo
' 2k ' '2k

P4k(4Q)k g S g SP
ij k=1 a P

(37)

From Eqs. (A10}—{A14}and (A19)—(A22) we have

I
h4k( —, ) 1/2 1/2 4

exp 2z g 13(I„Is)(4Q)—'~~ QS,. QS,P
k= i a P

1/2

( )
1 1 2 2 P 1

where

1/2 '

gsj d{Jijd{J2j, (38)
P

z. . . . z . z

f f„,P {JjP {J jd{J jd{J N{Jj)=f g [P (J')P {J )dJ'dJ ]f(g J'+ g J ).
ij =1 i =1 j=1

Now we can use (A10) and (Al 1) for a i and a4, and the free energy equation (37) becomes

4

f= k&T lim lim— exp —zNnPIom + P nNz(1 —Q}
1 2 1 4 2

N~oo n —+0 nN 12

(39}

+Nln f f P, {J,jP&{Jzjd{Jijd{J&j

&(Tr„exp P(H +2Iozm ) g S;
a

'2
+ {JjI,P(4Q)'" gs,

a

'2 1/4 '

Xs+
P

(40)

QS;+,
P

Performing the trace separately in all the n replicas,
[(n —2k) (n 2p) ] '+=—n —k —p for n & k,p, n ~0, we obtain

2 1/4
Tr„exp, A g S; +B g S;

and using the approximation

n n 8= g C„"exp A(n —2k)+ (n —2k) g C~exp —(—n —2p), (41)
k=0 p=o

where we consider C„defined in (Bl), and 2 and B as two spin-independent quantities. With these approxima-
tions the free energy and the equations for the order parameter and magnetization are



5754 ZS. GULACSI, M. GULACSI, AND M. CRI)AN 27

4

f=zIom —
12

zp (1—Q) —k~T f f P, [J~ jP2[J2jd[J~ jd[J zj

Xln4coshp H+2Iomz+ ' ' I~(4Q}'/4 cosh ' '
I~ p(4Q)'/

, f f„,Pi[JijP2[J~jd[Jijd[J2j[Jj
1

tanh ' ' I~P(4Q)'/ +tanhP H +2Iomz+ ' ' I~(4Q)'/
I J) &/4 fJ)

(42)

(43)

m= f f P~[ J~]P 2[ Jqjd[ J~jd[J2jtanhp H+2Iomz+ I&(4Q)' (44)

From Eqs. (42}—(44) we obtain the internal energy and the entropy of the system:

U= —[Iozm +mH+I] P (1—Q }],
S P4I 4

= —Pm(H +2Iomz) — (1—Q)(5Q +3)
kg 4

(45)

+ f f P~ [Jq jP2[J2jd[Jq jd[J2jln4coshp H+2Iomz+ Iq(4Q)' cosh Iqp(4Q)'/4

(46)

The magnetic susceptibility is given by Eq. {27}with

X,= f f, ,
P, [J,]P [J jd[J, jd[J j

1
X

cosh [P([Jj/2)I&(4Q)'/ ]

{m =0, Q =0) to the spin-glass state (m =0, Q&0)
we obtain from (B22) and (B23)

{47) where
' 1/4

{48)

The new phase diagram (Fig. 2} has been obtained
following the procedure described in Sec. III. Near
the transition line from the paramagnetic state

e-

6-

4.

iso

where a =3.924.
The Curie temperature T~, which is the critical

temperature, for the transition from the paramag-
netic state to the random ferromagnet is identical
with the value obtained from Eq. (28). The linear
temperature dependence of the order parameter Q
given by (48) and Eqs. (27) and (47) for the magnetic
susceptibility implies the occurrence of the cusp in
X(T) at the freezing temperature Tf. At T=0, the
model does not present negative entropy. Using
(B27), we obtain for T~O

S.G.

QAO

1505 1
Ig

FIG. 2. The phase diagram for the theory with the new
order parameter. Io/I~ {I„+Iq)l

~
Iq Iq

~
. ———

Q 1
z

(4Q)
—3/4

(IiP)

and using (49) in (46), we get

S/kz ——0 at T=O.

(49)
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We mention that the zero-entropy result is not a for-
tunate accident of some well-chosen coefficients in
the free energy (43). It can be proved that indepen-
dently of the numerical coefficients in the free ener-

gy, the entropy of the system will vanish at T =0.
Another characteristic of this model is that at the

transition from the paramagnetic to the spin-glass
state, the free energy variation is negative, and at the
transition point the ordered phase is stable energeti-
cally compared to the paramagnetic one:

I 4p3
5f=f

I g~o —fg=o= — Q'&o
4

At T, we have 5f&0 and

5f=f
I g~o —f I g=o
m+0 m =0

(50)

2 Tc
=zI0m 1—

T
I 4p3Q2

&0,

for T&T, . (51)

We presented an analytic description for the
spin-glass state with discrete and chaotic bonds. In
order to simplify the mathematical aspects, we treat-
ed only the case of the equal concentrations of the
negative and positive bonds. The model consists of
the Ising spins in a simple cubic lattice. We treated
in detail the case I& +I» 0 case with I» 0 and
I&&0 bonds. The replica-trick method and the
infinite-order summation have been used in order to
obtain the thermodynamic quantities. First, we
showed that in this model the Edwards and Ander-
son' results can be reobtained, in spite of the fact
that the density of probability in our case differs
from the Gaussian one, and although the calcula-
tions were not performed using a steepest-descent
procedure (and then the interchange of the %~00
and n~O limits), the Sherrington and Kirkpatrick
results with negative entropy have been reobtained.
It is interesting to mention that this conclusion
remains true if the system is frustrated as well, as in
the case, if at T=0 we have m&0 and Q+0. How-
ever, if the system is not frustrated
(I~+Ia& IIq —Is I) the entropy becomes zero at

The validity of these results for the theory of the
spin-glass needs more accurate experimental data on
compounds which may be described by the I& —Iz
model. This model can be improved and the calcu-
lations can be generalized for the c&—, case, and

taking into consideration the occurrence of the clus-
ters.

V. DISCUSSIONS

APPENDIX A

The coefficients ak from the relation

fP(J)dJexp PJ'S; SJ

where

N) 'k
=exp g ak P+S; SJ.

k=1 a

(A1)

P(J)=(1 c)5(J Iz )+c5—(J Is)—, —(A2)

T =0. This result seems to confirm the fact that the
actual difficulties of the actual stage of the spin-
glass theory is due to the Edwards-Anderson'
parameter in the frustrated system. Furthermore,
recent Monte Carlo simulation ' indicated that
the Edwards and Anderson' order parameter van-
ishes below the freezing temperature.

In our paper, following the Kirkpatrick and
Young suggestion, we have described a model in
which the order parameter is given by four-spin
correlation, and we obtained at T =0 the zero value
for the entropy. These "ordered phases" just below
the transition temperatures are stable from an ener-

getical point of view. In our model the heat capaci-
ty (C~) presents a cusp at the freezing temperature
and gives a T dependence in the limit T~O. The
cusp from C~ can be removed above Tf by cluster-
ing effects, but the low-temperature dependence is
characteristic for this model. The results concerning
the heat capacity C& are not essentially connected
with the model because the concentrated spin-glass
presents such a behavior. The definition of the or-
der parameter is not a priori fixed, and we can treat
it using this new order parameter as well as the
long-range model.

This paper takes into consideration the results ob-
tained by the Monte Carlo simulations, and in order
to get reasonable agreement with the numerical
simulations and the experimental data we defined a
new order parameter that seems to be appropriate
for this model of the spin-glass. An important con-
clusion of this paper is that the average of the con-
figurations for the short-range discrete bond model,
from the new point of view, was changed from the
average of the nearest-neighbor bonds to an average
over all nearest-neighbor atom pairs per one site.
This average presents some advantages in perform-
ing the calculation at T=O. If this definition for
the order parameter is maintained for the other sys-
tems that are in the spin-glass state, such an average
will be useful for the Iz —Iz model, giving zero
value for the entropy at T=0.
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will be determined as follows: The integral from
(Al) can be written in the form

fP(J)dJ exp g1+S; S&
a

00 00

exp gakt" =+-
k=1 p=0~'

00 tP=X—
I

p =OP

k=1

X
k=1

P

P S;Sj~
t (1—c)I&+cI~

1=0 n
Il

For the exponential term from (A 1}we use

(A3)

00 gP 00

y dftk
Ip=0~' k=O

= gt+i' —dk
k

k,p=0 ! (A6)

exp gakt =gt&t(ai a2. .a . . . )
k=1 I =0

where

(A4)

The coefficients dk (for d, the indices p do not mean
a power) satisfy the following recurrence relations

k

dk ——„g(jp k+j )a—,+,dk, .
ka1 .

From Eqs. (A4}, (A6), and (A7), using coefficient
identification, we obtain

t=p+S; SJ . (A5) JAt(ai, ai, . . .,a;, . . .)= Z
0(& —j){

(A8)

The coefficient At(ai, a2, . . .,a;,. . .) can be expressed
in the following way:

Now it is possible to express ak from (A3), (A4),
(AS), and (A8) as

( I c)Iq +c—I& ——A, (ai, a3, . . .,a;, . . . )=a i,
(1 c)Iq +cItt—

2!
=A2(a i,a2, .

a1
,a;, . . .)= +a2,

2 (A9)

(1 c)IA +cItt—'
31

=~3(a i ~a2~ ~

(1 c}Ig +cItt—
4!

a1
a/, . . . )= +a i a 2 +a 36

etc. From (A9} we get

ai ——{1 c)Iq+cIq for—k= 1,
c(1—c)fk{c }ak=, (I~ I~) for k) 2—,

a1 a2a1 +a24 2 2

~4(a 1 ~a2l ai t . } +
24 2

+a1a3+a4,

(A 10)

where

1 if k=2
ek ek ekk ns ass —1

k~ k~ ) k3 k2fk(c)= ( —1)k+$ $ $ $ m (m —1) ' 3'2'
m =2 k~=1 k~ )

——1 k2 -—1

( —1) + Cm if k)3

(A11)

where

e"
~ =k —m+p-

j=m —p+1
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(1—c)e " +ce =e " exp g c(1 c)f—k(c)
k=2

From (A12} we obtain a Fourier expansion

For exainple, fi(c)=2c —1, f4(c)=6ci 6c—+1, f5(c)=24c' —36c'+14c—1, etc. Equation (Al) with the
coefficients (A10) and (Al 1) are correct for arbitrary values of the PJQ S; SJ factor, because in the calcula-

tions of these coefficients we used series expansions for the exponential function, which has an infinite radius
of convergence.

In order to make simpler the fk(c) coefficient expressions we can use (A10) and (Al),

t"(i~ —Iz )
(A12)

hp(c)
ln(1 —c[1—exp[ t(I„—Iz)]—j)= g [r(I„Is)]-

k=i k'

where

—1 if k=1
hk(c) =

c(1—c)fk(c) if k&2.

(A13)

(A14)

Then

fk(c) I k) z= 1 a"
k

in[1 —c(1—e ")].(1—.) ax" x=0
(A15)

It is interesting to point out that for e = —,, flak+, (C)=0 for k ) 1. Then

1

f2k+1( i }
I k&1 (A16)

Equation (A16) is satisfied because (B~/Bx~)ln(1+e ")=1/4cosh (x/2), and then the higher-order derivative
of ln(1+e }does not contain an odd power of x in the series expansion around x =0.

For the c = —, situation, from (A12} we obtain

i(1„ is ) gp i(l„ is )gi, [t(Iw Ia )]-2k

2
—(e " +e " s )=exp hik( —

)
(2k )!

(A17}

Introducing the notation x = t (I~ Is )/2 we hav—e

ao (2 )2kfPi(J)e "dJ=exp g hqk( —, }
k=1

where

P, (J)= —,[5(J+1)+5(J—1)] .

Using t ~it in (A17), we obtain

it(l~ Is)/2 —it(I~ —l~—)/2 | k [r(IA IB)]2k

—,(e " +e "
) =exp hqk( —, )( —1)"

(2k )!

(A18)

(A19)

(A20)

Now, if we multiply (A17) with (A20), we obtain

2(2x )f fP, (J, )P,(J, )dJid Jqexp[(J, +Jq)x] =exp g h4k( —, )
k=1

(A21)

where

Pp(J)= , [5(J+i)+5(J—i)]. — (A22)
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APPENDIX B

In this appendix we calculate the integrals that occur in the analyzed models. For the Edwards and Ander-
son description, three different configurational integrals are necessary. Every one of these can be calculated
with the following equation:

f P)[J)d[J)f([J))—:—g C„f(v 2K—), (Bl)
k=0

where C„=v(v —1) . . (v —@+I)/k! and f(x) is an arbitrary function. Using (Bl) one obtains for
X=a+[J)b:

g 1
——f, ,

P& [J) d [J)tanhX

1=—[tanh(a +6b }+6tanh(a +4b }+15 tanh(a+2b)+20 tanha+ 15 tanh(a —2b)
26

+6 tanh(a —4b )+tanh(a —6b )],

g,=f P~ [J) [J)tanhXd [J)
6=—[tanh(a+6b }+4tanh(a+4b)+5 tanh(a+2b }—5 tanh(a 2b)——4tanh(a 4b)—
26

—tanh(a 6b )], —

j3—f P& [J)ln2coshXd[ J)
1=—[ln2cosh(a+6b)+6ln2cosh(a+4b)+15 ln2cosh(a+2b)+201n2cosha

26

+ 15 In2 cosh(a 2b ) +6 ln—2 cosh(a 4b ) + ln2—cosh(a 6b )] . —

(B2)

(B3)

(B4)

In the concrete equations of Sec. III, a =A/T and b =8/T. For the case T~ ao, from (B2)—(B4) up to
T -order terms we obtain

3

g)=-a — 6ab +O(T —'),
3

2'X47
gz-=6b —32b + b 6ba +O(T—5},

5
2

g3-=In2+3b + +O(T 4) .

We examine the T~O approximation for the a & 2b case:

g, =——„+O(e ' ),
"

+O(e —ter)

5 I5 1g 3
———„a+ , b +0 exp—

(B5)

(B6)

(B7)

(BS)

(B9)

(B10)

For the model with the new order parameter the configurational integrals can be calculated with the following
equations:

z zf f, ,
P( fJ()P2[J2)d[J))d f Jz)f(fJ) )—= g g C,"C'f[(z—2k)+i(z —21)],

k =0l =0

where [J) = [J~ ) + [J2 ) and f(x} is an arbitrary function.
For X =a + fJ ) b we obtain from (Bl 1)

(Bl 1)
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g ) = f f, ,
P(IJ()P2IJ2]d IJ) jd I J2) tanhX= —(8(' b)+38„"b)+38,' b)+98,"b)), (B12)

where

8g, m pn, m pg, m pg, m sknh2{nb+a)
(a,b) (a,b) ( —a, b) ~ (a,b)

cosh (nb+a) —sin mi

g 2 f f( )P( (J) ) P2 [J2 )d I J( Id IJ2 I [JI«nh&= , ((t—)(gb)+3(t)(gb)+3(t)(gb)+9/(gb))

{B13}

(B14)

where

z n, m Enm , En, m n m n sinh2(nb+a ) msin—2mb
'P (a, b) (a,b) + (-a,b) (a,b) 2 ~ 2cosh~(nb+a )—sin2mb

g p
——f f, ,

P((J) )Ppf J2Id IJ( Jd I J2)ln2coshX= —b(q(g'b)+3q('gb)+3yIg'b)+9y(', "b)),

(B15)

(B16}

where

p(,' b) H(",' b)
——+H("', b), H(",' b)

——1n2[cosh2(nb+a )+cos2mb] .

For the a =A /T and b =B/T, in the T~ ao case we obtain

g 3

8(",'b)+8(,'b) ——8 a — + a —16((n,m)ab +O(T ),t 3 15

(B17)

(B18)

p(,'b)+p(, 'b) ——8((n, m)b —32((n, m)a b +7()(n,m)b7+g(n, m)b" +O(T 9),

p(,',b)+q&(, ,b) 4a'—— —+2b g(n, m)+41n4+O(T b),mn 2 2Q

(B19}

(B20)

where

g(n, m}=—,(n +mg) —(n2 —m )2, (B21)

r)(n, m)=8 (n +m ) (n —+m—) (n m— ) ——(n ——m }(n —m }+ (n —m} (—n +m )

211 6X210 28
g(n m)=4 (n' +m' }— (n' —m' }(n m}+—(n +m—)(n m)—

11! 10! 8!

(B22}

3 5 5

(n +m )(n ——m ) ——(n —m )
—(n —m )+2(n —m )

4 4 2 2 2 6 6 2 6 6 2 2 3

4I 6! 5I

3X2 2 2 4
4I

(n m)(n +—m }

+2/(n, m) (n m—)(n —m) —(n +m——)6I 8I

(
2 2)2 (~4+~ 4)E(n, m) 2 2 2 8

4 4f

From Eqs. (B12)—(B23) we obtain

3

g (—-a — + a — ab +O(T ),2 5 20 4

3 15 3
7

g =4b 16 b —197—X17X4b +O(T )
45

(B23)

(B24)

(B25)
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g2 4
/3=-In2+ — +b +O(T ) . (B26)

For T~Owe have (a &b):

g, =-O(e '
), g,= —, +O(e '

), /3=-, b+—O(e ' ). (B27)
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