Dielectric relaxation in pseudo-one-dimensional ferroelectric CsD₂PO₄

A. Levstik, B. Žekš, and I. Levstik J. Stefan Institute, E. Kardelj University of Ljubljana, 61001 Ljubljana, Yugoslavia

H. G. Unruh, G. Luther, and H. Roemer Fachbereich Physik der Universität des Saarlandes, D-6600 Saarbrücken, Federal Republic of Germany

(Received 26 July 1982; revised manuscript received 22 November 1982)

Dielectric dispersion in pseudo-one-dimensional hydrogen-bonded ferroelectric CsD₂PO₄ was measured in the frequency range from 100 kHz to 2 GHz for temperatures between —¹³ and 30'C. The observed relaxation is monodispersive in the paraelectric phase, except in the vicinity of the transition. The static dielectric constant ϵ_s shows classical critical behavior, with the critical coefficient $\gamma=1$. The relaxation frequency f_{ϵ} is much lower than in corresponding three-dimensional systems and exhibits a pronounced critical slowing down with a nonclassical exponent of 1.3. Outside the critical region in the paraelectric phase, ϵ and f_{ϵ} can be described reasonably well by a pseudo-one-dimensional Ising model, treating the interchain interactions in the mean-field approximation. The intrachain and interchain interactions obtained agree well with previously determined values. The noninteracting deuteron intrabond-jump time is much smaller than in KD_2PO_4 but has the same activation energy.

I. INTRODUCTION

Cesium dihydrogen phosphate $CsH₂PO₄$ (CDP), along with its deuterated isomorph CsD_2PO_4 (DCDP), is a well-known example of a pseudo-onedimensional hydrogen-bonded ferroelectric crystal. $1-12$ The crystal is monoclinic⁴ (space group $P2_1/m$) with two formula units per primitive unit cell in the high-temperature paraelectric phase. There are two different types of $O-H \cdots O$ bonds in the structure.^{4,13} The $O-H(1) \cdots O$ bonds link the $PO₄$ groups along the a axis and are ordered even in the high-temperature phase. The $O-H(2) \cdots O$ bonds, on the other hand, form zigzag chains along the ferroelectric b axis and are disordered in the paraelectric phase and become ordered only below the transition temperature in the dered only below the transition temperature in the ordered, ferroelectric phase.^{6,8,9,11,13} Neutron scattering studies^{6,9,12} of DCDP showed that diffuse scattering in the paraelectric phase is characteristic of a one-dimensional system with chainlike ordering parallel to the b axis. Only close to the transition temperature T_c do the three-dimensional fluctua tions become importan ' 12 but the correlations are still much longer ranged along the chain direction than along the other two directions. CDP is therefore a quasi-one-dimensional system.

The observed ordering of $O-H(2) \cdots O$ bonds and the rather large isotope effect² in T_c upon deuteration $(T_{c,D}/T_{c,H}=1.74)$ demonstrate the role of the $O-H(2) \cdots O$ hydrogen bonds in the transition. Therefore, one can think of CDP as a onedimensional version of KH_2PO_4 , where the disordered hydrogen-bond network is three dimensional,¹⁴ and a quasi-one-dimensional Ising model in a transverse tunneling field can be an appropriate microscopic model of CDP. Just as in KD_2PO_4 ,¹⁴ the tunneling effects can probably be neglected in DCDP, and one is left with a simple anisotropic (quasi-one-dimensional) Ising model with strong intrachain $(J_{||})$ and weak interchain (J_{\perp}) interactions,

$$
\mathcal{H} = -J_{||} \sum_{x,y,z} \sigma(x,y,z) \sigma(x,y+1,z) - \sum_{x,x',y,y',z,z'} J_{\perp}(x-x',y-y',z-z') \sigma(x,y,z) \sigma(x',y',z') . \tag{1}
$$

Here y corresponds to the intrachain coordinate (along the b axis) and x, z describe the two coordinates of the chain. σ is the spin- $\frac{1}{2}$ operator and its two possible values $\sigma = \pm 1$ represent the position of

the deuteron in one of the two possible equilibrium sites in the $O-H(2) \cdots O$ bond.

DCDP therefore represents an ideal system for testing some exact and approximate results of the

$$
\frac{27}{2}
$$

27 5706 61983 The American Physical Society

-

quasi-one-dimensional Ising model for static and especially dynamic quantities. The simplest approximation for analyzing the static properties of the quasi-one-dimensional Ising model [Eq. (I)] is the linear-chain approximation (LCA), in which the interchain interactions are treated as a mean field, while the intrachain interactions are taken into account rigorously.^{15,16} The above model yields in the linear-chain approximation the following expression for the static dielectric constant above T_c ($T > T_c$):

$$
\epsilon_s = \frac{A}{T} \left[\exp \left(-\frac{2J_{||}}{T} \right) - \frac{J_{\perp}}{T} \right]^{-1} . \tag{2}
$$

Here all the parameters are in temperature units,

$$
J_1 = \sum_{\substack{x,y,z \ (x,z) \neq (x',z')}} J_1(x-x',y-y',z-z')
$$

and $A = N\mu^2$, N being the number of O-H(2) \cdots O hydrogen bonds per unit volume and μ the effective dipole moment of a hydrogen bond.

The measured static dielectric constant of DCDP can be satisfactorily described by expression (2) over the whole temperature region above T_c ,⁸ showing a crossover between a one-dimensional regime far away from T_c and a classical three-dimensional regime close to T_c with the critical exponent $\gamma = 1$. Expression (2) can be also used to fit the neutron scattering data. 12 The parameters of the system, i.e., J_{\parallel} and J_1 determined from neutron scattering data,¹² agree fairly well with the ones obtained from dielectric measurments.⁸ The two intrachain coupling constants $J_{||}$ are practically equal, while J_{\perp} seems to depend more on the level of deuteration of the system, reproducing the dependence of T_c on deuteration.

Static dielectric measurements on DCDP show relatively large difference between the transition temperature T_c and the Curie-Weiss temperature T_0 and only small thermal hysteresis.^{2,8} The difference $T_c - T_0$ is strongly sample dependent, has the value between 0.¹ and 14 K, ' $\frac{7}{4}$ and seems to depend on the level of deuteration and impurities in the system. One does not observe any discontinuity and rounding of ϵ at T_c but only a discontinuous change in the slope $d\epsilon/dT$.

There also exist some dynamic measurements on DCDP in which the critical dynamics are tested by deuteron magnetic resonance¹¹ and by measuring the dielectric relaxation.¹⁷ Dielectric data also exist for undeuterated CDP.^{17,18} All these results show directly' ' 8 or indirectly¹¹ a pronounced critical slowing down effect near T_c , with characteristic relaxation frequencies which are much smaller (approximately 2 orders of magnitude) than in analogous three-dimensional systems $(KH_2PO_4$ and

KDzP04). The dynamic properties of DCDP are usually analyzed by a kinetic pseudo-onedimensional Ising model¹⁹ treated in the $(LCA).^{20}$ The measurements roughly agree with LCA results but display some systematic deviations from them close to the transition. Therefore, the dynamic parameters extracted from experimental data in such a way could be of questionable value.

We measured the dielectric dispersion in DCDP in the frequency range from 100 kHz to 2 GHz for temperatures between -13 and 30° C, and by Cole-Cole analysis determined the temperature dependence of the static dielectric constant ϵ_s and that of the relaxation frequency f_{ϵ} . The results were analyzed in terms of the LCA approximation.

II. EXPERIMENTAL RESULTS

The complex dielectric constant of DCDP along the ferroelectric b axis was measured with HP 8407 and HP 8410 network analyzers in the frequency range from 100 kHz to 2 GHz. The sample faces perpendicular to the ferroelectric axis were covered by vacuum-evaporated gold electrodes. The frequencies were automatically adjusted and the output data automatically recorded. The cylindrical sample was ¹ mm thick and had a diameter of 1.5 mm. The temperature was changed over the interval from -13 to 30°C and all data were taken for decreasing temperature. The temperature of the sample holder was stable to ± 0.02 K during the measurements at various frequencies. The crystals were grown by slow evaporation of a heavy water solution of cesium carbonate and phosphorous pentoxide $(Cs_2CO_3 + P_2O_5 + 2D_2O \rightarrow 2CsD_2PO_4 + CO_2).$

In Fig. 1 the Cole-Cole plot for $T = -7.04$ °C is shown, which is typical for the region close to T_c . Away from T_c in the paraelectric phase $(T > T_c + 6)$ K), the relaxation is monodispersive but becomes polydispersive closer to T_c in the paraelectric and in the ferroelectric phase. In the ferroelectric phase an additional low-frequency $(-0.3-MHz)$ dispersion attributed to domain-wall motion was observed. The transition temperature T_c was determined as the temperature where this low-frequency dispersion disappears. The transition temperature T_c of the sample was -7.9 °C, a little larger than in previou studies,^{8,12} indicating more complete deuteration of the crystal. The $\epsilon(\omega)$ data were analyzed with the Cole-Cole formula

$$
\epsilon(\omega) = \epsilon_{\infty} + \frac{\epsilon_{s} - \epsilon_{\infty}}{1 + (i\omega\tau_{\epsilon})^{1-h}},
$$
\n(3)

where $\epsilon(\omega)$ is the complex dielectric constant as a function of angular frequency ω , ϵ_s is the static

FIG. 1. Cole-Cole diagram of DCDP close to T_c in the paraelectric phase.

dielectric constant, ϵ_{∞} is the high-frequency dielectric constant, τ_{ϵ} the dielectric relaxation time, and $\beta = 1-h$ is the dispersion parameter. ϵ_{∞} , which is much smaller than $\epsilon(\omega)$, does not influence the analysis and cannot be accurately determined.

In Fig. 2 the temperature dependence of the dispersion parameter β is shown. β equals one except in the polydispersive region close to T_c . Even there $\beta \approx 1$, demonstrating that the relaxation is approximately monodispersive. A small discontinuity of β at T_c could be an indication that the transition is slightly first order.

The inverse static dielectric constant ϵ_s^{-1} as a function of temperature is presented in Fig. 3. In agreement with previous study⁸ ϵ_s^{-1} shows linear behavior close to T_c = 265.2 K ($T < T_c + 5$ K). In this region the static dielectric constant can be represented by the Curie-Weiss law

$$
\epsilon_s = \frac{C}{T - T_0} \tag{4}
$$

FIG. 2. Temperature dependence of the dispersion parameter β of DCDP. For $T > 275$ K, the size of the points is approximately equal to the experimental error.

FIG. 3. Temperature dependence of the inverse static dielectric constant ϵ_s^{-1} of DCDP. The solid line represents the theoretical curve. For $T < 275$ K, the size of the points is approximately equal to the experimental error.

where the Curie-Weiss temperature T_0 was determined by extrapolation as 263.85 K, $T_c - T_0 = 1.4$ K, and the Curie-Weiss constant C equals 7.2×10^4 K, which is more than ¹ order of magnitude greater than in a corresponding three-dimensional system $(KD_2PO_4).^{21}$ At higher temperatures $(T > T_c + 5K)$ one observes a deviation from the Curie-Weiss behavior, in agreement with direct measurements of the low-frequency dielectric constant.⁸ Similar temperature dependence with classical behavior close to T_c has also been observed in undeuterated crystals of CDP.¹⁷ A recently observed nonlinear depen dence of $\epsilon_s^{-1}(T)$ in CDP and DCDP close to the transition¹⁸ can probably be attributed to the effect of impurities or to neglect of the difference between the transition temperature T_c and the Curie-Weis
temperature T_0 ($T_c - T_0 \approx 0.1$ K).

The relaxation frequency $f_{\epsilon}=1/2\pi\tau_{\epsilon}$ is presented as a function of temperature in Fig. 4. It slows down from 2 GHz at 30°C to 13 MHz at T_c . In contrast to ϵ_s^{-1} , f_{ϵ} is not a linear function of T even in the neighborhood of T_c .

III. DISCUSSION

Treating the kinetic pseudo-one-dimensional Ising model¹⁹ in the linear-chain approximation by neglecting interchain correlations, one obtains for the dielectric relaxation frequency the expression²⁰

$$
f_{\epsilon} = f \left[\cosh \frac{2J_{\parallel}}{T} \right]^{-1} \left[\exp \left(-\frac{2J_{\parallel}}{T} \right) - \frac{J_{\perp}}{T} \right].
$$
\n(5)

Here f is the relaxation frequency of noninteracting elementary dipoles, which consist of a deuteron in a

FIG. 4. Temperature dependence of the relaxation frequency f_{ϵ} . The solid line represents the theoretical curve. For $T < 275$ K, the size of the points is approximately equal to the experimental error.

double-well potential and of heavy ions coupled to it. One usually assumes for f an exponential temperature dependence²²

$$
f = f_0 e^{-\Delta U/T}, \qquad (6)
$$

where ΔU is the activation energy for the reorientation of a molecular dipole and equal to the height of the barrier in the double-well potential. From expressions (2) and (5) one can get for the kinetic coefficient

$$
\epsilon_s f_{\epsilon} = \frac{A}{T} f \left[\cosh \frac{2J_{||}}{T} \right]^{-1} . \tag{7}
$$

For temperatures which are much higher than $J_{||}$, expression (7) reduces to

$$
\epsilon_{\rm s} f_{\epsilon} = \frac{A}{T} f_0 e^{-\Delta U/T}, \qquad (8)
$$

which is valid for three-dimensional ferroelectrics in the mean-field regime, and is used to determine the activation energy ΔU and f_0 from dielectric data.²² In this case A equals the Curie-Weiss constant in the paraelectric phase. .

The intrachain coupling constant $J_{||}$ for DCDP is much bigger than the maximal experimentally accessible temperatur ' 3^2 so we are always in the low-temperature limit $2J_{||} \gg T$. The expression for the kinetic coefficient $[Eq. (7)]$ now has the form

$$
\epsilon_{s} f_{\epsilon} = \frac{2A}{T} f_0 e^{-(2J_{||} + \Delta U)/T} . \qquad (9)
$$

The factor $2 \exp(-2J_{\parallel}/T)$ represents a decrease of the kinetic coefficient from its mean-field value [Eq. (8)] because of one-dimensional intrachain correlations. Figure 5 shows the natural logarithm of

FIG. 5. Natural logarithm of the product of the kinetic coefficient $\epsilon_s f_{\epsilon}$ and absolute temperature (T) as a function of T^{-1} , with f_{ϵ} given in GHz. For $10^{3}T^{-1} > 3.6$, the size of the points is approximately equal to the experimental error.

 $T\epsilon_s f_{\epsilon}$ as a function of the inverse absolute temperature T^{-1} . Equation (9) is evidently valid only at high temperatures, where it corresponds to a straight line. The deviation from the straight line close to T_c is a consequence of three-dimensional interchain correlations, which are not taken into account in the derivation of Eq. (9). The temperature interval $(T - T_c \le 7 \text{ K})$ where this deviation is observed agrees with the temperature range where the nonclassical critical behavior of f_{ϵ} with the critical exponent 1.3 is observed (Fig. 6). Equation (S) therefore can be used for a quantitative analysis of experimental data only for $T > T_c +7$ K.

We fitted expression (2) and the low-temperature

FIG. 6. Logarithm of the relaxation frequency f_{ϵ} (in GHz) as a function of $log(T - T_0)$.

form of Eq. (5) $(2J_{||} \gg T)$,

$$
f_{\epsilon} = 2f_0 \exp\left[-\frac{2J_{||} + \Delta U}{T}\right] \left[\exp\left[-\frac{2J_{||}}{T}\right] - \frac{J_{\perp}}{T}\right],
$$
\n(10)

to the experimental data for ϵ_s and f_{ϵ} in the temperature interval $T_c + 7$ K $K. This$ temperature range is much smaller than the one analyzed in Ref. 8, and the estimated experimental error at higher temperatures is too large to allow a complete determination of all the parameters of the model. Choosing for $2J_{||}$ the value 1350 K, which is close to the values obtained from dielectric⁸ $(2J_{||}=1365 \text{ K})$ and neutron scattering¹² ($2J_{||}=1300$ K) experiments, the best fit is obtained for $J_1 = 1.58$ **K**, *A*=2570 K, f_0 =6.6×10¹³ Hz, and ΔU =450 K. The calculated temperature dependences of ϵ_s^{-1} and f_{ϵ} are represented by full curves in Figs. 3 and 4.

The value for $A = N\mu^2 = 2570$ K agrees well with the one obtained from static dielectric measurements⁸ (within 10%). Calculating the number of elementary dipoles per unit volume (N) from structural data, $9,12$ for the elementary dipole moment one obtains $\mu\simeq0.61\times10^{-29}$ cm, which is too large to be attributed only to the deuteron in the hydrogen bond. The heavy-ion contribution to the elementary dipole moment is approximately 50%.

The value obtained for J_1 does not agree very well with the one from static dielectric data⁸ $(J_1=0.83)$ K), but it is closer to the one from neutron scattering analysis¹² $(J_1=2.1 \text{ K})$. J_1 seems to be very much sample dependent and very sensitive to the degree of deuteration of the crystal.

The activation energy $\Delta U=450$ K =0.039 eV is very close to the corresponding value in KD_2PO_4 ,²¹ indicating that the $O-H(2) \cdots O$ bonds in DCDP are very much the same as the hydrogen bonds in KD_2PO_4 , as can also be concluded from the approx imate equality of the bond lengths,^{4,13} and of the deuteron quadrupole coupling constants¹¹ in these two systems.

The relaxation frequency of the noninteracting dipoles [Eq. (6)] at T_c equals 1.3×10^{13} s⁻¹ and the corresponding relaxation time τ has the value of 1.2×10^{-14} s, which is 2 orders of magnitude small er than the free-dipole relaxation time in KD_2PO_4 . The KD_2PO_4 free-dipole relaxation time obtained by NMR (Ref. 23) equals 1.8×10^{-12} s, while its value obtained from dielectric data²¹ using Eq. (8) is 1.6×10^{-12} s. The nonequality of the free-dipole relaxation times in these two systems can be understood in the following way. While the DCDP analysis in one-dimensional regime is exact, in the KD_2PO_4 studies the mean-field approximation is used $[Eq. (8)]$, neglecting strong correlations between four deuterons around a given $PO₄$ group, which can be treated rigorously in the four-cluster approxima- μ ₁ in a first approximation, mean-field results can still be used if one ascribes the two states $S^z = \pm 1$ to the two lowest energy states of the whole PO4 group. The obtained relaxation time therefore describes the dynamics of the whole $PO₄$ group and is expected to be much larger than the relaxation time corresponding to a single hydrogen bond.

The value for τ obtained in a recent NMR analysis¹¹ in DCDP disagrees with our results by 2 orders of magnitude and is of the same order as the one in KD_2PO_4 . This discrepancy seems to be a consequence of the fact that a much too small anisotropy ratio $J_{\parallel}/J_{\perp} = 100$ was used in the analysis of the NMR data. Furthermore, only the critical region close to T_c was studied, where the linear-chain approximation $[Eq. (10)]$ is not valid.

IV. CONCLUSIONS

Analysis of the dielectric relaxation in pseudoone-dimensional ferroelectric CsD_2PO_4 in the vicinity of T_c shows classical Curie-Weiss behavior for the static dielectric constant, and nonclassical critical temperature dependence of the dielectric relaxation frequency with a critical exponent 1.3.

The linear-chain approximation, in which the interchain correlations are neglected, well describes the static and dynamic dielectric properties of the system outside the critical region $(T > T_c + 7 K)$. The kinetic coefficient in this region is strongly temperature dependent because of one-dimensional intrachain correlations. Close to T_c an additional slowing down and a decrease of the kinetic coefficient (Fig. 5) are observed as a consequence of three-dimensional interchain correlations.

The intrachain and interchain interactions obtained agree well with previously determined values. The noninteracting deuteron intrabond relaxation time is much smaller than in KD_2PO_4 , but has the same activation energy. It can be concluded that the double-well potential for a deuteron in a hydrogen bond is approximately the same in CsD_2PO_4 and in KD_2PO_4 . To compare the properties of the two systems quantitatively the four-cluster analysis for dynamics in KD_2PO_4 is needed.

- ¹F. Seidl, Tschermaks. Mineral. Petrogr. Mitt. 1, 432 (1950).
- ²A. Levstik, R. Blinc, P. Kadaba, S. Čižikov, I. Levstik, and C. Filipic, Solid State Commun. 16, 1339 (1975).
- ³J. W. Lynn, M. Iizumi, G. Shirane, S. A. Werner, and R. B. Sailant, Phys. Rev. B 12, 1154 (1975).
- ⁴Y. Uesu and J. Kobayashi, Phys. Status Solidi A 34, 475 (1976).
- ⁵E. Kanda and T. Fujimura, J. Phys. Soc. Jpn. 43, 1813 (1977).
- 6D. Semmingsen, %. D. Ellenson, B. C. Frazer, and G. Shirane, Phys. Rev. Lett. 38, 1299 (1977).
- ~N. Yasuda, M. Okamoto, H. Shimizu, S. Fujimoto, K. Yoshino, and Y. Inuishi, Phys. Rev. Lett. 41, 1311 (1978).
- ⁸R. Blinc, B. Žekš, A. Levstik, C. Filipič, J. Slak, M. Burgar, I. Zupančič, L. A. Shuvalov, and A. I. Baranov, Phys. Rev. Lett. 43, 231 (1979).
- ⁹B. C. Frazer, D. Semmingsen, W. D. Ellenson, and G. Shirane, Phys. Rev. B 20, 2745 (1979).
- 10N. Yasuda, S. Fujimoto, M. Okamoto, H. Shimizu, K. Yoshino, and Y. Inuishi, Phys. Rev. B 20, 2755 (1979).
- ¹¹B. Topič, V. Rutar, J. Slak, M. I. Burgar, and R. Blinc, Phys. Rev. B 21, 2695 (1980).
- ¹²R. Youngblood, B. C. Frazer, J. Eckert, and G. Shirane, Phys. Rev. B 22, 228 (1980).
- ¹³R. N. P. Choudhary and R. J. Nelmes, Ferroelectrics +1, 443 (1978}.
- ¹⁴See, for instance, R. Blinc and B. Zekš, Soft Modes in Ferroelectrics and Antiferroelectrics (North-Holland, Amsterdam, 1974).
- ¹⁵A. V. de Carvalho and S. R. Salinas, J. Phys. Soc. Jpn. 44, 238 (1978).
- ¹⁶J. A. Plascak and N. P. Silva, Phys. Status Solidi B 110, 669 (1982).
- 17K. Deguchi, E. Okaue, and E. Nakamura, J. Phys. Soc. Jpn. 51, 349 (1982}.
- ^{18}E . Kanda, A. Tamaki, and T. Fujimura, J. Phys. C 15, 3401 (1982).
- ¹⁹M. Suzuki and R. Kubo, J. Phys. Soc. Jpn. 24, 51 (1968).
- 2OS. Zumer, Phys. Rev. B21, 1298 (1980).
- ²¹G. Luther, Ferroelectrics 12, 243 (1976).
- ²²H. E. Müser and J. Petersson, Fortschr. Phys. 19, 559 (1971).
- ²³R. Blinc, J. Stepišnnik, M. Jamšek-Vilfan, and S. Zumer, J. Chem. Phys. 54, 187 (1971).
- ²⁴R. Blinc and S. Svetina, Phys. Rev. 147, 423 (1966).