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Nonlinear elasticity in proper ferroelastics is investigated using the Landau theory of
phase transitions. In proper ferroelastics, where certain combinations of strain components

e, correspond to the order parameter, coefficients in the Landau free energy are found to
coincide with special combinations of elastic constants of second and higher orders, so that
both linear and nonlinear elasticity can be directly accounted for by the Landau theory. Ac-

cordingly, four categories of strain-induced ferroelastics are distinguished and their non-

linear elastic properties are established. The temperature variation of the second-, third-,
and fourth-order elastic constants is also described. A measure of the nonlinearity coeffi-
cient L &, expressing the nonlinear elastic energy stored at a ferroelastic transition, is defined

and calculated for each of the preceding categories of transitions. Numerical models are
discussed for illustrative examples of type-I (TeOz), type-II (V3Si), and type-&&& (LaNbO4)

ferroelastics. In "pseudoproper" ferroelastics, where spontaneous strain is a secondary or-

der parameter, elastic properties are accounted for in the Landau free energy via elastic en-

ergies of second and higher orders. With the use of the specific case of LaP50i4, it is shown

that pseudoproper ferroelastics have distinctive elastic (linear and nonlinear) behavior, the

magnitude of L i depending on the strength of the linear coupling between the order param-
eter and the spontaneous strain. Available examples of pseudoproper ferroelastics are brief-

ly discussed.

I. INTRODUCTION

Evidence of nonlinear elastic behavior in a num-
ber of solids has been established in recent years by
direct or indirect measurements, namely stress-strain
curves showing strong deviations from Hooke's
law, ' development of higher-order harmonics in
finite-amplitude wave propagating through the
medium, and variation in ultrasonic transmission
velocities with applied stress. In the equation of
state of the solid, nonlinear elastic effects are
characterized by the third- and higher-order elastic
constants. Thus third-order elastic constants
(TOEC's) have been used to describe many anhar-
monic properties of solids. In particular, they
have been related to some features of materials un-

dergoing structural phase transition, such as the
temperature and pressure dependence of second-
order elastic constants ' (SOEC's) or the velocity
discontinuity and anomalous darl~ing of ultrasonic
waves observed near the Curie point. ' "

Since the anharmonicity of the crystal lattice is
enhanced by structural instabilities, one can expect a
high degree of elastic nonlinearity in materials exhi-
biting structural transitions in the vicinity of the
transition point. Moreover, for transitions involving
large strains over a large range of values of the tem-

perature or pressure, nonlinear elastic behavior
should be also observable far from the Curie point,
as the basic assumption of linear elasticity (i.e., in-
finitesimal strains} is not satisfied. This is the case
for ferroelastic phase transitions, i.e., structural
transitions giving rise to spontaneous strain com-
ponents. ' These components increase in the ferro-
elastic phase and can be several orders of magnitude
larger than the standard thermal expansion of the
lattice parameters. '

It is therefore not surprising to find out that most
of the studies dealing with the nonlinear elastic
properties of solids that undergo a phase transition
are devoted to ferroelastic materials. Sets of values
of TOEC's are available either for pure ferroelastics
such as KH&(SeOi)i (Ref. 14), Te02 (Ref. 15), V3Si
(Ref. 16}, and SrTi03 (Ref. 17), or for ferroelectric
ferroelastics such as KHiPO4(KDP) (Ref. 18) and
BaTi03 (Ref. 19). Although it appears necessary to
include elastic nonlinearity in a phenomenological
description of these compounds, a difficulty arises
from the fact that most of the experimental data are
partial or uncertain. This is due to the fact that
direct measurements (i.e., stress-strain curves ob-
tained by static compression) are subject to large ex-
perimental errors, while indirect ones (i.e., the
dependence of ultrasonic wave velocity on applied

27 5717 1983 The American Physical Society



5718 P. TOLEDANO, M. M. FEJER, AND B.A. AULD 27

stresses and ultrasonic second-harmonic generation)
involve many approximations and provide only
linear combinations of the TOEC's. ' Moreover, the
suitability of the phenomenological approach used
by a number of authors in calculating these con-
stants, is in many cases controversial, as it does not
take entirely into account the symmetry and physi-
cal characteristics of the system considered.

The aim of this paper is to determine, for the
various theoretical situations encountered in ferro-
elastic materials, the phenomenological behavior
that may be expected for the third- and higher-order
elastic constants, using the Landau theory of phase
transitions. It is shown that through such a ther-
modynamic description, one can obtain information
about the higher-order elastic constants of the sys-
tem from the variation of the strain components and
SOEC's as a function of the temperature or pres-
sure. Conversely, the variation of the higher-order
elastic constants may help to discriminate which
physical mechanism is responsible for the transition.
The study is limited to purely ferroelastic transi-
tions' ' (PFT's) for which the order-parameter
symmetries and free-energy expansions have been
systematically worked out in a recent paper. Par-
tially unpublished results concerning ferroelastic
transitions violating the Landau symmetric-cube
condition, excluded from Ref. 24, are also used.

It is now well known that ferroelastic transitions
are among the most frequently encountered type of
structural phase transitions. Besides being associat-
ed with a symmetry-breaking spontaneous strain,
they share a number of typical features: a stress-
strain hysteresis loop (in the ferroelastic phase} dis-
closing the occurrence of several different strain
states of definite crystallographic orientation (the
ferroelastic domains), the possibility of switching
the crystal from one state to another by applying an
external stress, and anomalies in specific com-
ponents of the elasticity tensor. In addition to the
trivial group-subgroup relationship between phases,
the symmetry change taking place at a ferroelastic
transition is characterized by the fact that the
thermal-expansion tensor of the ferroelastic [low-
symmetry (LS)] phase has more independent com-
ponents than that of the paraelastic [high-symmetry
(HS}] phase. This condition arises from the fact
that the spontaneous strain is represented by a sym-
metric second-rank traceless tensor. Because of this
it follows that the point groups of the two phases
belong to different crystal systems provided that the
hexagonal and trigonal systems are grouped togeth-
er. ' The PFT's are defined by the additional condi-
tion that the same components of a vector are com-
patible with the crystal classes of the two phases' so
that the ferroelastic phase will not be simultaneously

ferroelectric. The possible ferroelastic point-group
changes (ferroelastic "species" ) and the corre-
sponding macroscopic properties (such as the form
of the spontaneous strain tensor and the number of
orientational domains} have been listed by several
authors and are partly reviewed in Ref. 24 for
PFT's.

In the framework of the Landau theory, the basis
for a phenomenological description of the physical
quantities affected by a phase transition is provided
by the so-called Landau free energy (LFE). This
thermodynamic function has the form of a polyno-
mial expansion whose terms are invariant under the
symmetry operations of the HS space group. For a
PFT the LFE expansion is restricted to two sets of
variables: the order-parameter (OP) components
[rl;j spanning the irreducible representation (IR)
driving the transition and the spontaneous-strain
(SS) components [e, I relative to the considered sym-
metry change. Here the e, are combinations of
strain-tensor components, while the g; may be either
combinations of strain components or combinations
of other degrees of freedom of the system, depend-
ing on the nature of the transition. Different situa-
tions can be distinguished on the basis of the relative
symmetry of the OP and of the SS.

(I) When the OP and the SS have the same sym-
metry (i.e., when they belong to the same Brillouin-
zone-center IR), the corresponding PFT is labeled as
"proper. " ' However, depending on the physical na-
ture of the OP, two distinct types of phenomenologi-
cal behavior can be encountered:

(a) Purely strain-induced transitions. When the
OP components coincide with some components e,
of the SS, the transition is described by a LFE of the
type

F=F,(e„c,)+F2(e„e;,c; ),
where F~ (e„c,) is the OP expansion and F2(e„e;,c; )

is the elastic energy of the crystal in the paraelastic
phase minus the SS contribution already taken into
account in Fi. In (1) the c, and c; are combinations
of elastic constants of different orders associated
respectively with the SS components e, and with
other combinations e; of strain-tensor components.
This situation occurs when the mechanical (acoustic)
instability induces the transition, the crystal being
elastically "soft" and optically "hard. " The homo-
geneous distortion of the unit cell occurring at the
transition is accompanied by substantial elastic
anomalies, a combination of SOEC's going to zero
as the Curie point is approached from either side.

In this family of ferroelastic materials, nonlinear
elasticity is naturally accounted for in the Landau
theory by the coefficients of the quadratic, cubic,
quartic, etc., invariants of the OP in the LFE, which
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are, respectively, combinations of SOEC's, TOEC's,
FOEC's, etc. Actually the well-known nonparabolic
distortion of the OP expansion F&(e, ) (or equivalent-

ly, the corresponding nonlinear stress-strain relation-
ship} in the vicinity of the transition point clearly
suggests the existence of nonlinear elastic effects. In
Sec. II we show that even partial experimental deter-
mination of higher-order constants in a strain-
induced ferroelastic allows one to undertake a more
general quantitative description of the linear and
nonlinear properties of the material. Conversely the
Landau theory should help to estimate the values of
the elastic constants of a proper ferroelastic whose
salient features should be related to definite com-
binations of second- and higher-order elastic con-
stants.

(b) Pseudoproper transitions. The OP com-
ponents g; do not coincide with the SS components
but couple to them bilinearly. The g; may corre-
spond to atomic displacements associated with a soft
zone-center optic mode (both the acoustic and optic
soft modes being Raman active) or to some other de-

gree of freedom of different physical nature (such as
electronic effects). In this "pseudoproper" case, fer-
roelasticity results from a coupling of the SS com-
ponents with the actual OP and the PFT is
described by a LFE of the following type:

F =F~(ri;)+F2(e;,e„c;,c, )+F3(ri;,e, ), (2)

where F&(ri; ) is the OP extension, F2(e;,e„c;,c, ) is
the linear and nonlinear elastic energy of the crystal
(including the SS components), and F3(ri;,e, ) is a
mixed invariant expressing the bilinear coupling be-

tween the OP and the SS components. In pseu-

doproper ferroelastics, the magnitude of the elastic
nonlinear effects depends on the strength of the cou-

pling between the SS components and the OP com-
ponents. These effects are not directly accounted
for in the OP expansion and must be introduced in

the F2 and F3 terms of (2}, not only on the basis of
symmetry but also on empirical considerations that
depend on the specific properties of the material.

A softening of the optic mode (or other effects)
may also influence a proper PFT. In this case cou-

pling terms, that may be bilinear, have to be added
to (1). However, the distinction between proper and

pseudoproper PFT's, even in a hybrid case, is not a
formal one. It indicates which one of the mechani-
cal, optical, or other (i.e., the primary OP) instabili-
ties induces the transition and triggers the other one.
In particular, the choice of an OP with components

g; distinct from the SS components means that the
phase transition would still occur in a rigidly
clamped lattice. Although they have some common
features, proper and pseudoproper ferroelastics can
be distinguished experimentally by certain dynami-

cal and static properties. In Secs. II and III we es-
tablish that their nonlinear elastic behavior differs in
several important respects. Detailed numerical ex-
amples of proper ferroelastics, such as Te02 and
V3Si, and pseudoproper ones, such as LaP50i4, are
discussed.

(2) The following types of phase transition may
also occur in ferroelastic materials:

(a) When the sets of components Ie, ] and Ig; j
belong to different IR's, the transition is labeled as
"improper, " ' with the SS components e, being
nonlinearly coupled to the OP components q;.

(b) When the OP components coincide with one
set of strain components Ie; I and another set corre-
sponding to the same ferroelastic transition belongs
to a different nonidentical IR, the PFT exhibits
simultaneously proper and improper behavior.

(c) When the OP transforms according to a
reducible representation, the transition results from
a simultaneous instability with respect to several
modes.

(d) When the PFT involves components belong-
ing to higher-rank tensors in addition to the SS com-
ponents.

Elastic nonlinear effects in all of these categories
of PFT's are either secondary effects (as for improp-
er transitions} or are accounted for less directly by a
phenomenological model based on the Landau
theory. Their description will not be discussed
here. 36

II. STRAIN-INDUCED FERROELASTIC
TRANSITIONS

In this section we consider PFT's whose OP com-
ponents are strain components transforming like a
single IR of the paraelastic phase, so that the dif-
ferent domain orientations are completely character-
ized by the SS components. It is also assumed that
the onset of SS affects strongly the transition in
such a way that coupling with secondary atomic dis-
placements (or other effects) can be neglected in a
first approximation. Column 2 of Table I reviews
the 32 ferroelastic species which, on a symmetry
basis, satisfy this condition. The corresponding SS
components and IR's are listed in column 3.
Since the form of the SS and elastic constants of
various orders depend exclusively on the Laue
classes of the paraelastic and ferroelastic phases, '

we have grouped the species according to their
respective changes in the Laue class using the nota-
tion of Brugger (column 1). Four types of transi-
tions are distinguished which are shown below to
have specific phenomenological behaviors. In par-
ticular, four distinct OP expansions only have to be
considered, whose explicit form is given at the bot-
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TABLE I. Symmetry changes, spontaneous strains, Landau free energies, and associated combinations of second-,
third-, and fourth-order elastic constants (in the paraelastic and ferroelastic phases) for proper PFT s. The detailed mean-

ing of the columns is explained in the text. The IR notation (column 3) refers to the tables of Zak et al. (Ref. 74) while the
elastic constants (columns 5 to 10) are written in the Voigt contracted notation (Ref. 121). For the mmm ~2/m species
the binary axis has been chosen along z. (PP denotes pseudoproper. )

1

Laue-class
change

Type I
0—+M

Ti ~0

Type II
H1 ~M, O

2
Point-group

change

mm2~2

mmm ~2/m

422~2~22

4mm ~m "m 2

42m ~2"22

4/mmm ~m "mm .

422~2 Q2

4mm ~m~m 2

4/mmm ~m""mm

6mm ~2
6/mmm —+2'/m

622~~222

6mm ~mm 2

6/mmm mmmm

3
Spontaneous strain

components (IR)

e6(~3)

e6(r4)

(e1 —e2)
(73)

[—,(eg —e, ),e, ](r6)
1

[—,(e2 —e ~ ),O](~6)
1

4
Landau

free energy C2s
0

0

2

C» —C0 0

4

C66

2

C11—C 12
0 0

2

C11 C12
0 0

4

H11—+M 6' 2

6/m —+2/m
[—(ez —e~ ),e6](r3+r4)1 C11 —C12

0 0

2

C1~O, T1,R

Cn 0

43m ~222
432~222'
m 3m -+mmm

43m ~42m
432-+422

m 3m ~4/mmm.

432~~32
]

m 3m ~3m]
23~222
m3-+mmm ]

[V 3(eq —e~ ),e&+e2 —2e3](r3)

[O,e~+e2 —2e3](13)

'TS

[e„e„e4]

[V 3(e2 —e~ ),e&+e2 2e3](r2+r3)—

2«11 —C12)

3(C» —C12)

3 0

2(C11 —C12)

tom of Table I.
I.et us examine successively the elastic (linear and

nonlinear) characteristics of the different types of
PET, assuming that the external parameter is the
temperature T, so that the high-temperature phase
will generally be the paraelastic phase.

A. Type-I ferroelastics

This category contains the proper PFT's having
an orthorhombic-to-monoclinic or a tetragonal-to-
orthorhombic symmetry change. The transitions are
induced by a one-dimensional IR fulfilling the
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TABLE I. (Continued. )

C2s C3s
0

C3s C4s
0

10

C4s Examples

0

24
LaPq014 (PP),

KH3(Se03)2 (PP)

P
a1

192
Te02 (P)

DyVO4 (PP)

C
24

C6666 TbVO4 (PP)

j +4C66
0 0

C222 C 111

3 a2

C222 —C0 0

12
a3

j +4C66
(C222 —C111)

0 0

11
q, r a4

413

2C44+C66

13

C4s6
0

6

12

6~3(C))2 —Ci)3)

C4ss

s, u

3—a1

C
8

2a1

V3Si (P), InT1 (P),

NiCr204 (PP)

RbAg4I5 (PP)

KNO2

K2Mn2(SO4) 3

Landau-Lifshitz criteria, so that they can possibly
be second order. Thus the OP has only one com-
ponent e, [either (e, —e2)/2 or e6, in the standard
Voigt notation for the subscripts] and the LFE can
be written, for a second-order transition, as

F(T,es )=F(T,O)+ C2,e, +C&e,
0 2 0+ —, g C,ze~ej+e, QC3„e; .

i,j+s J+S

Here F(T,O) accounts for the standard thermal ex-
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TABLE I. (Continued. )

1

Laiie-class
change

2
Point-group

change

3
Spontaneous strain

components (IR)

4
Landau

free energy C2s
0

Type III

M~N 2/m ~1 e6(~2);e4(~2)
C66 C44

0 0

2'2

Tii~M 4~2

4/m ~2/m
(e 1

—e2 )(z2);e6(7 2)
C 1 1

—C12 C66
0 0 0

4
'

2

Type IV

Ril ~N
1

[—,(e2 el ) e6](r2+r3)'

[e5,e4](r3)

—,(Cl 1
—C12)

1 0 0

C44

Ri~N, M 3m ~1
1

[ , (e, ei-),e6]-(r3);

[es,e4](r3)

—,(Cl 1
—C12),

C44

3m —+2/m

[—,
'

(e2 —e i ),0](r,);

[e4,0](73)

4 (Cl 1
—C12)

o o

C44
0

2

a =C2ses+ C4$es
0 2 0 4

b =C2s(es I +e$2 )+C3s(es2 3es2es 1 )+C4s(es 1 +es2 )
0 2 2 0 3 2 0 2 2 2

Oe 3 2c =b +C3s(es1 —3esles2)

C2$(es 1 +e$2 +e$3 )+C3$es les2e$3+ C4$(es 1 +e$2 +e$3 )
0 2 2 2 0 0 4 4 4

t =Cl 1 +C22+ C33 C12 C13 C23

j=Cl1 +C22 —2C12

k =Cl 1 +C12+ 2C33 4C13

I) -=[2(C22g —C))) )—9C)(6]/24
l2 ———4C111+6( C112+C113 ) —8C123

0 0 0 0

l3 ——3C112—2C 123 Cl 1 1

0 0 0

P =Cl 1 1
—C222 —3(C112

—C122 )

q = 12(C166—C266) —P
r =6(C126—Cl 16

—C226) —P
3

S =—(Cl 12+C122+ Cl]3+ C223+ C133+C233)

123 ill + 222 + 333

t =C 1 1 1
—4C333 9C112+6(C133 C113 C123)

u =2& 3(C112—C113—C]22+ C223+ C133 C233)

U =C555 —3C445

w =C444 —3C455

pansion of the lattice parameters in the paraelastic
phase; C2, and C4, are, respectively, certain com-
binations of SOEC and FOEC of the paraelastic
phase; the subscripts indicate that they correspond
to a certain SS. For instance, if the SS is
eg ——(ei —e2)/2, then C2, ——(Cii —C12)/2, whereas
for e, =e6, C2, ——C66/2. The C(;, are combinations
of TOEC's expressing the coupling of e, with com-
ponents e;&e, of the strain tensor. Since we are
dealing with possibly continuous transitions, only
terms up to the fourth order in e, and to the second

order in e; (and their combinations, which are impli-
citly of fourth order in e, ) have been kept. The case
of first-order transitions involving higher-degree
terms (such as sixth order in e, and third and fourth
order in e;) is discussed briefly below. As usual in
the Landau theory all the coefficients are assumed
in the simplest model to be constants, except C2,
which varies linearly with T. This gives

C2, ——a(T—T, ),
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TABLE I. (Continued. )

10

C2s C3s
0

C3s C4s
0 C4s Examples

0;0 C666 C444

0 0C6666 C4444

24
' 24

C6666s C4444

Js C66 0;0
0

a1',
Pi; C6666 LaNb04 (P),

BiVO4 (PP)

C11 —C12, C
3 ( C222

—C 1 1 1 ) '
3

CO O 2 O

2 0
1 Csss

C4444
a4', Pz, C4444

C» C127 3 ( C222
—C 1 1 1 )

1 p p

3

q;w
C

2s
4

NaN3 (PP)

Js C44
o o

—, (C222 —C»1 );

3

qsw
1 0

a3& 24 C4444 Pi;C4444 S-triazine

0 0 0a1=C»» —4C»12+ 3C1122

216 71C»11—376C»12+270C»22+ 56C
1 0 0 0 0

216
—23C1111—64C1112+54C1122 +8C1166 )

0 0

o o oa4 ——a2+ (5C»»+C»12+ C»66)
216

P) ——C) ) ) i+ Czzzz —4C) ) )z+ 6Ci )zz —4C)zzz

Pz ——P) +4(Ci (66+ Czz66+2C)z66+ 2C6666)

pz —C] f]] +Czzzz+ C3333+3(C()zz C( )33 + Czz33 )

—2( C1112+C1113+C1222+ C2223+ C1333+C2333 )

p4 —C„„+3C) (zz+4C) ) )z —32Ci333

+8(C3333 C», 3 )+3(C»33 C»23+ C,233 )

where T, is the critical temperature and a &0.
Columns 5, 7, and 9 of Table I give, respectively, the
explicit combinations of SOEC's, TOEC's, and
FOEC's of the paraelastic phase for the 32 species
considered; the data of column 5 are consistent with
the partial results published by Boccara, Aubry
and Pick, and Cowley. Columns 6, 8, and 10 of
Table I provide the corresponding combinations in
the ferroelastic phase. The determination of expres-
sions for C2„C3„and C4, makes use of the form of
the SS tensor and the relationships between the elas-

tic constants in a given symmetry class (Ref. 37 for
SOEC's and TOEC's, and Refs. 39 and 40 for
FOEC's). Imposing the requirement that the equili-
brium values of the SS components are zero in the
paraelastic phase yields the factored expressions for
C2„C3„and C4, . The constants C2„C3„and C4,

0 0 0

are then deduced from C2„C3„and C4, by taking
into account the additional symmetries of the para-
elastic phase and the corresponding numerical coef-
ficients.

The stresses conjugate to e, and e; are given by
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cr, =BF/Be, =2Cz, e, +4C4,e, +2e, g C3;,e;,
its

0;=BF/Be; = g Cjej+C3„e, ,
jets

so that the equilibrium values of e, and e; at zero
stresses are

e;=e, =o
in the HS phase and

0 p 2
e; =—g S/JC3ises

j
and

e2
p 0

(g) Tc Ti T

P

C2sp4C0
2 4S

Pi P'

0 0
a XSij ConjsPl J

(b) c

iil&isj C is

2
Cis

P=4C' '-.
3iSP'

e =+s
C2, a(T, T)—=+

in the LS phase, where the SIJ. are elastic compli-
ances corresponding to the C;j. Note that

p'=2C4, —g g C3~(gC3JJS[J.
I+s j

is the renormalized fourth-degree coefficient (P'&0
and C;; &0 for a continuous transition). The tem-
perature dependence of

l
e,

l

and
l e;

l
is given in

Figs. 1(a) and 1(b), the slopes of e, and e; being,
p p

respectively, a /P' and —(a /P ) g,.+, C3;,Sij The
second derivatives of (3) with respect to the strains
give the values of the SOEC's:

B2F
C2s =

Be

2C2,
p

p C4,—8C2,
(4)

in the HS phase and in the LS phase, respectively,

C; = =CJ (ij~s)BF p

Be;Bej

in. boih phases, and

BF
Be,Be;

0 (i&s)
2Cs;,e, (i&s) (6)

in the HS phase and in the LS phase, respectively.
It must be pointed out that when C2„CJ (ij &s)
and C. (i&s) represent combinations of SOEC's,
one should expect the individual SOEC contributing
to these combinations to have a temperature depen-
dence which does not appear explicitly in (4), (5),
and (6). For instance, in the 422~2"22 species the
constancy of C,j———,(C&~ +C~2) in both phases re-
sults from an exact compensation of two opposing
linear temperature variations for C~~ and Ci2. The
temperature variations of Cz, and

l
C„

l
are shown

on Figs. 1(c) and 1(d). We can see that the slopes of
C2, and C„give the values of C4, and C3„, respec-
tively.

( ) Tc Ti

2
"l~ssj Css

(d) Tc Ti T

) jC4s

02
C4s &,

aa ~

I
I

(e) Tc Tj T (f) Tc Tj T

FIG. 1. Temperature dependence of spontaneous
strains, SOEC's, TOEC's, and FOEC's for a type-I proper
PFT. (a) SS modulus. (b) Nonspontaneous components
of the strain-tensor. (c) SOEC combination associated
with the SS. (d) Modulus of SOEC's that couple spon-
taneous and nonspontaneous components of the strain
tensor. (e) Modulus of the combination of TOEC's associ-
ated to the SS. (f) FOEC combination associated with the
SS. Solid and dashed lines correspond, respectively, to
second- and first-order transitions (C„C&, and C3, are
shown only for the second-order case). Note that the
slopes P, P&, and P2 in the ferroelastic phase depend ex-
clusively on the elastic constant values of the paraelastic
phase, P'=2C4, —g,.~ gJ Ci„CipSJ.

The third derivatives of (3) yield expressions for
the TOEC. In this case the C3„combinations are
temperature independent, while

C3, ——
3

——24C4, e,=.
p a( T, —T)

'
(7)

in the HS phase and in the LS phase, respectively.
The vanishing of the C3, combination of TOEC's at
the Curie point is a distinctive property of the type-I
PFT under consideration. As is illustrated below in
the example of paratellurite, the individual TOEC
involved in this combination will also be generally
temperature dependent, their respective contribu-
tions summing positively with one another. Figure
1(e) shows the variation of

l C3, l
and C3, . Finally,
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the fourth derivative of F with respect to strain

components provide the C4, combination of FOEC's
which is constant and equal to 24C4, [Fig. 1(f)].

The preceding results are valid for a second-order

phase transition assuming that only the lowest-

degree couplings between e, and the other com-

ponents e; of the strain tensor influence the transi-

tion. Higher-degree couplings can be introduced to
explain the anomalous variation of some of the e;.
For a first-order transition one has to add to Eq. (3)
sixth-degree terms (at least), and so the LFE be-

comes
0 6 0 2 0F'=F+C6,e, + g cjke;ejek+e, g C4j,e;ej .

i~jake i,j~

Here C6, is a positive combination of sixth-order
elastic constants (SIOEC's) of the HS phase, while

C,jk are TOEC's and C4,J., are FOEC's expressing
the coupling of e, to products e;ej of the strain ten-
sor. Figures 1(a)—l(f) give in dashed lines the quali-
tative behavior of the strain component and elastic
constants of various orders, for a first-order transi-
tion. It should be noted that the upward shift of the
transition temperature and the discontinuities of the
physical quantities described in Fig. 2 provide infor-
mation about the TOEC's, FOEC's, and SIOEC's.
In addition to these discontinuous changes, first-
order transitions can be distinguished by the non-

vanishing (though small) value of C2, at T, and by
the increasing of C4, with temperature in the LS
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phase.
Introducing higher-order elastic constants in the

LFE expresses the fact that, due to the larger mag-
nitude of the SS components, elastic nonlinearity in
the LS phase should be greater for ferroelastics un-

dergoing a first-order phase transition than for a
second-order transition. In order to verify this as-
sumption and, more generally, to estimate the elastic
nonlinearity "stored" at the transition, we now de-
fine the "degree of nonlinearity":

1 3 1 4 1 5 1

—,C3 eg+,4C48 + 120C58 + 720C6ge, + ' ' '

Li ——
1 2

—,Cz,e, (9)

which expresses the deviation from linearity ob-
tained in a virtual stress-strain relationship o;(e, ).
In other words, the same value should be obtained
for L, by applying to the undeformed state (the
paraelastic state) a real stress o, inducing a (non-

spontaneous) strain e, . For a second-order phase
transition (C~, =C@——0), we find using {4) and (7)
L i ——4, while for a first-order one we find

5C4, +42C6,e,

4C4, + 15C6,e, 4

The preceding ratios reveal that in the ferroelastic
phase, the nonlinear contribution to the elastic energy
is always larger than the linear contribution. This
may appear surprising in view of the relatively good
fit to experimental results obtained with models
which apparently neglect the nonlinear elastic ener-

gy. However, one must bear in mind that the mea-
sured values of SOEC's are renormalized values
which imp/icitly contain nonlinear elastic contribu-
tions. In other words, a phenomenological model
taking explicitly into account elastic constants of an
order higher than two decouples the linear and non-
linear elastic energies stored at the transition. On
the other hand, the magnitude of the virtual stress

I

o., is very large because spontaneous strains arising
at a PFT are several orders of magnitude larger than
those strains usually induced in measurements of
elastic constants. Let us also stress that the degree
of nonlinearity (9) does not express the intrinsic non-
linear elasticity of the material undergoing a phase
transition, but only the part which is related to the
onset of the spontaneous strain in the ferroelastic-
phase. In particular, from the very definition of e,
it follows that L~ ——0 in the paraelastic phase. Fi-
nally, we must note that the universal constant value
found for L

&
in the case of a second-order transition

is illustrative of the equilibrium values of physical
quantities below the transition, and does not apply
in the critical regime which dominates in the vicini-
tyof T, .

In column 11 of Table I most of the presently
known purely ferroelastic materials have been classi-
fied according to their point-group changes. Among
type-I PFT paratellurite Te02 appears as the only
confirmed example of a proper ferroelastic possess-
ing a strain-induced phase transition. However, the
relative abundance of elastic (linear and nonlinear)
data for this material allows one to check in a rather
accurate manner the theoretical model based on a
LFE of the type given in Eq. (3).

Paratellurite undergoes a pressure-induced
second-order phase transition at (P, =8.85 kbar,
T=20'C) driven by the soft acoustic shear mode
propagating along a (110) direction and polarized
along a (110) direction. ' No soft (Raman-active)
zone-center optic modes have been observed in the
low-pressure (HS) phase, and no evidence was found
for any strong coupling of the soft mode to any oth-
er acoustic mode, although small anomalies in some
of the elastic constants unrelated to the acoustic
mode were observed. According to the reported
point-group change 422~2"22, (3) takes the explicit
form

+=—,{Cll—C12)(el —e2) +—„,«llll —4Ciii2+3C1122)(el —e2) + —,«ll+C12)(el+e2)0 0 1 0 0 0 4 1 0 0 2

+Cia(ei+e2)e3+ —,C33es+C44e4+C6se6+ —,{Ciii—Cii2)(ei —e2) (ei+e2)0 0 2 0 2 0 2 1 0 0 2

+—( ii3 ]23)(ei —e2) e3 .o o (10)

Worlton and Beyerlein and McWhan et al. have
used (10), neglecting the contributions of e4 and e6,
to account for the pressure dependence of the lattice
parameters a and b. On the other hand, Fritz and
Peercy have taken into consideration terms of
third and fourth degree in (e&+e2) with pressure-
dependent elastic constants, to explain the slopes of
the inverse susceptibility Cii —C&2 and the small
discontinuities in the pressure derivative of a+b.

I

However, these authors were able to undertake only
a qualitative comparison, as the numerical values
were known ' only for the SOEC's at that time.
Recently Antonenko et al. ' measured the complete
set of TOEC's at atmospheric pressure (AP) so that
we can undertake a numerical model giving the
relevant quantities involved at the transition and, in
turn, a close check of the validity of (10).

The measured values of the SOEC's and TOEC's
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at AP and room temperature (RT) are collected in

Table II. Expressions for the strain components

ei+e2, e3, and e, —e2 in the high-pressure (HS) fer-
roelastic phase are given in Table III. In this table
we can see that a complete numerical model re-

quires knowledge of the FOEC combination

C»&i —4Ciiiq+3Cii22, but since no measurements
have yet been performed for the FOEC's, we must
evaluate this parameter from other experimental
data. Let us take the slope of the elastic constant
(C» —Ci2)/2 in the paraelastic low-pressure (LP}
phase determined by Peercy et al., which gives the
value a =2.44, and take the square of the SS as a
function of pressure plotted by Worlton and Beyer-
lein which indicates the ratio a/p'=2. 50X10
m /N. From these values we can deduce that
p'=0. 97X10' N/m and p=1. ll X10' N/in .
We can then express the strain components as a
function of pressure:

ei C(P P——, ) D(—P P—,)'~, —

e2 —— C(P P,—)+D(P— P,)'—
e3 E(P P,——}, —

with P—P, in kbar, C= 1.63 X 10, D =0.77
X10, and E=0.96X10 . Equations (11) are
shown in Fig. 2(a) and the same figure gives (solid
lines} the experimental curves (Ref. 43). The
discrepancy is due to the fact that we have not taken
into account the compressibilities of the LP phase
corresponding to a slow decrease of 8.1)&10
kbar ' along the a axis and of 6.1&(10 kbar
along the c axis. ' ' Extrapolating the corrections
to the HP phase we can obtain [dotted lines on Fig.
2(a)] a very close fit between the two curves.

The second derivatives of F with respect to ei, e2,
and e3 give expressions for the SOEC's in the HP
and LP phases (Table III). The curves for Cii, Ci2,
C22, Ci3 and C23 are given in Fig. 2(b). For Ci3
and C23, no experimental data are available for
checking the variation given in Table III. On the
other hand, we find that

1 (Cii+C22 —2C12}(P)P, ) =2.76,
2 (Cii —Ci2)(P &P, )

which is very close to the ratio found by Peercy et
al. However, our results show that C» decreases
with increasing pressure from 5.6)&10' N/m at
AP, to 5.38 N/m at P =P„while the experimental
curve reveals an increase of about 0.4)&10' N/m
in the same range of pressures. This discrepancy
can be corrected if we assume that (Cii+Ci2)/2
depends on pressure according to the law
(Cii + Ci2)/2=c2pP +Pp with Pp =5.38X 10
N/m and ao ——2.4. In Fig. 2(b) the corrected curves
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TABLE III. Pressure dependence of strain components and pressure dependence of SOEC's.

Pressure dependence of strain components Pressure dependence of SOEC's

a
el —e2 ——k —,(P —P, )

1/2

Cl1 ——C22 ——

Paraelastic phase (LP)
C1 1 +C12

0 0

+a(P, —P)
2

el +e2 ——A —(P —P, )
a
Pl

e3 ——B—(P —P, )
a

C
C1 1 +C12

0 0

2
0

C13——C23 ——C

—a(P, —P)

1 2C,3(C„3 C123) C33(C„, C„2)0 0 0 0 0 0

4 C33(C11+C 12 )—2C13
= —1.21

Ferroelastic phase (HP)

11+ 12 F(p p ) G(p p )1/2

A C113—C123 C13
0 0 0

4 C
=0.385

0 0

C22 —— +F(P —P, )—G (P —P, )
Cl 1 +C12 1/2

C 1 1 1 1
—4C1112+3C1122

0 0 0

48

C 1 1 +C12
0 0

C —F(P —P, )
2

0 0 0 0
P'=P+ A +C111 C112 C 113—C123

4 2
Cl 1+C22 —2C12

(p p )
4

F(P Pc)
0. 0 0

33 33' C44 C44s C66 CQj

F=2a—X10'=5.58X 10'

G = — X10 =3.48X1o'
2

are given in dashed lines for C» and C&z. In Table
II the uncorrected and corrected values are given at
P =20 kbar. Furthermore, the simple LFE (10) does
not account for the linear increase of C33 reported in
the two phases and for the small anomahes indicat-
ed at the transition for C44 and C66. These
features can be obtained respectively by providing a
linear increasing of C3q with pressure (of 1.27%
kbar ' following Ref. 42) and by adding to (10) the
higher-degree coupling terms:

(C»44+ C1155—2C1244)(el —e2) e4
0 0 0 2 2

and

(Cii66 C1266)(ei e2) e6
0 0 2 2

These refinements of (10) are consistent with the
phenomenological model of Fritz and Peercy
though they consider unnecessarily third- and
fourth-degree terms in (e, +eq) and a coupling be-
tween (e, +eq) and (e, —eq) . Conversely the
model of Uwe and Tokumoto, which takes the SS
as a secondary OP (the primary OP being an inter-

nal displacement of oxygen atoms) appears unjusti-
fied in view of its little predictive value.

Let us now determine expressions for the non-
linear elastic constants as a function of pressure.
Seven TOEC's can be derived from (10), of which
four are pressure dependent in the HP phase, namely
C»&, Czzz, C»z, and C~qz. We can write that

Ciii —Cii2=Ciil —CI12 yH(P P,)—0 0 1/2

C$$2 —
Cigar

—Ci, i —Ciii H(P P,)——0 0 1/2

(12)
C( ) )

—C2,gg
——C(gg —C»2

=H(P P)'~—
Ci i i —Cygne

—3(Ci ii —
Cigar )

C3s =
2

2H(P P)in—
with H=12P(a 0P/')'~ &&10 =18.38X10' [(P

P, ) in kbar]. —
Curves corresponding to (12) are shown in Fig.
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2(c) and the values of the cotnbinations of TOEC's
at 20 kbar are given in Table II. As pointed out in
the general case, we verify the vanishing of C3, at
P=P, (due here to the simultaneous vanishing of
C~~~ —C222 and C~22 —Ci~2). We can see that the
nonlinear elasticity cannot be evaluated from the
mere values of the individual constants but only
from particular combinations of TOEC's, especially
those combinations C3, given in Table I. In Te02 it
appears that, while each TOEC entering in C3, is
small and negative (at AP), their resulting contribu-
tions produce a large positive value for C3,. This
expresses the fact that the deviation from Hooke's
law increases more rapidly as the stress 0., conjugate
to e, increases, whereas a negative value for C3, is
interpreted as a slower increase in elastic nonlineari-

ty with increasing stress. We can note also that the
ratio

L2 ——C3s/C2s (13)

=Ci))) —4C)i)2+3C))22 ——5.33 X 100 0 0 13

in units of N/m . Using the numerical values of
C2„C3„and C4, at P=20 kbar, and taking
e, (P=20 kbar)=5. 2X10 we can evaluate the ra-
tio (9}. We obtain

L i 1.36,

whereas the theoretical expressions for C2„C3„and
C4, give the standard value of 4. This difference
must be attributed to the fact that the numerical
values used to calculate L

&
are a mixture of correct-

ed numbers (for C2, ) and uncorrected ones (for C3,
and C4s).

Thus the example of Te02 illustrates fairly accu-
rately the general considerations developed at the be-
ginning of this section. Conversely, the qualitative
and quantitative fitting of the model based on (10),
though it requires adjustment to account for the
complete set of experimental data, confirms both the
choice of the SS as the primary OP, and the necessi-
ty of including elastic nonlinearity (i.e., higher-order

provides, complementarily to L &, a suitable estimate
of the magnitude of the elastic nonlinearity induced
by the onset of the SS in the ferroelastic phase. In
Te02 we have L2-50 at P =20 kbar, which is about
ten times larger than the average values for the cor-
responding individual TOEC and SOEC.

The preceding considerations can be extended to
the FOEC's. Using (10) we find that the FOEC's
are constant and equal to their value at AP. In par-
ticular,

C4, —— 1111+ 2222 ( C1112+ 1222 }+ 1122 =48p

elastic constants) in the interpretation of the phase
transition in Te02.

B. Type-II ferroelastics

To this category belong ferroelastics undergoing a
transition from a hexagonal or cubic paraelastic
phase, induced by an IR which violates the Landau
condition. Accordingly their LFE possesses cubic
terms and the transitions are necessarily discontinu-
ous. ' " The fact that a majority of strain-induced
transitions should be first order was first noticed by
Anderson and Blount, and more recently the sym-
metry aspects of the ferroelastic transitions violating
the Landau condition were systematically worked
out. ' In column 4 of Table I, we see that three
LFE's describe the features of type-II PFT's. Two
of them, namely b and c, correspond to a two-
component OP and the one labeled d is formed by a
three-component OP. For b and d, the existence of
only one cubic invariant leaves the possibility of a
continuous transition at an isolated point of the
phase diagram. Two cubic invariants can be con-
structed for the c-type LFE and a continuous transi-
tion is thus strictly forbidden. ' It should be noted
that for the three species 622~222, 6~2, and
432~32 (designated by an asterisk in column 2 of
Table I} the corresponding IR's violate simultane-

ously the Lifshitz condition. This means that for
a weakly discontinuous transition an incommensu-
rate phase instead of the ferroelastic phase may ap-
pear at low temperature.

If we want to determine the qualitative behavior
of type-II ferroelastics the multidimensional charac-
ter of the OP's can be ignored and we can use the
following LFE:

F(T,e, }=F(T,O)+C2, e, +C3,e, +C4,e,

+e, QC3;,e;+ —, g Cje;ej, (14}
I+S lsJ9 S

where the notation is identical then to that of (3).
Actually (14}differs from (3}only by the addition of
the cubic term C3,e, , C3, being a combination of
TOEC's of the paraelastic phase given in column 7
of Table I. As the discussion of (14) is very similar
to that of (3), we can restrict ourselves to a summary
of the results:

(1) The transition takes place at the critical tem-
perature

(C'„)'
T, =Tp+

2 ss

with

P'=2C4s —g g C3isC3jsS j
i+S j
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corresponding to equal stability of the paraelastic
and ferroelastic phases, defined by F—Fo
=BF/Be, =0. The Curie temperature is located be-

tween Ti= Tp+ i6 (Ci ) /P'a where the ferroelastic
phase becomes metastable, and To where the para-
elastic phase becomes unstable. However, T, is only
a theoretical value and for a real first-order transi-
tion, where thermal hysteresis is observed, the phase
change effectively occurs between To and T, in the
temperature range where the paraelastic phase is
metastable.

(2) In the ferroelastic phase the equilibrium value
of the SS is given by

3C3, + [9(C3, )2 —16''Cg, ] '/
e =—

S

with a discontinuous jump at T, equal to
he, = —Ci, /P'. We see that depending on the sign
of the TOEC combinations we have a positive or
negative value for e, and a downward or upward
jump at T, . For the cubic to tetragonal type-II
PFT, where the LFE is of the b type, it has been
pointed out by some authors ' that it is the sign of
C3, which determines whether the ratio of the cubic
c and tetragonal a parameters is greater or smaller
than unity [if C3, &O,e, =(c/a —1)&0 so that
c &a].

(3) The curves of the SOEC as a function of tem-
perature derived from (14) have the same shape as
first-order transitions in type-I PFT [dashed lines in
Figs. 1(c) and 1(d)]. In particular, the C2, combina-
tion does not vanish at T, and undergoes a jump up-
ward of EC2, ——7(C3, ) /P'. For the C;, coinponents
(i&s ) the discontinuous jump is equal to
AC = —2(C3;, Cq, /P') and its sign depends on the
respective signs of C3;, and C3, . Unlike the type-I
PFT, the C3, combination of TOEC's does not van-
ish at T, . On the other hand, the FOEC combina-
tion C4, remains constant as for second-order transi-
tions of the type I.

(4) The variation of the stress o; conjugate to e, is
given by

cr, =2C2,e, +3C3,e, +4C4,e, ,

which contains a quadratic contribution, so that de-
viations from Hooke's law are more completely ac-
counted for than in the type-I PFT for which only
odd degrees of the SS components appear in the
stress-strain relation. Using (9), we can calculate the
degree of elastic nonlinearity in the ferroelastic
phase. We find here

C3,e, + —,Pe,
Li ——

0 0 2'
Cq, +3C3,e, +3Pe,

Figure 3 shows that L~(e, ) jumps sharply at the

58 —
eS ~~~~~

~~

-3

TO-5b TO-4b TO-3d TO-2h TO-b

TEMP ERATURE

Tp

-
I

T=T +-95,
I 0

T=T +-
C 0

transition point [Li(T,)-=3] then slowly decreases
with decreasing temperature. For instance, at
Tf =Tp , (C3, ) /—P'a—we have e, (Tf)=4e, (T, ) and
L, (Tf)=1.44. However, the preceding numbers are
only an indication of the magnitude of elastic non-
linearity in type-II ferroelastics, as they are deduced
from the simplified one-component LFE (14). A
quantitative estimate of nonlinear effects for a given
system must take into account the actual symmetry
of the corresponding OP.

The above model will now be illustrated consider-
ing the example of the martensitic transition in the
315 compound V3Si. Since its discovery by Batter-
man and Barrett the 21-K cubic (Pm3n) to
tetragonal (P42/mmc) transition in V3Si has been
the subject of intensive studies dealing especially
with its elastic anomalies and their relationship to
the superconducting transition at 17 K. The tem-
perature dependence of the lattice parameters,
the variation of strain under applied stress, and the
SOEC values in both phases ' ' have been deter-
mined with great accuracy. In particular, a stress-
strain curve strongly deviating from linearity and
the observation of acoustic second-harmonic genera-
tion are proofs that elastic nonlinearity must be
considered as an essential feature of the materi-
al. ' Accordingly, theoretical calculations of
TOEC's and FOEC's have been performed' ' ' to

FIG. 3. Variation as a function of temperature of the
spontaneous strain. e, and the degree of nonlinearity L

&

for type-II ferroelastics described by the simplified LFE
(14). The Curie temperature T, is located between

Ti=Tp+ 9h/16 [b =(Ci, )'/aP'], where the ferroelastic
phase becomes metastable and T and To, where the para-
elastic phase becomes instable. The jump e, at T, is

45 3 C3, 0
0

he =—5= ——,, C3, &0.
3 4 aP''

Note that L i( T) should become infinite at Ti.
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account for the anharmonic behavior of V3Si. Al-
though neither has a soft optic mode been ob-
served nor is there clear evidence of coupling with
any electronic effects, the various models based on
the Landau theory, which were proposed for the
structural transition in V3Si (Refs. 68 and 69) have
discarded the SS as a primary OP. In particular, the
current model by Bhatt and McMillan hy-
pothesized that the cubic tetragonal distortion re-
sults from a secondary coupling to an optic mode
which is in turn coupled to a charge-density wave
instability taken as the primary OP.

The SS is not chosen as the transition OP (in spite
of an observed ferroelastic symmetry change,
acoustic-phonon softening and elastic
anomalies'7' that strongly suggest such a choice)
because of the contradiction between the apparent
second-order character of the transition and the ex-
istence of a cubic invariant allowed by the symmetry
properties of the SS (i.e., the violation of the Landau
condition). This contradiction was first noticed by
Anderson and Blount, who proposed that some
hidden parameter, eventually connected to the su-
perconducting transition close to 17 K, should be
the actual OP. However, though the early experi-
ments have effectively found the 21-K transition to

I

be continuous, recent accurate results show that
the transition is indeed weakly first order, as in the
isomorphous compound Nb3Sn. This crucial fact
disproves the argument raised by Anderson and
Blount and lends credence to a model consistent
with the symmetry of the system (i.e., involving the
SS as the natural transition parameter). We shall
now develop such a model and show that, with the
exception of the low-temperature rigidity, it de-
scribes accurately the set of elastic data available for
V3Si.

In Table I we can see that the point-group change
m 3m ~4/mmm corres onds to the onset of a two-
component SS [e, i —— 3(e2 —e2), e, 2 ——2e3 —ei —e2]
transforming like a two-dimensional IR (r3) at the
Brillouin-zone center. As the corresponding OP ex-
pansion is of the b type, ' ' we construct the expli-
cit form of Fi(e, i,e,~,C, ) in (1) using the expressions
of C2, C3 and C4, given in Table I. The other
components of the strain tensor have the transfor-
mation properties of the three-dimensional IR (r4),
which allows quadratic coupling to e, 1 and e,2.
Taking into account the various terms allowed by
symmetry up to the fourth degree in e, 1 and e,2, we
can thus write the complete LFE:

Cii —C12 ~ 2 (Ciii+2Ci23 —3Cii~)
0 0 0 0 0

F(T,e, e,i)=2F(T,O, O)+ (e, i+e,2}+

+ 72 «i«i —4Ciii2 3C1122)(e,'i+e,'2)'+ —,C44(e4+eg+e6)

+ 6(Cll+2Ci2)(ei+e2+e3) + —,(Ciii —C»3)(e, +e2+e3)(e, i+e,2)
o o 2 t 0 0 2 2

+ —,(Ci~+2Cis5)(ei+e2+e3}(e4+e5+e6)

(15)

+ —,(Ci44 —Ci55)[v 3e, i(eq —es)+e, z(2e4 —e5 —e6)] .0 0 .J 2 2 2 2 2

The stresses conjugate to e, 1, e,2, e=e1 + e2+e3 e4,
e5, and e6 are given in Table IV. The equilibrium
values at zero stresses in the LT phase are

—Pi+[Pi —16P'(Cii —C»)]'
es2=

0 0
C111—C123A=

o oC11+2C12

and

with

es2 A
e 2=e2

6 6

es2 A
es2

3 6

(16)

0 0p =——A(Ciii —Ci23) .
3

The SOEC values at 300 K have been measured by
Testardi et al. and a theoretical determination of
the TOEC's has been performed by Menon and Phi-
lip' based on a model of nearest-neighbor central
interaction. These data (collected in Table V) allow
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TABLE IV. Stresses conjugate to e, 1, e,2, e =e1+e2+e3, e4, e5, and e6 for V3Si.

C I I C I 2 Pl P2
& ] = eg] — eg]eg2+ eg](eg] +eg2)6 6 18

0 0Cllll C123 V 3 p p+ ee, ]+ (C]44 —C]» )(e5 —e6)
3 6

C I I
—C12 Pl 2 2 P2

0 0

+ 12( 2 1)+ 18e 2(e 1+e 2)

~0 ~0Cl 1 1 ~ 123 1 0 0 2 2 2ee,2+ 6 (C]44 —C]» )(2e4 —e5 —e6)

C]]+2C]2 C]]]—C]23 2 2 (C]44+2C]» )
0 0 0 0 0 0

cr, =
3

e+ (e.]+e.2)+
6 3

(e, +e, +e6)

0 4C44e4 + 3(C]44 + 2C]55)ee4 + 3(C]44—C]55)e4e, 2
0 2 0 0 0 0

0;=C44e5+ —(C]44+2C]» )ee5+ —(C]44 —C]» )(2 v 3e, les —2e, 2e5)
0 2 0 0 o o

op = C~ep+ 2 (CI44+2CI25 )eep+ 6 (CI~ —CI2q )—(2&3e, lee —2e, 2ep )
0 2 0 0 1 p p

PI =C I I I +2C 122
—3C112

0 0 0

0 0 0
P2 C Ill 1 4C1112 3C1122

us to estimate the value of A and pl We have
2=3.975 and pl ———21.3X10' N/m . The nega-
tive value of pl is consistent with the observed ex-
pansion of the c parameters' (c/a ) 1), and its small
magnitude is consistent with the weakly first-order
character of the 21-K transition. From the accurate
data given by Mailfert et al. ' for the lattice param-
eters we can deduce the values of ei, e3, and e,2 at

4.6 and 20 K (Table VI). Accordingly, it appears
that in the whole range of temperature of the ferro-
elastic phase we can neglect the quadratic contribu-

tion of e, 2 in (16) which is of the order of 10
Thus the ratio ei/e3 has the theoretical value of
——, which is roughly satisfied by the experimental

curves of Batterman and Barrett (the data of Ref.
60 give, respectively, ei/e3 ———0.422 at 20 K and

TABLE V. Experimental and calculated values of SOEC's, TOEC's, and FOEC's for V3Si.

Calculated values

SOEC (10' N/m )

Measured
values

(Ref. 70)
TOEC and FOEC (10' N/m )

Calculated values

300 K 4.2 K 22 K 20 K 4.6 K
T=300 K
(Ref. 16) 22K 20K 4.6K

28.70

12.02
8.096

1

2 (C]]—C12)

C]2

C]
C

3(C]]+2C]2)17.58

17.06
18.11
8.128

17.81
16.68
8.080

17.76

0.15 0.03 —0.03 —0.55

17.95 17.62 17.62

17.65 17.56 17.68
7.61 8.096 8.116

17.56 17.56
17.62 17.38
8.096 8.086

17.75 17.58 17.66

1
—,C3s'

C333 —C111.'

C113—C112:
C]13—C]

C]11=—219.9

C]]2= —72.8
C]44 ———11.9
C]66 = —700

C]23 ———9.9
C4s6 = —14 9
C]]]+2C]23 —3C]]20 0 0

= —21.3
0 0 0C]]]]+4C]112 3C1122

=5.49 X 10'

—21.3 140.90 212.38

120.78 182.04
40.26 60.68
80.52 121.36

1—3C2S

C]1—C]2

0.02 —0.06 —0.903

9.65 505.0 269.86 270.53 14.77
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V3Si

TABLE VI. Experimental values of lattice parameters for two samples of V3Si (after Ref.
61) and subsequent values of strain components and relative volume change.

a (A) c (A)

samples T (K) (Ref. 60) e1X 1o e3X 1o eg2X 10 —X 10 X 10
e3 V

No. 1

No. 2

4.6
20.0
22.0
4.6

19.2
24. 1

4.71471 4.726 45
4.715 71 4.723 46

4.71800
4.714 80 4.725 22
4.71542 4.723 73

4.717 80

—6.97
—4.9

0.0
—6.36
—5.05

0.0

17.9
1 1.6
0.0

15.7
12.56
0.0

8.29
5.50
0.0
7.35
5.87
0.0

—0.390
—0.422

0.0
—0.405
—0.402

0.0

3.9
1 ~ 8

0.0
2.9
2.3
0.0

e&/e3 ———0.402 at 19.6 K for two different samples
of V3Si}. On the other hand, the upper limit of
hV/V across the transition point is about 10 (see
Table VI), which agrees reasonably with the 10
discontinuous expansion reported by Chandrasekhar
and Ott at T, .

The jump of the OP at T, can be approximated

by the value of e, 2 at 20 K. ' We have

he, z
——5.50X10 = p&/2p'—, so that p'=1.75

X 10' N/m and Pz
—— 5.49 X 10' N/mz. This

value differs by 2 orders of magnitude from the
FOEC values given by Barsch. However, his cal-
culations are based on very crude approximations, as
the ratio between the FOEC's and TOEC's in V3Si is
arbitrarily deduced from the same ratio available for
alkali halides. Moreover, the combinations of the
third- and fourth-degree terms used in Ref. 63 are
incorrect on the basis of symmetry.

To express the temperature dependence of second-
and higher-order elastic constants in V3Si we also

need to estimate the value of the a coefficient in

Czz Czz a(T T—o) =a——(T T—,}. Using —16 at
T=300 K, we find a =6 )& 10 N/m K. The

SOEC's can thus be expressed (Table VII) with coef-
ficients that are numerically determined. The varia-

tion of the C;1 as a function of temperature is shown

in Fig. 4(a). In Table V, we give the corresponding
values on both sides of the transition point (20 and
22 K) and at 4.6 K. A comparison of the theoretical
curves with the measurements by Testardi et al.
and the experimental curves obtained by Testardi
and Bateman ' for C», C~, and C» —C&2 leads to
the following conclusions.

(1} The bulk modulus Czz+2C» remains practi-
cally constant though it increases slightly in the
low-temperature phase, where

C~ ~+2Czz-(52. 74+399' ) X 10

in units of N/m .
(2} Only two constants are strongly affected by

the transition: C», which at 4.6 K is smaller by
about 60%%uo than its 300-K value, and concurrently
C&2, which increases by one-third from its room-
temperature value. Consequently, C ~ ~

—C
& 2 nearly

vanishes at the transition point. However, though
for C» —C&2 our results are in fairly good agree-

TABLE VII. Calculated expressions for the temperature dependence of SOEC's in the fer-

roelastic phase of V3Si.

0 0 2
2 p p C11+2C12 0 0 ee 0 0 s2C„=—(C» —C» )+3 3

(C~~, —C&&z }e,z[P"—A(C~~~ —C~zz }]s

0 0 2
p p C11+2C» o o p p es2

C12 3 (C11 C12)+
0 0

+2( C123 —C112 )e,2+A ( C111—C123 )
3

1 p p 11 + 12 p p „es2
C~z ————(C~~ —C~z}+ —(C~zz CQz}e,z P—

3 3 3
0 0 2

p p C11+2C12 p p
C33 ———( C11 —C12 )+3 3

+2(CI I I
—CII2 )e,2+2p"

3
2

0 2 0 0 0 p es2
C44 =C44+ (C144 —C155 )e 2

—A (C144+2C155 )S
3

2
O 1 O O 0 p es2

C55 =C66 =C44 ——(C144 —C155 )es2 —A (C144+2C155 )
3 s

3

P =P2 —A (C111—C123 )
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FIG. 4. Temperature dependence of elastic constants, degree of nonlinearity and stress conjugate to the SS for V3Si. (a)
SOEC's following Table VIII. (b) TOEC's following Eq. (17). (c) Degree of nonlinearity L& and stress conjugate to e, 2 (see
text).

ment with the experimental data of Testardi et al.
in the paraelastic phase, they differ on an important
point in the ferroelastic phase. As shown in Fig.
4(a} and Table V, they predict a discontinuous
change of sign at T„ the rigidity becoming negative
under the transition point. In our calculations, the
origin of such a physically unrealistic situation lies
in the fact that the expression for the stiffness is

C]1—C]2——C]1 C]2 —p]e,2+—p2e, 2,0 0 2

so that its negative sign comes from the smallness of
p] and p2 [the coefficients of the third and fourth
powers of the OP in (15)],which cannot compensate
for the negative sign of C» —C&2 below T, . Such a
feature indicates that within a model based on (15)
the tetragonal phase is unstable below T, .

Actually, Testardi and Bateman ' have shown
that below T„C»—C&2 remains surprisingly close
to its lower value, while in the isomorphous com-
pound Nb3Sn, the rigidity is normally restored in
the tetragonal phase. An interpretation of the
preceding facts can be given, following a suggestion
by Sakhnenko and Talanov, ' i.e., near T, the ma-
terial is close to a second transition to an orthorhom-
bic phase predicted by the Landau theory and corre-
sponding to the onset of the strain component e„.
The small value of C~i —Ci2 in the ferroelastic
phase should thus be associated with a softening of

C333 1]t =4p2e 2

4
C]13 C]12 p2e 2 (17)

8
C]13 ]33—

3 P2e, 2 .

The curves corresponding to (17) are given in Fig.

this constant. If an orthorhombic structure has not
escaped detection under T„one cannot use model
(15) in its simplest form (which assumes no secon-
dary OP) and one has to introduce a coupling to
some other effect (possibly related to the supercon-
ducting transition at 17 K) which has the result of
stabilizing the tetragonal structure.

(3) The theoretical values of C33 C44 and C66 re-
veal (as for C]1—C]2} a weak discontinuity at T„
consistent with the first-order character of the tran-
sition. As is observed experimentally, ' C~ is
theoretically predicted to increase in the ferroelastic
phase. However, the experimental data show also a
slow decrease of about 5% in C44, from 300 K to T„
not assumed in our model. In Fig. 4(a) are also
shown the variations of C», C33 and C66, for which
no measurements are available.

To estimate the elastic nonlinearity of V3Si, we
can derive from (15) some combinations of TOEC's
vanishing in the paraelastic phase:
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14+.4C333 —Clll]=pl+ 3 p28 2,

C4s =—
72 [C))))+3C))22+4C)))2—32C(333

+8( C3333 —C1113)]

+3(Cf[33 ]]23+ '[233 —pp .

Thus

Li ——

2
—,C3,e,2+ —,4 C,4e, 2

1

3.5
1.9

at T=20 and 4.6 K, respectively, using the calculat-
ed values of C3, and C4, given in Table V, and for
C&-C» —C~2 the experimental numbers C2, (4.6
K)=0.30X10'o N/m' and C„(20 K)=0.07X10"
N/m deduced from Ref. 71. The values of L& and
the shape of the curve L &(T) [Fig. 4(c)] are in good
agreement with the qualitative results based on (15)
and illustrated on Fig. 3. These results predict a
high degree of nonlinearity as can be seen by noting
the dependence on temperature of the stress

1 Cs 3 2 C4s 3o(e,2) = —,C,2e, 2+ e,~+ e, 2 .
24

From the o(T) curve plotted on Fig. 4(c), we can
deduce the characteristic values of o (20K)
=0.447X10 N/m and a(4.2 K)=2.142X10
N/m which are consistent with the stress values
0 3(e2 ) determined by Batel and Batterman.

The preceding description is also possibly ap-
propriate to other materials undergoing a m3m-to-
4/mmm structural change. This is the case in par-
ticular for the indium-thallium alloys for which a
softening of the acoustic mode has been observed
and the variation of the SOEC's measured as a func-

4(b) and some characteristic numbers are given in
Table V. The common feature of the curves is a
drastic jurnp at T, followed by a substantial increase
as the temperature is lowered. One can also observe,
as for Te02, that while the individual values of the
TOEC s are negative, it is their positive combina-
tions which express the elastic nonlinearity of the
material. For an estimation of the degree of non-

linearity L] of V3Si in the ferroelastic phase, we

need to know the TOEC and FOEC combinations

C3, and C4, . We have

C3s = —,[6(C123+ 113
— 133)+9C))p

tion of temperature. For another 315 compound,
Nb3Sn, it is not clear that the SS is the primary OP,
as an optic mode (corresponding to internal dis-
placement of the Nb atoms) which couples linearly
to the soft shear acoustic mode has been observed.
For these materials the determination of the TOEC
values should allow a numerical model based on (15)
and help the understanding of their transition
mechanisms.

C. Type-III and -IV ferroelastics

Type-III and -IV ferroelastics are characterized
by the fact that the same IR induces two indepen-
dent components e, ~ and e,2 of the strain tensor so
that the primary OP of the transition corresponds to
one of these components and couples linearly to the
other (the secondary OP).

In Table I we see that IR's are one-dimensional

(and consequently satisfy the Landau-Lifshitz cri-
teria), for the three species of type III, whereas the
IR's are two-dimensional (and violate the Landau
condition) for species of type IV. Accordingly, the
LFE of type-III and -IV ferroelastics will differ,
respectively, from the LFE of types I and II mainly

by a bilinear term Ce, ~e, 2, where C is a combination
of SOEC's expressing the coupling between e, &

and

e,2. As this coupling does not modify in an essential
manner the features described in Secs. II A and II B,
we will limit the discussion to an illustrative exam-

ple of these categories of materials. From column
11 of Table I, it can be seen that Lawb04 is the only
known potential example of a proper ferroelastic be-

longing to types III and IV. This material under-

goes a 4/m-to-2/m continuous structural change at

T, =495'C, accompanied by the onset of two in-

dependent spontaneous-strain components (e6 and

e~ —e2) which transform as the same Brillouin-
zone-center IR of the I4&/a space group. Although
no experimental data are available for the SOEC's
and TOEC's, the observation of a domain struc-
ture, ' the softening of an acoustic mode, and the
absence of optical-mode softening" strongly sug-

gests a proper ferroelastic character. The primary
OP of the transition seems to be the spontaneous
shear strain e6, as this component is larger than

e& —e2. ' However, this choice must be confirmed

by checking the vanishing of C66 and a nonzero
value of C&& —C~2 (corresponding to the secondary
OP e& —e2) at T, . The absence of elastic constant
data for lanthanum niobate, besides leaving doubts
about the transition mechanism, allows only a quali-
tative description of its elastic properties.

Considering the various terms which couple to e6
and e& —e2 in the linear and nonlinear elastic ener-

gies, we can write the LFE and LaNb04 in the form
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0 0
66 2 6666 4 0F(T,e6)=F(T,O)+ e6+ e 6+C16e6(e 1

—e2)
2 24

+ —,(C„—C,2)(e, —e2) + —,(Cii+C12)(ei+e2)'

+ —,(C33e3+C44e 4+ C33e 3 ) + C 1 iei (e 1 +e2 )
0 2 0 2 0 2 0

(C111—C112 )
0 0

(C113—C 123 )
0 0

+ (ei -e2)'(ei +e2)+ (ei -e2)'e3
3 6

+—„(Ciis6—C12ss)(ei —e2) es .0 0 2 2
(18)

In a first approximation we can neglect in {18}the
quadratic coupling between e1 —e2 and e6. Similar-

ly, in the determination of the equilibrium values of
the strain components, the cubic contributions of
(ei —e2) can be considered small with respect to the
linear ones. Accordingly, we obtain expressions for
the strains in the ferroelastic phase (Table VIII)
which reveal that the coupling term results in a shift
upward of the transition temperature T„the magni-
tude of the shift dependinII both on the intensity of
the coupling coefficient C16 and of the softening of
the secondary OP (ei —e2) (i.e., of the magnitude of
Cii —C12 at T,). The same ratio Ao expresses the
linear dependence of e1 —e2 on e6. Since e1 —e2 de-

pends quadratically on e6, e1, and e2 can be written
as the sum of linear and quadratic contributions
whose respective importance depends on the SOEC
and TOEC combination AOA1. As for type-I ferro-
elastics, the nonzero non-symmetry-breaking strain
components {e3 and e 1 + e2) vary quadratically with
e6 (i.e., linearly with temperature}. The algebraic ex-
pressions of e1, e2, and e6 in Table VIII are qualita-
tively verified by the experimental curves given by
Tsunekawa and Tanaka and %ada et al. ' From
the observed increase of ei (and decrease of e2) we
can deduce that C16 &0. Moreover, the slope of e6
given in Ref. 79 leads to 6a/C6666-4. 45X10
From the values of (e1 —e2)/2 at T=20'C and
T=490'C ( —340X 10 and —40X 10 , respec-
tively) we obtain

0

=—0.743
C11 —C12

at 20'C and

0
= —0.781

C11 C12

at 490'C. Assuming that C16 is constant in the
low-temperature phase, we can deduce that
C» —C(2 decreases only weakly as T, is ap-
proached. This justifies, after the fact, the choice of
e6 as the primary OP of the transition in LaNBO4.
From (18}we obtain expressions for the SOEC's in
the ferroelastic phase (Table VIII). We can see that,
due to the existence of a secondary OP, a larger
number of SOEC's {than for type-I ferroelastics)
vary with temperature in the ferroelastic phase. For
C16, C26, C66, and C» —C», this variation is linear
with T, —T. The constants which couple each of
the two OP to non-symmetry-breaking components
of the strain tensor contain also terms in {T,—T)'~ .
On the other hand, while e6 vanishes linearly at T„
neither Cii —C,2 nor (Cii+C22 —2C12)/2=C2, go
to zero at the transition temperature. Thus, for con-
tinuous transitions, the primary OP can be identified
by considering temperature dependence of the elastic
constants. The preceding remarks do not hold for
higher-order constants as one finds that, similarly to
type-I ferroelastics, only those constants related to
the primary OP vary with temperature in the ferro-
elastic phase, with C666 vanishing at T, . The other
TOEC's (as well as the FOEC's) remain constant at
their high-temperature value. In particular
C3 —C1 1 1 C222 —3(C»2 —C122) is zero in both
phases.

In summary, type-III and -IV ferroelastics are dis-
tinguishable from type-I and -II ferroelastics by the
existence of a secondary OP which couples linearly
to the transition OP. This linear coupling shifts the
transition temperature upward and increases the
number of temperature-dependent SOEC's. Howev-
er, it does not modify the qualitative features ob-
tained for the second-order elastic constants, as well
as for higher-order constants. We have excluded
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TABLE VIII. Temperature dependence of strain components and temperature dependence of SOEC's [derived from

(18)] for LaNb04.

Temperature dependence of strain components

6a(T, —T)
e6 ——

0

Temperature dependence of SOEC's in the ferroelastic phase

0 0
p . p p C113 C]23

C~ ——C44,
'

C55 ——C55', C]3—C]3 Ape6

Ap A]Ap
2

e6+ eo
2 2

0 0
p C»3 C]23

C22 ——C]3+ Aoe6
3

Ap A ]Ap
2

e6+
2 2

2 2
0 Ap e6

C66 =C66+ C6666+
3 2

2
e3 ———A2Ape6

o Ao o 0 2
C]6——C 16

——(C»66 —C 1266 )e
3

0 0 0 0 2
C26 =C]6+ (C]166—C 1266 )e

3

2Co2
Te —To+ P 0a(C» —C]2)

C&~ ——
z [(C~~ —C~q)+(C~~+C~2)] B~e—6+83e6

2C]6
Ap ——

C» —C]2
Czz ———,[(C» —Cu)+(C»+Ca)]+28ie6+84e6

C]3(C]13 C]23 ) 2C33 (C]11—C]12 )
0 0 0 0 0 0

Ai=—
3(C» +C]2)—2C]30 0 0 02 C)2 = —,[(C)) +C, p ) —(C„C») ] B—,e6+82—e 6

o o 0 0 2

6C]3A 1 + ( C»3 C]23 )
2 C'

33

2Ap
B]—— (C»1 —C»2)

3

8,= —,[(C', )2 C]23)AoA2 —, (C»66——C~266)]

4A 0A]
2

B3— (C»] C»2 ) B2
3

B3—B2
B4 ——

2

from the above description the case where, due to a
strong coupling between two components of similar
magnitude, the transition is induced by two simul-
taneous OP's. This limit situation will be discussed
in a further study.

III. PSEUDOPROPER FERROELASTIC
TRANSITIONS

In the PFT considered in Sec. II, the spontaneous
strain has been assumed to be the only OP and the
acoustic mode the only strongly temperature-
dependent excitation. A model based on these as-
sumptions may give, for some strain-induced PFT, a
rather accurate description of their elastic proper-
ties. For other PFT, it can be only a first approxi-
mation, as other secondary OP and excitations must
be introduced into the model to account for the en-
tire set of experimental facts. In V3Si, for instance,

we have seen that a coupling to some parameter was
necessary to explain the persistent stability of the
tetragonal structure at low temperature. Neverthe-
less it appears that most of the elastic properties of
strain-induced transitions can be described ignoring
the secondary parameters involved in the transition
and considering exclusively the spontaneous and
nonspontaneous components of the strain tensor.

However, the preceding situation is not the most
frequently encountered among materials undergoing
a PFT. In column 11 of Table I we can see that a
majority of materials in which a PFT has been ob-
served have been labeled as pseudoproper. This
means that the strain cannot be considered as the
primary OP and results only from a bilinear cou-
pling to a primary OP having the same symmetry
(i.e., transforming as the same IR). In materials
such as LaPqO]4 or BiVO4 the primary OP expresses
an atomic displacement within the unit cell which is



5738 P. TOLEDANO, M. M. FEJER, AND B.A. AULD 27

distinct from the motion resulting in the symmetry-
breaking strain. It can be identified as the eigenvec-

tor of a condensed optic mode which becomes un-

stable primarily with respect to the acoustic mode,
both modes being proportional to each other in the
low-symmetry phase. In rare-earth vanadates or
spinels there are no soft optic modes but the acous-

tic instability arises from a coupling of strain to
electronic energy levels in a cooperative Jahn-Teller
effect. In some cases, such as KzMnz(SO4}3 or s-

triazine the experimental data are insufficient or
controversial so that it is not clear which is the pri-

mary instability responsible for the transition.
In this section we describe the elastic (linear and

nonlinear) properties of pseudoproper PFT em-

phasizing their differences with respect to proper
PFT. As the coefficients of the OP expansion are
not expressed directly through SOEC's, TOEC's,
and FOEC's, the entire set of second- and higher-

order constants have to be introduced in the com-

plete LFE via elastic energies of various orders.
Furthermore, to perform a numerical model for a

given material, one needs to know, in addition to the
values of the elastic constants in the HT phase, the
experimental parameters corresponding to the coef-
ficients of the OP invariants and to the coefficients
which couple the strains to the primary OP (Q). For
none of the pseudoproper materials listed in Table I
is the entire set of numbers available. However, for
some of them [LaP50i4, KHi(SeOi)2, RbAg4I&], the
experimental results allow a semiquantitative
description. We shall first discuss the case of lan-

thanum pentaphosphate, then we will briefly review

the distinctive features of the other pseudoproper
materials.

A LapsOi4

Lanthanum pentaphosphate undergoes a continu-
ous transition at T, =125'C from an orthorhombic
mmm paraelastic phase to a monoclinic 2/m ferro-
elastic phase. ' Below T„a spontaneous mono-
clinic shear e5 in the xz plane has a temperature
dependence determined by Weber et al. , revealing
a magnitude of approximately 10 rad at room
temperature. Several soft modes have been observed
in this material, namely a transverse-acoustic mode
detected by Brillouin scattering measurements and
two strongly softening optic modes revealed by Ra-
man scattering. "' The softer of these optic modes
has the same symmetry as the monoclinic shear, and
its associated normal coordinate Q has been pro-
posed as the actual OP of the transition. This
choice is suggested by the fact that the correspond-
ing frequency co~ is considerably larger than that of
the bare acoustic mode, and has a strong tempera-
ture dependence. Accordingly, a phenomenological
theory taking Q as the primary OP has been pro-
posed by Errandonea, which describes accurately
the temperature dependence of the strains and of
most of the SOEC's. Errandonea suggests also that
the experimental features which are not accounted
for by his model, namely the slope of the C» coeffi-
cient and the slight anomaly observed at T, for C44,
may be explained by the introduction of a quadratic
coupling between Q and e, . s

In order to describe the nonlinear elastic proper-
ties of LaP504, we add to the LFE, which is given in
Ref. 87, terms expressing the third-order elastic en-

ergy in the paraelastic phase. We thus have

F(Te;,Q)= Q~y —
Q + ——, g Cie;ej+ —, g Ckkek

i,j=1,3 k=4, 6

I ~ 0 2 1 ~ 0 2 0 0 2
gje; ej + —, Z C~yi e~ e; +C,2iei eze3 +C456e4e5 e6 +Ze5 Q + + 5;e; Q

i,j =1,3 i=1,3 i=1,3
j=4,6

in which we assume a=a(T —To) and P&0. Here

y and 5; (i =1,3) are coefficients coupling Q to the
various components of the strain tensor. (Only the
lowest-order coupling has been considered, as in
Ref. 87.) Constants Cj and Cjk are, respectively,
the values of the SOEC's and TOEC's in the para-
elastic phase. We can verify that there are nine in-

dependent SOEC's and 20 TOEC's. It must be
stressed that, in contrast with proper PFT, descrip-
tion of the elastic nonlinear properties of pseu-
doproper PFT requires terms of the form e;ej
(i,j&5) proportional to Q, whereas we have limited

I

the OP expansion to the fourth degree. By contrast,
in order to obtain a numerical estimate of some
TOEC's, the fourth-order elastic energy has been
neglected, so that the FOEC's are explicitly absent
from (19). This approximation is justified by the
fact that most of the contributions to fourth-order
elastic energy (except terms containing e5) corre-
spond to powers Q .

Let us first summarize the results obtained in Ref.
87 for the equilibrium values of the strains and
SOEC's in LaP5014, and compare them to those ob-
tained for proper ferroelastics.
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TABLE IX. Temperature dependence of SOEC's aud TOEC's for LaPiOi4', t =T T—,= —t', p' p —2g;~ &
3Slj5l5JI

g =aCii/y=1/(T, To—); g'=(2P/P')g.

(Ref. 87)

Orthorhombic

phase

Monoclinic

phase

Orthorhombic

phase

TOEC
Monoclinic

phase

1/2
at'

I C,jk (i,j,k=1,2,3) 0
Cgjk Ctk+85;5J5k

a ' (1+g't')'

es

e; (i=1,2,3)

&4se6

1/2

y at'
C'„P'

g Si5t'

C,js (i,j=1,2,3)

Csss

C;ss (i=1,3)

0 4&&
rg' (2—g't')
a (1+g't')

'3
yg (at'/p')'"
a (1+g't )

25;y'g'/a' 0 25;y'g' 1 2g't'

1+gt a (1+g't')

Css Co gt
1+gt

0 g't'
1+g't'

(i =1,2, 3)
C"~

hajj (j —4 6)
0C 0C

Cfs (i= 1,2,3)

C&j (i,j=1,2,3) 0
C,j

1/2
2Css (g't')'

+5]
P 1+8' t
25;5j g't'

C~j-
P 1+g't'

C4s6
0

C4s6
0

C4s6

(where g' depends on the coupling coefficients). By
contrast, if es were the primary OP, these coeffi-
cients would be proportional to (T, —T} and
(T T}l/2

Using the notation of Ref. 87 (see Table IX) we
have calculated from (19} the variation of the
TOEC's as a function of temperature. The nonzero
constants are given in Table IX where one can note
a number of differences with the results for proper
ferroelastics. Actually 19 TOEC's are found to be
temperature dependent in the ferroelastic phase of
which three (C;», i=1,2,3) vary also in the para-
elastic phase. This is in striking contrast with the
proper ferroelastic case, where only one constant
(C5») varies with temperature and only in the fer-
roelastic phase. Moreover, the laws of temperature
variation differ considerably from the simple law
(T, T)'/ obtained in—Sec. IIA. Curves of some
representative TOEC s are given in Fig. 5. Since the
high-temperature values C;jk and C;55 are unknown,
we show only the differences (Cj'k Cj'k) and
(C;»—C ss). For Cs» and C&s (iJ =1,2,3), we ob-
tain explicit expressions, as these constants vanish
by symmetry above T, .

Apart from
~

C~ss —C;ss ~, which exhibits a max-
imum at T, and decreases in both phases, all con-
stants exhibit a sharp variation at T, and a slow in-
crease as the temperature is lowered.

and C(5 as

h'(T, —2')1'"
1+g'(T, —T)

(1) The coupling between Q and es produces an
upward shift of the transition temperature T, in a
mechanically free crystal (i.e., when e& is the unique
OP). The transition takes place at T, =To
+y /aC55. Using experimental values of
y /a = 1070 and C55 ——6.62)& 10' N/m, Erran-
donea found a shift T, —To ——161'C indicating a
strong coupling.

(2) The spontaneous strain e5 is found to vary as
(T, T)'/ while—the e; (i=1,2,3) vary as (T, T}. —
The same results have been obtained for proper fer-
roelastics (see Sec. IIA}. However, as shown in
Table IX, the slopes of e5 and e;, are modified by
coupling between Q and e;, via the 5; coefficients.

(3} The coefficients Css and C;5 (i=1,2,3} are
found to be temperature dependent, whereas for a
proper ferroelastic C,j would be temperature in-
dependent. Moreover, one can see in Table IX that
the laws of temperature variation are different than
in the proper ferroelastic case. Here Css varies as

g'(T, T)—
1+g'(T, —T)
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)0I4

TABLE X. Calculated values of the moduli of TOEC's
for Lap50&4.

TOEC's at T=20'C
(10'~ N/m )
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FIG. 5. Temperature dependence of some representa-
tive TOEC modulus for Lap50~4, following the calculated
expressions in Table IX.

B. Other pseudoproper ferroelastics

In addition to LaP50&4, three other materials are
given in Table I as examples of pseudoproper ferro-
elastics of type I, namely KH3(Se03)2, DyVO4, and

Calculated numerical values of the TOEC's at
20'C are given in Table X. We see that C;» (i= 1,3)
and C555 are, respectively, about 1 and 3 orders of
magnitude larger than C;5 and C55. The differences

Czk —C&k (ij=1,2,3) and C;55 ——C;55 (i=1,2,3) indi-
cate that the C,jk and C;55 should be about 2 orders
of magnitude larger than the corresponding SOEC's.
Using expressions (9} (in which the FOEC contribu-
tion is neglected), we can calculate the degree of
nonlinearity in lanthanum pentaphosphate. We
have here

, C555e5
L i

———, ——2.96,
C55

in which C5q(20'C) =4.14X 10' N/m (see Ref. 87)
and e5(20 C)=8&(10 rad. The large value found
for L& indicates that elastic nonlinearity in pseu-
doproper ferroelastics, in which a strong coupling
exists between the OP and the symmetry-breaking
strain, can be even larger than for proper ferroelas-
tics.

TbVO4. Some features of potassium trihydrogen
selenite are very similar to those of lanthanum pen-
taphosphate: the same symmetry change
mmm ~2/m (accompanied by the onset of a spon-
taneous shear strains9 e5) continuous character re-
ported for the —62'C transition, and a large shift
of the transition temperature, with T, —To
=137'C. ' Accordingly, a microscopic mechanism
which does not result in macroscopic components (a
rearrangement of the proton system} has been in-
voked to play the role of the OP of the transition.
The corresponding phenomenological theory has
been discussed by Makita et al. ' and Kessenikh
et al. based on a LFE containing a linear proton-
phonon coupling. However, the dependence of the
SOEC's with temperature ' displays two important
features which differentiate KH3(Se03)2 from
LaP50i4. At first, it appears that while C» (C~
with the convention of Makita et al. ') softens simi-
larly for both materials, the other elastic constants
are nearly temperature independent in the ferroelas-
tic phase. Moreover, discontinuities which are
characteristic of a slightly first-order transition are
observed for C&i, C22 and Ci2, and Ci3. ' These
facts can be indicative of a weak coupling between
the OP Q and the strain components other than e&.
One can also assume that the linear coupling be-
tween Q and e5 is not as strong as suggested by the
shift of T„as this shift can be partially attributed to
the first-order character of the transition. It thus
leaves open the possibility of interpreting the transi-
tion in KH3(Se03)2 as a first-order proper transition.

The nonlinear properties of potassium trihydro-
gen selenite, in the vicinity of the transition tem-
perature have been investigated by Zagrai et al. '

These authors estimate the value of C»2 of
0.9/10' N/m, which is 1 order of magnitude
smaller than the same constant in LaP50i4 (Table
V). But as C22 in KH3(Se03)2 is also 1 order of
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magnitude smaller than in LaP40i4 the ratio
C22q/C2q is similar for both materials. However, it
is the value of C555 that would give more valuable
information on elastic nonlinearity in KH3(Se03}2
and incidently, on the magnitude of the coupling be-
tween Q and es.

The pseudoproper character of the rare-earth
vanadates RVO4 (R=Dy,Tb,Tm} is more certain as
several studies have shown that the distortion
of the lattice at low temperature in this family of
materials results from a coupling between the low-

lying electronic energy levels of the rare-earth ions
and the lattice phonons (i.e., a Jahn-Teller-type ef-
fect). However, the situation is not consistent
among the various members of this family of com-
pounds. In DyVO4 the 14-K I4i/amd~Imma
transition is associated with the IR r3 of the
I4i/amd group at Brillouin-zone center while it is
the IR r4 of the same space group which induces the
I4i/amd~Fddd space-group change in TbVO4.
In the former case, it is the constant C» —C&2
which vanishes at r, whereas in the latter it is the
constant C66 which softens. In TmVO4, both con-
stants undergo a large softening but only C66 goes to
zero at 2.15 K denoting a strong coupling between
the two corresponding modes. However, the elastic
data are still insufficient to provide indirect indica-
tions of the nonlinear properties of rare-earth vana-
dates and also to confirm the mechanism currently
assumed for their transition

There also exists a Jahn-Teller-type effect pro-
posed as an explanation of the transitions taking
place in RbAg4I5 and NiCr204, two type-II pseu-
doproper ferroelastics. The 64.3'C transition in ru-
bidium silver pentaiodide RbAg4I5 (Ref. 98} has the
peculiarity of being induced by a three-dimensional
IR(r5} of the space group P4~32, which violates
simultaneously the Landau-Lifshitz criteria. One
should thus expect a strong first-order character for
the transition and the possible occurrence of a
structural incommensuration in the LT phase.
Nevertheless, due to the absence of thermal hys-
teresis and specific-heat anomalies ' the transi-
tion has been claimed to be continuous and the low-
temperature phase to be of definite rhombohedral
R32 symmetry. ' However, when examining the
elastic data given by Graham and Chang, ' ' a non-
negligible discontinuity of Cii and Ci2 is apparent.
Moreover, this first-order character is confirmed by
a slight jump observed in the temperature depen-
dence of the birefrigence. ' From the pressure
derivatives of the acoustic velocity some combina-
tions of TOEC's have been estimated in the para-
elastic phase. ' ' .Though an evaluation of the im-
portance of the elastic nonlinearity necessitates data
for the ferroelastic phase (and especially the value of

C4&6), the numbers given in Ref. 101 for the TOEC's
reflect a small amount of nonlinearity as they are
less than 10 times larger than the corresponding
SOEC values.

The crystal NiCr204 is one of the members of the
large family of spinels undergoing a
Fd 3m ~I4i/amd Jahn-Teller-induced transition.
Their behavior should be compared to that of the
315 compounds, as (similarly to V3Si and Nb3Sn)
some members, such as CuCr204, ' exhibit c/a & 1

distortion (so that the C3, coefficient is negative)
while others, such as NiCr204, ' have c/a g 1

(C3, &0). However, the elastic constant data given
for NiCr204 (Ref. 104) are incomplete and do not al-

low a detailed phenomenological model for this ma-
terial. Adequate comparison of the temperature
dependence of strains and SOEC obtained for
NiCr204 and V3Si, allows one, however, to see that
differences are found between pseudoproper and
proper type-II ferroelastics which are similar to that
found for type-I ferroelastics. In particular, it ap-
pears that a larger number of SOEC's are tempera-
ture dependent and their variation laws are sensibly
distinct.

Finally, let us briefly review the two examples of
pseudoproper materials given in Table I for type-III
and -IV ferroelastics. The 255'C ferroelastic change
in BiVO4 has been reported by Bierlein and
Sleight, ' and a zone-center soft-optic mode was ob-
served in this material by Pinczuk et al. , ' who sub-
sequently gave a phenomenological model in which
the optical mode was assumed to drive the transi-
tion. ' However, another model by Dudnik
et al.,' was based on the assumption that BiVO4
is an improper ferroelastic. The recent observation
of a soft acoustic mode' is in favor of the first as-
sumption. The linear coupling between the OP and
the strain components, in the model of Pinczuk
et al. ,

' appears to be extremely large as it produces
a shift of the transition temperature of
T, —TD ——228'C. However, no mention is made in
Ref. 107 of a linear coupling with the two indepen-
dent components e6 and (e ~

—ez) which characterize
type-III pseudoproper ferroelastics. More complete
data on the elastic constants of BiVO4 (in particular,
the confirmation of a softening of both C66 and
C» —Ciq) should allow the verification of the pseu-
do roper character of this compound.

n sodium azide, NaN3, a coupling between the
orientational motion of the azide ions and the lattice
strains (e4 and ei —e2) has been suggested" as a
mechanism for the room-temperature transition.
Though the softening of C44 and C» —C,2 has been
observed, "' no other elastic data exist for verifying
the pseudoproper character of the transition. Such
additional data should also allow a check of the con-
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tinuous nature of the 20'C transition claimed by
Simonis and Hathaway" which is in contradiction
with the existence of a cubic invariant in the LFE.

To conclude this section let us note that some ma-
terials listed in Table I have not been classified
among proper or pseudoproper ferroelastics as too
much uncertainty remains about the mechanism of
their transition. This is the case for s-triazine, "
KNO2, " and K2Mn2(SO4)3. For this last material,
a member of the langbeinite family, there exists
strong controversy concerning the symmetry of the
OP," " and elastic data would allow the deter-
mination of which IR induces the observed cubic to
orthorhombic transition.

IV. SUMMARY AND CONCLUSION

In this paper nonlinear elasticity in proper ferro-
elastics (nonsimultaneously ferroelectrics} has been
investigated, using the Landau theory of phase tran-
sitions. Thus, the basis for the determination of
third- and higher-order elastic constants was provid-
ed by truncated expansions in the OP and strain-
tensor components (i.e., the LFE). For a given real
transition, the detailed expression of the correspond-
ing LFE is deduced from a set of symmetry restric-
tions, such as the IR inducing the transition and the
possible couplings of the OP to some other physical
quantities, from nonsymmetry properties, namely
the nature of the OP and the thermal expansion of
lattice parameters in the paraelastic phase, and also
from considerations where symmetry may possibly
be involved, such as the order of the transition.

In ferroelastics where certain strain components
correspond to the OP, coefficients in the LFE coin-
cide with special combinations of elastic constants
of second and higher order, so that linear and non-

linear elasticity are directly accounted for by the
Landau theory. Accordingly, the elastic behavior of
four classes of strain-induced ferroelastics have been
distinguished (Sec. II). Let us first summarize their
general properties.

(I) Type-I ferroelastics correspond to a tetrag-
onal-orthorhombic or an orthorhombic-monoclinic
structural change. The transition, induced by a
one-dimensional "active"" IR can be of the second
or the first order, depending on the sign of the
paraelastic combinations of the FOEC's C4, . Values
for C4, and C3„. can be deduced from the tempera-
ture variation of strain components and SOEC's in
the ferroelastic phase. When only nonlinear cou-
plings between (spontaneous and nonspontaneous)
strain components influence the transition (i.e., no
secondary OP is involved) all the TOEC's and
FOEC's remain constant across the transition tem-
perature T„except for the TOEC's composing C3„

and eventually (for a first-order transition) those
FOEC's which appear in the combination C4,. For
a second-order transition (C4, &0) Cz, and Cs, van-

ish at T„while for a first-order transition C2,
remains nonzero at the Curie point. First-order
transitions, which require for their description intro-
duction of elastic constants of the sixth order (at
least}, can also be distinguished by a jump at T, of
the strain components and elastic constants C2„C3g,
and C4, . The magnitude of these jumps depends
(and provides information) on the values of the
paraelastic constants C3„,C4„and C6, .

(2) The paraelastic phase of type-II ferroelastics
belongs to the cubic or hexagonal systems. A transi-
tion of this class is associated with an IR violating

the Landau condition. Accordingly, the LFE pos-
sess cubic invariant(s) and the transition should be

of the first order. Its elastic behavior resembles

qualitatively that of first-order transitions of type-I
ferroelastics, but with the noteworthy difference of
the nonvanishing of C3, in the paraelastic phase.

(3) Type-III and -IV ferroelastics are, respectively,
distinguished from ferroelastics of type I and II by
the existence of a secondary OP coupling linearly to
the transition OP. This coupling shifts the transi-
tion temperature and increases the number of
temperature-dependent SOEC's, but does not modify
the behavior of higher-order constants as described
for ferroelastics of types I and II.

As a quantitative estimate of the nonlinear elasti-

city stored at a ferroelastic transition, a coefficient

Li was defined (the degree of nonlinearity). For a
second-order type-I (or -III) ferroelastic, the value

5 5
L

&
——

4 is found, and L» 4 for a first-order transi-

tion of the same class. For type-II (or -IV) ferro-
elastics, L& is a slowly decreasing function of tem-

perature, with a sharp peak (L i & 3) at the transition
temperature T~. One must note the qualitative
resemblance of L i(T) with the specific heat predict-
ed theoretically by the Landau theory for second-
and first-order transitions.

As an illustration of the preceding results, numer-
ical models were established for ferroelastics of type
I (TeOi) and of type II (V,Si). The discussion of
these models demonstrated that nonlinear elasticity
in ferroelastics cannot be estimated by the mere
values of individual higher-order constants, but only
from particular combinations (as Ci, } of TOEC's
and FOEC's. In Te02, as well as in V3Si, while
most of the individual TOEC's are small and nega-
tive in the paraelastic phase, they combine in such a
way that C3, is positive and increases rapidly below
the Curie point. Thus the ratio L2 (=C3,/C2, ) pro-
vides, complementarily to L~, a suitable indication
of nonlinear elasticity. The corresponding values for
Te02 and V3Si are, respectively, L2 (20 kbar)=50
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and Lz(4.6 K) 450, which is between 1 and 2 or-
ders of magnitude larger than the values usually ob-
tained for ratios of TOEC's and SOEC's in nonfer-
roelastic materials. Therefore, for an experimental
estimate of nonlinear elasticity in a ferroelastic ma-
terial, the measurement of C3, (and C2, ) provides
important basic information.

As shown in Sec. II, a theoretical determination
of the relevant TOEC's and FOEC's at any tempera-
ture for a given ferroelastic material is possible if
one knows the following: (a) numerical values, in
the paraelastic phase, for the SOEC's, TOEC's, and
FOEC's involved in the LFE; (b) the temperature
variation of the SS in the ferroelastic phase. How-
ever, although complete sets of values for the
preceding FOEC's and TOEC's are not generally
available from experiments, they can be deduced
from the temperature variation of strains and
SOEC's. Accordingly, for the materials examined in
Sec. II, a preliminary discussion was based on these
latter quantities, comparing their theoretical
behavior as predicted by the LFE, and the corre-

sponding experimental data. For Te02, C4, was de-
duced from the slope of C» —C&2, whereas for V3Si
it was approximated from the jump of e, at the tran-
sition point.

Such a comparison between theoretical predic-
tions and experimental data is also necessary for
testing the LFE assuined as a first approximation.
Thus, a temperature variation for C»+ C&2 and
two higher-degree coupling terms were introduced in
a refined model for Te02, while for V3Si it was
shown that a coupling to some secondary parameter
was indeed necessary in order to explain the
anomalous resoftening of the rigidity in the ferro-
elastic phase. These adjustments, though modifying
the simplest model derived from the Landau theory,
do not contradict the choice of the SS as a primary
OP for the two preceding materials. Such a choice
is suggested by the observed symmetry change and
by the lack of clear experimental data relating the
transition to some physical mechanism distinct from
the one resulting in the onset of spontaneous strains.
The accurate fit with experimental data, largely ver-
ified for the theoretical behavior of strain com-
ponents and TOEC's (Figs. 2 and 4), strongly con-
firms the strain-induced character assumed for the
transitions in Te02 and V3Si."

Among real examples of PFT, strain-induced
transitions are at present in the minority, as most
known cell-preserving ferroelastic transitions have
been described with an OP distinct from the SS.
For pseudoproper transitions, elastic properties are
accounted for in the LFE, via elastic energies of
second and higher orders. In Sec. III the elastic
features of pseudoproper ferroelastics were exam-

ined through the specific case of LaP50i4. In this
material it has been established experimentally that
SOEC's varying with temperature in the ferroelastic
phase, are more numerous, and follow different vari-
ation laws than for a strain-induced transition un-

dergoing the same symmetry change. We have
shown that similar conclusions hold for TOEC's.
Numerical values obtained for these latter constants
reveal that elastic nonlinearity (characterized by the
numbers Li-3 and L2-10 at T=20'C) can be
large in pseudoproper ferroelastics such as LaP50i4
in which a strong coupling exists between the OP
and the SS. The different behavior obtained for
SOEC's and TOEC's in proper and pseudoproper
ferroelastics, respectively, confirms that the distinc-
tion between these two concepts is not a purely for-
mal one, but has a strong physical basis. However,
the classification of a particular ferroelastic in one
of the two categories is never obvious and may in
some cases require consideration of a whole set of
physical properties, including elastic constants of
second and higher orders.

Most studies devoted to ferroelastics have stressed
the analogy of this class of materials with ferroelec-
trics or ferromagnets. In this paper nonlinear elasti-
city has been shown to be a remarkable feature of
proper ferroelastic transitions. A study of nonlinear
elasticity in other categories of ferroelastics (improp-
er ones or simultaneously ferroelectrics) as well as in
nonferroelastic materials, should be of interest, as it
would give a more general picture of the respective
importance of this phenomenon among the various
categories of solids. It would also indicate to what
extent a high degree of elastic nonlinearity is related
to the onset of large strains, or to lattice instabilities
taking place at any phase transition.

Nonlinear elasticity in solids has been, in recent
years, the subject of an increasing number of stud-
ies. ' " However, because of intrinsic difficulties,
experimental data on elastic constants of higher or-
der remain scarce and uncertain. A theoretical
understanding of the microscopic mechanism of
nonlinear elasticity, ' and of its phenomenological
aspects for various classes of materials, should
stimulate the improvement of experimental methods
of measurements of elastic constants of third and
higher orders.
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