Dielectric relaxation in pseudo-one-dimensional ferroelectric CsD₂PO₄

A. Levstik, B. Žekš, and I. Levstik J. Stefan Institute, E. Kardelj University of Ljubljana, 61001 Ljubljana, Yugoslavia

H. G. Unruh, G. Luther, and H. Roemer Fachbereich Physik der Universität des Saarlandes, D-6600 Saarbrücken, Federal Republic of Germany

(Received 26 July 1982; revised manuscript received 22 November 1982)

Dielectric dispersion in pseudo-one-dimensional hydrogen-bonded ferroelectric CsD_2PO_4 was measured in the frequency range from 100 kHz to 2 GHz for temperatures between -13 and 30°C. The observed relaxation is monodispersive in the paraelectric phase, except in the vicinity of the transition. The static dielectric constant ϵ_s shows classical critical behavior, with the critical coefficient $\gamma=1$. The relaxation frequency f_{ϵ} is much lower than in corresponding three-dimensional systems and exhibits a pronounced critical slowing down with a nonclassical exponent of 1.3. Outside the critical region in the paraelectric phase, ϵ and f_{ϵ} can be described reasonably well by a pseudo-one-dimensional Ising model, treating the interchain interactions in the mean-field approximation. The intrachain and interchain interactions obtained agree well with previously determined values. The noninteracting deuteron intrabond-jump time is much smaller than in KD₂PO₄ but has the same activation energy.

I. INTRODUCTION

Cesium dihydrogen phosphate CsH₂PO₄ (CDP), along with its deuterated isomorph CsD₂PO₄ (DCDP), is a well-known example of a pseudo-onedimensional hydrogen-bonded ferroelectric crystal.¹⁻¹² The crystal is monoclinic⁴ (space group $P2_1/m$) with two formula units per primitive unit cell in the high-temperature paraelectric phase. There are two different types of $O-H \cdots O$ bonds in the structure.^{4,13} The $O-H(1)\cdots O$ bonds link the PO_4 groups along the *a* axis and are ordered even in the high-temperature phase. The $O-H(2)\cdots O$ bonds, on the other hand, form zigzag chains along the ferroelectric b axis and are disordered in the paraelectric phase and become ordered only below the transition temperature in the ordered, ferroelectric phase. 6,8,9,11,13 Neutron scattering studies 6,9,12 of DCDP showed that diffuse scattering in the paraelectric phase is characteristic of a one-dimensional system with chainlike ordering parallel to the *b* axis. Only close to the transition temperature T_c do the three-dimensional fluctuations become important,^{9,12} but the correlations are still much longer ranged along the chain direction than along the other two directions. CDP is therefore a quasi-one-dimensional system.

The observed ordering of $O-H(2)\cdots O$ bonds and the rather large isotope effect² in T_c upon deuteration $(T_{c,D}/T_{c,H}=1.74)$ demonstrate the role of the $O-H(2)\cdots O$ hydrogen bonds in the transition. Therefore, one can think of CDP as a onedimensional version of KH_2PO_4 , where the disordered hydrogen-bond network is three dimensional,¹⁴ and a quasi-one-dimensional Ising model in a transverse tunneling field can be an appropriate microscopic model of CDP. Just as in KD_2PO_4 ,¹⁴ the tunneling effects can probably be neglected in DCDP, and one is left with a simple anisotropic (quasi-one-dimensional) Ising model with strong intrachain $(J_{||})$ and weak interchain (J_1) interactions,

$$\mathscr{H} = -J_{||} \sum_{x,y,z} \sigma(x,y,z) \sigma(x,y+1,z) - \sum_{\substack{x,x',y,y',z,z' \\ (x,z) \neq (x',z')}} J_{\perp}(x-x',y-y',z-z') \sigma(x,y,z) \sigma(x',y',z') .$$
(1)

Here y corresponds to the intrachain coordinate (along the b axis) and x,z describe the two coordinates of the chain. σ is the spin- $\frac{1}{2}$ operator and its two possible values $\sigma = \pm 1$ represent the position of

the deuteron in one of the two possible equilibrium sites in the $O-H(2) \cdots O$ bond.

DCDP therefore represents an ideal system for testing some exact and approximate results of the

5706

©1983 The American Physical Society

quasi-one-dimensional Ising model for static and especially dynamic quantities. The simplest approximation for analyzing the static properties of the quasi-one-dimensional Ising model [Eq. (1)] is the linear-chain approximation (LCA), in which the interchain interactions are treated as a mean field, while the intrachain interactions are taken into account rigorously.^{15,16} The above model yields in the linear-chain approximation the following expression for the static dielectric constant above T_c ($T > T_c$):

$$\epsilon_s = \frac{A}{T} \left[\exp\left[-\frac{2J_{||}}{T} \right] - \frac{J_{\perp}}{T} \right]^{-1}.$$
 (2)

Here all the parameters are in temperature units,

$$J_{\perp} = \sum_{\substack{x,y,z\\(x,z)\neq(x',z')}} J_{\perp}(x-x',y-y',z-z')$$

and $A = N\mu^2$, N being the number of O-H(2) · · · O hydrogen bonds per unit volume and μ the effective dipole moment of a hydrogen bond.

The measured static dielectric constant of DCDP can be satisfactorily described by expression (2) over the whole temperature region above T_c ,⁸ showing a crossover between a one-dimensional regime far away from T_c and a classical three-dimensional regime close to T_c with the critical exponent $\gamma=1$. Expression (2) can be also used to fit the neutron scattering data.¹² The parameters of the system, i.e., $J_{||}$ and J_{\perp} determined from neutron scattering data,¹² agree fairly well with the ones obtained from dielectric measurments.⁸ The two intrachain coupling constants $J_{||}$ are practically equal, while J_{\perp} seems to depend more on the level of deuteration of the system, reproducing the dependence of T_c on deuteration.

Static dielectric measurements on DCDP show relatively large difference between the transition temperature T_c and the Curie-Weiss temperature T_0 and only small thermal hysteresis.^{2,8} The difference $T_c - T_0$ is strongly sample dependent, has the values between 0.1 and 14 K,^{8,17} and seems to depend on the level of deuteration and impurities in the system. One does not observe any discontinuity and rounding of ϵ at T_c but only a discontinuous change in the slope $d\epsilon/dT$.

There also exist some dynamic measurements on DCDP in which the critical dynamics are tested by deuteron magnetic resonance¹¹ and by measuring the dielectric relaxation.¹⁷ Dielectric data also exist for undeuterated CDP.^{17,18} All these results show directly^{17,18} or indirectly¹¹ a pronounced critical slowing down effect near T_c , with characteristic relaxation frequencies which are much smaller (approximately 2 orders of magnitude) than in analogous three-dimensional systems (KH₂PO₄ and

 KD_2PO_4). The dynamic properties of DCDP are usually analyzed by a kinetic pseudo-onedimensional Ising model¹⁹ treated in the (LCA).²⁰ The measurements roughly agree with LCA results but display some systematic deviations from them close to the transition. Therefore, the dynamic parameters extracted from experimental data in such a way could be of questionable value.

We measured the dielectric dispersion in DCDP in the frequency range from 100 kHz to 2 GHz for temperatures between -13 and 30°C, and by Cole-Cole analysis determined the temperature dependence of the static dielectric constant ϵ_s and that of the relaxation frequency f_{ϵ} . The results were analyzed in terms of the LCA approximation.

II. EXPERIMENTAL RESULTS

The complex dielectric constant of DCDP along the ferroelectric b axis was measured with HP 8407 and HP 8410 network analyzers in the frequency range from 100 kHz to 2 GHz. The sample faces perpendicular to the ferroelectric axis were covered by vacuum-evaporated gold electrodes. The frequencies were automatically adjusted and the output data automatically recorded. The cylindrical sample was 1 mm thick and had a diameter of 1.5 mm. The temperature was changed over the interval from -13 to 30 °C and all data were taken for decreasing temperature. The temperature of the sample holder was stable to ± 0.02 K during the measurements at various frequencies. The crystals were grown by slow evaporation of a heavy water solution of cesicarbonate and phosphorous pentoxide um $(Cs_2CO_3 + P_2O_5 + 2D_2O \rightarrow 2CsD_2PO_4 + CO_2).$

In Fig. 1 the Cole-Cole plot for T = -7.04 °C is shown, which is typical for the region close to T_c . Away from T_c in the paraelectric phase $(T > T_c + 6$ K), the relaxation is monodispersive but becomes polydispersive closer to T_c in the paraelectric and in the ferroelectric phase. In the ferroelectric phase an additional low-frequency (~0.3-MHz) dispersion attributed to domain-wall motion was observed. The transition temperature T_c was determined as the temperature where this low-frequency dispersion disappears. The transition temperature T_c of the sample was -7.9 °C, a little larger than in previous studies,^{8,12} indicating more complete deuteration of the crystal. The $\epsilon(\omega)$ data were analyzed with the Cole-Cole formula

$$\epsilon(\omega) = \epsilon_{\infty} + \frac{\epsilon_s - \epsilon_{\infty}}{1 + (i\omega\tau_{\epsilon})^{1-h}} , \qquad (3)$$

where $\epsilon(\omega)$ is the complex dielectric constant as a function of angular frequency ω , ϵ_s is the static

FIG. 1. Cole-Cole diagram of DCDP close to T_c in the paraelectric phase.

dielectric constant, ϵ_{∞} is the high-frequency dielectric constant, τ_{ϵ} the dielectric relaxation time, and $\beta = 1 - h$ is the dispersion parameter. ϵ_{∞} , which is much smaller than $\epsilon(\omega)$, does not influence the analysis and cannot be accurately determined.

In Fig. 2 the temperature dependence of the dispersion parameter β is shown. β equals one except in the polydispersive region close to T_c . Even there $\beta \simeq 1$, demonstrating that the relaxation is approximately monodispersive. A small discontinuity of β at T_c could be an indication that the transition is slightly first order.

The inverse static dielectric constant ϵ_s^{-1} as a function of temperature is presented in Fig. 3. In agreement with previous study⁸ ϵ_s^{-1} shows linear behavior close to $T_c = 265.2$ K ($T < T_c + 5$ K). In this region the static dielectric constant can be represented by the Curie-Weiss law

$$\epsilon_s = \frac{C}{T - T_0} , \qquad (4)$$

FIG. 2. Temperature dependence of the dispersion parameter β of DCDP. For T > 275 K, the size of the points is approximately equal to the experimental error.

FIG. 3. Temperature dependence of the inverse static dielectric constant ϵ_s^{-1} of DCDP. The solid line represents the theoretical curve. For T < 275 K, the size of the points is approximately equal to the experimental error.

where the Curie-Weiss temperature T_0 was determined by extrapolation as 263.85 K, $T_c - T_0 = 1.4$ K, and the Curie-Weiss constant C equals 7.2×10^4 K, which is more than 1 order of magnitude greater than in a corresponding three-dimensional system (KD_2PO_4) .²¹ At higher temperatures $(T > T_c + 5K)$ one observes a deviation from the Curie-Weiss behavior, in agreement with direct measurements of the low-frequency dielectric constant.⁸ Similar temperature dependence with classical behavior close to T_c has also been observed in undeuterated crystals of CDP.¹⁷ A recently observed nonlinear dependence of $\epsilon_s^{-1}(T)$ in CDP and DCDP close to the transition¹⁸ can probably be attributed to the effect of impurities or to neglect of the difference between the transition temperature T_c and the Curie-Weiss temperature T_0 ($T_c - T_0 \simeq 0.1$ K).

The relaxation frequency $f_{\epsilon} = 1/2\pi\tau_{\epsilon}$ is presented as a function of temperature in Fig. 4. It slows down from 2 GHz at 30 °C to 13 MHz at T_c . In contrast to ϵ_s^{-1} , f_{ϵ} is not a linear function of T even in the neighborhood of T_c .

III. DISCUSSION

Treating the kinetic pseudo-one-dimensional Ising model¹⁹ in the linear-chain approximation by neglecting interchain correlations, one obtains for the dielectric relaxation frequency the expression²⁰

$$f_{\epsilon} = f \left[\cosh \frac{2J_{||}}{T} \right]^{-1} \left[\exp \left[-\frac{2J_{||}}{T} \right] - \frac{J_{\perp}}{T} \right].$$
(5)

Here f is the relaxation frequency of noninteracting elementary dipoles, which consist of a deuteron in a

FIG. 4. Temperature dependence of the relaxation frequency f_{ϵ} . The solid line represents the theoretical curve. For T < 275 K, the size of the points is approximately equal to the experimental error.

double-well potential and of heavy ions coupled to it. One usually assumes for f an exponential temperature dependence²²

$$f = f_0 e^{-\Delta U/T}, \tag{6}$$

where ΔU is the activation energy for the reorientation of a molecular dipole and equal to the height of the barrier in the double-well potential. From expressions (2) and (5) one can get for the kinetic coefficient

$$\epsilon_s f_{\epsilon} = \frac{A}{T} f \left[\cosh \frac{2J_{||}}{T} \right]^{-1}. \tag{7}$$

For temperatures which are much higher than $J_{||}$, expression (7) reduces to

$$\epsilon_{\rm s} f_{\epsilon} = \frac{A}{T} f_0 e^{-\Delta U/T} , \qquad (8)$$

which is valid for three-dimensional ferroelectrics in the mean-field regime, and is used to determine the activation energy ΔU and f_0 from dielectric data.²² In this case A equals the Curie-Weiss constant in the paraelectric phase.

The intrachain coupling constant $J_{||}$ for DCDP is much bigger than the maximal experimentally accessible temperature,^{8,12} so we are always in the low-temperature limit $2J_{||} \gg T$. The expression for the kinetic coefficient [Eq. (7)] now has the form

$$\epsilon_s f_{\epsilon} = \frac{2A}{T} f_0 e^{-(2J_{\parallel} + \Delta U)/T} . \tag{9}$$

The factor $2 \exp(-2J_{||}/T)$ represents a decrease of the kinetic coefficient from its mean-field value [Eq. (8)] because of one-dimensional intrachain correlations. Figure 5 shows the natural logarithm of

FIG. 5. Natural logarithm of the product of the kinetic coefficient $\epsilon_s f_{\epsilon}$ and absolute temperature (T) as a function of T^{-1} , with f_{ϵ} given in GHz. For $10^3 T^{-1} > 3.6$, the size of the points is approximately equal to the experimental error.

 $T\epsilon_s f_{\epsilon}$ as a function of the inverse absolute temperature T^{-1} . Equation (9) is evidently valid only at high temperatures, where it corresponds to a straight line. The deviation from the straight line close to T_c is a consequence of three-dimensional interchain correlations, which are not taken into account in the derivation of Eq. (9). The temperature interval $(T - T_c \le 7 \text{ K})$ where this deviation is observed agrees with the temperature range where the nonclassical critical behavior of f_{ϵ} with the critical exponent 1.3 is observed (Fig. 6). Equation (5) therefore can be used for a quantitative analysis of experimental data only for $T > T_c + 7 \text{ K}$.

We fitted expression (2) and the low-temperature

FIG. 6. Logarithm of the relaxation frequency f_{ϵ} (in GHz) as a function of $\log(T - T_0)$.

form of Eq. (5) $(2J_{||} >> T)$,

$$f_{\epsilon} = 2f_0 \exp\left[-\frac{2J_{||} + \Delta U}{T}\right] \left[\exp\left[-\frac{2J_{||}}{T}\right] - \frac{J_{\perp}}{T}\right],$$
(10)

to the experimental data for ϵ_s and f_{ϵ} in the temperature interval $T_c + 7$ K $< T < T_c + 40$ K. This temperature range is much smaller than the one analyzed in Ref. 8, and the estimated experimental error at higher temperatures is too large to allow a complete determination of all the parameters of the model. Choosing for $2J_{||}$ the value 1350 K, which is close to the values obtained from dielectric⁸ $(2J_{||} = 1365$ K) and neutron scattering¹² $(2J_{||} = 1300$ K) experiments, the best fit is obtained for $J_{\perp} = 1.58$ K, A = 2570 K, $f_0 = 6.6 \times 10^{13}$ Hz, and $\Delta U = 450$ K. The calculated temperature dependences of ϵ_s^{-1} and f_{ϵ} are represented by full curves in Figs. 3 and 4.

The value for $A = N\mu^2 = 2570$ K agrees well with the one obtained from static dielectric measurements⁸ (within 10%). Calculating the number of elementary dipoles per unit volume (N) from structural data,^{9,12} for the elementary dipole moment one obtains $\mu \simeq 0.61 \times 10^{-29}$ cm, which is too large to be attributed only to the deuteron in the hydrogen bond. The heavy-ion contribution to the elementary dipole moment is approximately 50%.

The value obtained for J_{\perp} does not agree very well with the one from static dielectric data⁸ ($J_{\perp} = 0.83$ K), but it is closer to the one from neutron scattering analysis¹² ($J_{\perp} = 2.1$ K). J_{\perp} seems to be very much sample dependent and very sensitive to the degree of deuteration of the crystal.

The activation energy $\Delta U = 450 \text{ K} = 0.039 \text{ eV}$ is very close to the corresponding value in KD_2PO_4 ,²¹ indicating that the O-H(2) · · · O bonds in DCDP are very much the same as the hydrogen bonds in KD₂PO₄, as can also be concluded from the approximate equality of the bond lengths,^{4,13} and of the deuteron quadrupole coupling constants¹¹ in these two systems.

The relaxation frequency of the noninteracting dipoles [Eq. (6)] at T_c equals $1.3 \times 10^{13} \text{ s}^{-1}$ and the corresponding relaxation time τ has the value of 1.2×10^{-14} s, which is 2 orders of magnitude smaller than the free-dipole relaxation time in KD₂PO₄. The KD₂PO₄ free-dipole relaxation time obtained by NMR (Ref. 23) equals 1.8×10^{-12} s, while its value obtained from dielectric data²¹ using Eq. (8) is 1.6×10^{-12} s. The nonequality of the free-dipole relaxation times in these two systems can be under-

stood in the following way. While the DCDP analysis in one-dimensional regime is exact, in the KD_2PO_4 studies the mean-field approximation is used [Eq. (8)], neglecting strong correlations between four deuterons around a given PO₄ group, which can be treated rigorously in the four-cluster approximation.²⁴ In a first approximation, mean-field results can still be used if one ascribes the two states $S^z = \pm 1$ to the two lowest energy states of the whole PO₄ group. The obtained relaxation time therefore describes the dynamics of the whole PO₄ group and is expected to be much larger than the relaxation time corresponding to a single hydrogen bond.

The value for τ obtained in a recent NMR analysis¹¹ in DCDP disagrees with our results by 2 orders of magnitude and is of the same order as the one in KD₂PO₄. This discrepancy seems to be a consequence of the fact that a much too small anisotropy ratio $J_{||}/J_{\perp} = 100$ was used in the analysis of the NMR data. Furthermore, only the critical region close to T_c was studied, where the linear-chain approximation [Eq. (10)] is not valid.

IV. CONCLUSIONS

Analysis of the dielectric relaxation in pseudoone-dimensional ferroelectric CsD_2PO_4 in the vicinity of T_c shows classical Curie-Weiss behavior for the static dielectric constant, and nonclassical critical temperature dependence of the dielectric relaxation frequency with a critical exponent 1.3.

The linear-chain approximation, in which the interchain correlations are neglected, well describes the static and dynamic dielectric properties of the system outside the critical region $(T > T_c + 7 \text{ K})$. The kinetic coefficient in this region is strongly temperature dependent because of one-dimensional intrachain correlations. Close to T_c an additional slowing down and a decrease of the kinetic coefficient (Fig. 5) are observed as a consequence of three-dimensional interchain correlations.

The intrachain and interchain interactions obtained agree well with previously determined values. The noninteracting deuteron intrabond relaxation time is much smaller than in KD_2PO_4 , but has the same activation energy. It can be concluded that the double-well potential for a deuteron in a hydrogen bond is approximately the same in CsD_2PO_4 and in KD_2PO_4 . To compare the properties of the two systems quantitatively the four-cluster analysis for dynamics in KD_2PO_4 is needed.

- ¹F. Seidl, Tschermaks. Mineral. Petrogr. Mitt. <u>1</u>, 432 (1950).
- ²A. Levstik, R. Blinc, P. Kadaba, S. Čižikov, I. Levstik, and C. Filipič, Solid State Commun. <u>16</u>, 1339 (1975).
- ³J. W. Lynn, M. Iizumi, G. Shirane, S. A. Werner, and R. B. Sailant, Phys. Rev. B <u>12</u>, 1154 (1975).
- ⁴Y. Uesu and J. Kobayashi, Phys. Status Solidi A <u>34</u>, 475 (1976).
- ⁵E. Kanda and T. Fujimura, J. Phys. Soc. Jpn. <u>43</u>, 1813 (1977).
- ⁶D. Semmingsen, W. D. Ellenson, B. C. Frazer, and G. Shirane, Phys. Rev. Lett. <u>38</u>, 1299 (1977).
- ⁷N. Yasuda, M. Okamoto, H. Shimizu, S. Fujimoto, K. Yoshino, and Y. Inuishi, Phys. Rev. Lett. <u>41</u>, 1311 (1978).
- ⁸R. Blinc, B. Žekš, A. Levstik, C. Filipič, J. Slak, M. Burgar, I. Zupančič, L. A. Shuvalov, and A. I. Baranov, Phys. Rev. Lett. <u>43</u>, 231 (1979).
- ⁹B. C. Frazer, D. Semmingsen, W. D. Ellenson, and G. Shirane, Phys. Rev. B <u>20</u>, 2745 (1979).
- ¹⁰N. Yasuda, S. Fujimoto, M. Okamoto, H. Shimizu, K. Yoshino, and Y. Inuishi, Phys. Rev. B <u>20</u>, 2755 (1979).
- ¹¹B. Topič, V. Rutar, J. Slak, M. I. Burgar, and R. Blinc, Phys. Rev. B <u>21</u>, 2695 (1980).

- ¹²R. Youngblood, B. C. Frazer, J. Eckert, and G. Shirane, Phys. Rev. B <u>22</u>, 228 (1980).
- ¹³R. N. P. Choudhary and R. J. Nelmes, Ferroelectrics <u>21</u>, 443 (1978).
- ¹⁴See, for instance, R. Blinc and B. Žekš, Soft Modes in Ferroelectrics and Antiferroelectrics (North-Holland, Amsterdam, 1974).
- ¹⁵A. V. de Carvalho and S. R. Salinas, J. Phys. Soc. Jpn. <u>44</u>, 238 (1978).
- ¹⁶J. A. Plascak and N. P. Silva, Phys. Status Solidi B <u>110</u>, 669 (1982).
- ¹⁷K. Deguchi, E. Okaue, and E. Nakamura, J. Phys. Soc. Jpn. <u>51</u>, 349 (1982).
- ¹⁸E. Kanda, A. Tamaki, and T. Fujimura, J. Phys. C <u>15</u>, 3401 (1982).
- ¹⁹M. Suzuki and R. Kubo, J. Phys. Soc. Jpn. <u>24</u>, 51 (1968).
- ²⁰S. Žumer, Phys. Rev. B <u>21</u>, 1298 (1980).
- ²¹G. Luther, Ferroelectrics <u>12</u>, 243 (1976).
- ²²H. E. Müser and J. Petersson, Fortschr. Phys. <u>19</u>, 559 (1971).
- ²³R. Blinc, J. Stepišnnik, M. Jamšek-Vilfan, and S. Žumer, J. Chem. Phys. <u>54</u>, 187 (1971).
- ²⁴R. Blinc and S. Svetina, Phys. Rev. <u>147</u>, 423 (1966).