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Diffusion-limited aggregation (DLA) is an idealization of the process by which matter ir-

reversibly combines to form dust, soot, dendrites, and other random objects in the case
where the rate-limiting step is diffusion of matter to the aggregate. We study the process
from several points of view stressing the fact that it apparently gives rise to scale-invariant

objects whose Hausdorff dimension is independent of short-range details. We show that
DLA has no upper critical dimension. We apply scale invariance to study growth, gelation,
and the structure factor of aggregates.

I. INTRODUCTION

The irreversible aggregation of small particles to
form clusters is a central problem in many fields of
applied science; examples are colloids' and coagulat-
ed aerosols. The rate-limiting step in aggregation is
often the diffusion of the particles to the surface of
the aggregate. Similar growth processes occur when

a chemical species precipitates from a supersaturat-
ed matrix or when crystals grow from a supercooled
melt. In these cases diffusion of the species toward
the surface (or heat away from it) can be the rate-
limiting process. The aggregates formed in all of
these cases have extremely complicated multi-

branched forms familiar in the case of dust balls, ag-
glomerated soot, and dendrites. The complicated
shapes have been associated with the proliferation of
instabilities induced by the diffusion-limited pro-
cess3 (cf. Sec. II).

In a previous publication the authors considered
a lattice model which simulates such diffusion-
limited aggregation (DLA). This paper contains a
further exploration of the consequences of the

model. The rules of the model are quite simple: We
start with a seed particle at the origin of a lattice.
Another particle is allowed to walk at random (i.e.,
diffuse) from far away until it arrives at one of the
lattice sites adjacent to the occupied site. Then it is

stopped; another particle is launched and halted
when adjacent to the two occupied sites, and so
forth. An indefinitely large cluster may be formed
in this way. A typical structure produced on a two-
dimensional lattice is shown in Fig. 1. The model
does, thus, produce complicated shapes qualitatively

similar to real dendrites or dust.
A new, unexpected result was found ' by direct

measurement of an ensemble of such two-
dimensional aggregates: The correlations that arose
between particle positions seem to be those typical
of a scale-invariant (or dilation-symmetric) object.
That is, when viewed with a resolution coarser than
the size of the aggregating particles the object has no
natural length scale. The density-density correlation
function for such an object obeys the following:

(p( '+ )p( ') &-

The exponent A is related to the Hausdorff dimen-
sion D which characterizes the object by D =d —A.
(See Sec. II below. ) In two dimensions, D was found
to be 1.7. Since our original work the results have
been confirmed and extended to higher dimensions
by Meakin; he also finds evidence for scale invari-
ance.

Scale invariance is most familiar in the context of
critical phenomena where the divergence of the
correlation length leads to universality (indepen-
dence of microscopic length scales and interactions)
and correlation functions which have the form of
Eq. (1). This symmetry is understood in terms of
the "renormalizability" of the Hamiltonian govern-
ing the statistical mechanics. In this context renor-
malization is the process of multiplying certain
fields in the theory by the scale factors necessary to
render the correlation functions finite when micro-
scopic length scales go to zero. The scale factors
contain the information about the Hausdorff dimen-
sion of the object in question. A powerful technique
in such studies is the investigation of the dependence
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FIG. 1. (a) Aggregate of 3000 particles on a square latoo

tice. (b) Screening effect: The first 1500 particles to at-
tach to the aggregate are open circles, the rest are dots.
(c) Fragments of the same aggregate chosen at random.

are often used.
The concepts of upper critical dimension and re-

normalizability apply to the best-known random
density profiles: self-avoiding random walks and
random lattice animals. ' These are qualitatively
similar to DLA clusters and percolation clusters. "
However, there is a fundamental difference, which
we discuss in Sec. III. The random walks and lattice
animals form an equilibrium ensemble; DLA is de-
fined kinetically.

Kinetic models have been much less thoroughly
studied than equilibrium ones. A model similar to
ours (that of Eden, ' see Sec. II below) has been pro-
posed in the context of biology. However, the Eden
clusters appear' to lack the anomalous scale invari-
ance of DLA. Other kinetic processes have been
proposed which are siinilar to DLA (Ref. 14)
though the spatial structure of the objects produced
has not been the focus of the studies.

In this paper we study the DLA model and its di-
lation symmetry and illustrate certain aspects which
make it possibly important both theoretically and
practically. We have been guided in our research by
the successes of the equilibrium theories mentioned
above. The paper is organized as follows: In the
next section we review the origin of the randomness
of the aggregates as it arises from the proliferation
of instabilities of the Mullins-Sekerka type. The
numerical evidence for scale invariance for d=2 ag-
gregates is discussed; some elements of universality
are demonstrated by relaxing the constraint that the
aggregate absorb perfectly.

In Sec. III we give equations for the time develop-
ment of the density p(r). We find that DLA has no
upper critical dimension in the ordinary sense. (The
same line of reasoning shows that Eden clusters
have D=d for any d.) These findings show that
DLA is qualitatively different from known critical
phenomena. We have been unable to show why
DLA is dilation symmetric. To show this will re-
quire a generalization of renormalization theory yet
to be developed.

In Sec. IV we turn to a discussion of some conse-
quences of the dilation symmetry. We study the
growth rate of aggregates, the gelation of a collecoo

tion of aggregates, the dependence of the scattering
structure factor on D, and the relation of the density
profile, its projection, and its cross section to D.
Section V contains a summary of our conclusions.

II. SCALE INVARIANCE IN DLA

of D on spatial dimensionality d; in commonly stud-
ied systems D is simply derivable by dimensional
analysis above a certain upper critical dimension d, .
For dimensions lower than d, expansions about d,

A. Stability analysis

Diffusion is essential in producing the dilation
symmetry observed in DLA. To see this, we consid-
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er the analogous growth model without diffusion:
the "growing animals" of Eden. ' Here every per-
imeter site is equally likely to grow at each step.
Eden clusters appear to fill a finite, nonzero fraction
of space, i.e., D =d (cf. Sec. III); they lack the mul-
tibranched structure of DLA. In DLA the exposed
ends of the clusters grow more rapidly than the inte-
rior, because the random walkers are captured be-
foge they reach the interior.

To show in detail the origin of the complex struc-
tures such as those in Fig. 1, we first point out that
in a certain limit an electrostatic analogy can be
used. Consider a random walk which eventually
adds to the aggregate. I.et u( x,k) be the probability
that the walk reaches site x at the kth step. As in
any random walk u obeys the following:

u (x,k+1)=—g u(x+ l,k),
C

1

(2a)

Bu

Bt
=qV u, (2b)

where 1 runs over the c neighbors of x. This, of
course, is a discrete version of the continuum dif-
fusion equation

on a conductor; thus sharp points grown unstably.
In fact, our aggregates look qualitatively like struc-
tures (e.g., lightning) which occur due to electrical
breakdown. '5

A graphical illustration of this idea may be seen

by considering the growth of a tower of spheres (see
Fig. 2). If a small amount of material is added uni-

formly (as in the Eden model), then the conical en-

velope of the tower is unaffected (except near the
tip). However, in diffusive aggregation the growth
rate of each sphere is proportional to 1/'R; thus the
tower becomes steeper since the smaller spheres
grow more rapidly.

Mullins and Sekerka treat this problem using a
stability analysis for a slightly deformed sphere. %e
can do a similar analysis for d=2; consider a disc
whose radius is given by

r =R +5~cos(m8),

where 5 is small. Outside the disc u is a solution
to Laplace's equation:

u =Aln (r)+8+C~cos(m8)/r™ .

Using u (r) =0 and Eq. (3b) gives at once

where q is the diffusion constant. Also, since walks
visiting perimeter sites terminate there we must set
u=0 on the right-hand side of (2a) for these sites
and for cluster sites. The probability that a perime-
ter site gains a particle at k + 1 is, as above,

dR/dt =3/8,
d5 /dr =(m —l)5 A/R2,

(5/5)I(R /R)=m —1 .

(6a)

(6b)

(6c)

U(x, k+1)=—g u{x+ l,k} .
1

(3a}

In the limit of a smooth surface with unit normal
n the normal growth velocity V„can be expressed as
a gradient:

V„=r)n Vu i, .

Equations (2b) and (3b) are, of course, standard in
studies of dendritic growth. In DLA the field u far
from the aggregate is such as to provide a steady to-
tal flux to the surface; this is another boundary con-
dition on u.

Now consider the time dependence of u: %'ith a
steady flux from far away the only source of time
dependence is in the boundary condition {3b) via the
growth of the aggregate. In our simulations the
growth is sufficiently slow that it is adequate to
neglect Bu /Bt in Eq. {2b), as we discuss in Sec. III.

We are faced, then, with solving Laplace's equa-
tion for u in the presence of a boundary where u=0
(effectively, a "conducting" surface}. The growth
rate V„of any region on the surface is proportional
to the "electric field" (i.e., Vu) there. Now it is well
known that electric fields are large near sharp points

That is, all deformations for m&1 grow unstably
and, from Eq. (6c), those for rn ~ 2 grow faster than
the radius itself. Thus tiny amounts of noise will
perturb a smooth surface irretrievably. A similar
treatment works for three dimensions and higher.
This wrinkling instability shows why DLA produces
irregular, noncompact shapes.

FIG. 2. Growth of a tower of spheres according to (a)
the Eden model and (1) DI A.
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B. Simulations of the model

Numerical simulations of the DLA process were
first carried out in two dimensions and reported in
Ref. 4. A plot of a typical aggregate is in Fig. 1(a).
A few more details of the technique may be useful
to mention here. At each stage of the computation
it is necessary to launch particles at random, let
them walk randomly, stop them when they arrive at
a perimeter site, or to start them over when they
wander away. For launching it is sufficient to start
walkers on a small circle circumscribing the existing
cluster. To catch errant particles we chose another
circle twice the radius of the cluster.

The motivation for the location of the circles is as
follows: We are trying to simulate the situation of
isotropic flux very far from the aggregate. We ex-

pect that the field u will be distorted from isotropy
on scales of the order of the size of the aggregate.
The inner circle can be close to the object because
the first passage of particles from far away toward
the object is isotropic'; thereafter, to represent the
situation without bias we must not stop particles un-

til they are far away compared to the radius. We
have performed simulations with the outer circle at
3)& the aggregate size. The results were the same

except that they took more computer time.
A number of interesting features become evident

in the course of examining the simulations. These
are shown in Figs. 1(b) and 1(c). In Fig. 1(b) we dis-

tinguish the first half and second half of the parti-
cles added. The significant feature is that particles
do not penetrate to the interior as they are added,
but stick to the protruding "arms" even though the
interior appears readily accessible to the exterior.
The cluster effectively screens the flux of diffusing
particles.

In Fig. 1(c) we show several small sections of the

large figure positioned at random to illustrate that
the clusters appear locally homogeneous and isotro-

pic. The appearance of these pictures leads us to the
hypothesis that the density correlations within a
bounded region attain a well-defined limiting form
for indefinitely large clusters, and that this form is
invariant under translations and rotations. In this
respect the density would be similar to the order
parameter or energy field at a critical phase transi-

tion.
To test for scale invariance we use the techniques

originally used by Forrest and Witten to study the
scale invariance of metallic smoke aggregates which
seem to be a physical realization of DLA. The cri-
terion for scale invariance that we use is that in a
scale-invariant object all correlation functions are
unchanged up to a constant under rescaling of
lengths by an arbitrary factor b:

(p(br, )p(br2) . .p(brk))

=b "(p(r] )p(r2 ) . p(rk ) ) . (7)

In practice, we calculated only the two-point func-
tion (p(r&)p(r2)}, whose exponent we call A for
short. Equation (7) leads at once to Eq. (1).

As a cross check we also measured the radius of
gyration R (N) as a function of the number of parti-
cles N. It is clear from Eq. (1) that

RN- f (p(0)p(r))d r-R "-R . (8)

Thus the Hausdorff dimension is d —A.
To measure the density-density correlations

within the aggregates, we computed the c(r) defined

by

c (r}=—g p(r+ r ')p{ r '} .

The average of c (r) over many clusters positioned at
random is the correlation function of Eq. (1). We
computed c(r) is such a way as to maximize the in-

formation sampled from each image. We Fourier
transformed the density profile of the cluster using a
fast-Fourier-transform technique, found the power
spectrum, inverted the transform, and averaged over
directions and over narrow ranges (up to about 15%
spread) of r. Often we used a matrix of densities
which was not identical to the original cluster lat-
tice: We overlaid the lattice with a coarser grid
oriented at random and summed the cluster points
within each cell of the coarse grid to form p(r)
This allowed us to treat larger clusters with a given
sized matrix at the cost of some short-distance in-
formation. This method was calibrated by applying
it to a Koch curve with D constructed to be
ln3/ln2. The D value obtained from the measured
correlation function was correct to within 0.01.

The average c (r}of six aggregates on a square lat-
tice is shown in Fig. 3. We note that the measured
c (r) falls below the power-law line when r becomes
comparable to the size of the aggregates; note the ar-
row which marks the average radius of gyration.
The values of D deduced for two-dimensional aggre-
gates are displayed in Table I.

Our estimates of D are in good agreement with
those of Meakin who used larger aggregates. The D
values are significantly different from those charac-
teristic of equilibrium profiles, also displayed in
Table I.

C. Universality

One of the most striking features of the power-
law behavior observed in critical phenomena is its
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FIG. 3. Density correlation function averaged over six

aggregates as a function of distance measured in lattice
constants. The arrow marks the average radius of gyra-
tion. The solid line is a least-squares fit over the range
r =3—27. The error bars represent the spread of values

among the six aggregates. u i, =I'IL, (&0}

universality, i.e., its independence of microscopic de-
tails of the Hamiltonian. Such behavior is not unex-
pected in a situation where statistical properties lead
to the buildup of correlations on scales much larger
than those of the microscopic interactions. This
behavior should also occur in our case. In this sec-
tion we will present evidence that D is universal for
DLA in several respects.

First, the long-range properties of our aggregates
should be independent of the lattice on which we did
the simulation. To check this we produced clusters
on a triangular as well as a square lattice. An exam-
ple is given in Fig. 4; the Hausdorff dimension for
the aggregates on the triangular lattice, given in
Table I, is not significantly different from those on a,
square lattice. Meakin did very interesting simula-
tions with no lattice at all; and again found the same
D.

We were motivated to investigate a second aspect
of universality by comparison with treatments of
dendritic growth. ' Our Eqs. (2b} and (3b} are the
same as in those treatments, but our boundary con-
dition u ~, =0 is not, except in the case of vanishing
surface tension. The radius of a real dendrite tip is
determined by the capillary length I via the Gibbs-
Thomson boundary condition

TABLE I. Values of correlation exponent A and Hausdorff dimension D for particles in
two dimensions. Errors are statistical.

DLA: correlation functions of aggregates on
a square lattice; average of six clusters
of 2079—3609 particles

DLA: correlation functions on a triangular
lattice; average of three clusters of
1500—2997 particles

DLA: radius of gyration of six clusters of
999—3000 particles

Self-avoiding walk in two dimensions
from correlations in step density'

Random animals, radius of gyration

Percolation'

'D. S. McKenzie, Phys. Rep. 27C, 37 (1976).
bReference 13.
'D. Stauffer, Phys. Rep. 54, 1 (1979).

0.343+0.004

0.327 +0.01

0.299

0.667

1.66

1.67

1.70+0.02

1.33

1.54

1.89
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where K is the local curvature of the surface. Our
perfectly absorbing clusters correspond to zero sur-
face tension, and hence to a diffusing field which is
constant over the surface. We first relaxed the con-
dition of perfect absorption by allowing the random-
ly walking particle to stick to the aggregate only
during a fraction s of its encounters; previously,
s=1. This partial sticking introduces a length
parameter into the diffusion equation.

To see this we work in one dimension, and write

u(l, k +1)=(1—s)u (O,k)+ $ u (2l,k), (1la)

u(O, k+1)=—,u(l, k) . (1 lb)

Here 0 labels the perimeter site and 1,2l, the free
space. In steady state we may drop the k label and
manipulate Eqs. (1 la) and (1 lb} to find

su (l)=u (2l) —u (I),
or, in a continuum limit, as above,

su ~, =ln Vu ~, .

(12a)

(12b)

The fixed logarithmic derivative of u at the surface
introduces a new length scale,

A, =I/s, (13}

which we may adjust at will. This new length plays
the role of the capillary length in conventional treat-
ments. Indeed, we can use our electrostatic analogy
to reinterpret Eq. (12b). Consider a spherical sur-
face; then if A, &&R, Vu ~, -u /R and to first or-
der in A, we may put

u i, =u„A/R, (14)

i.e., a condition of the form of Eq. (10).
To gain some appreciation of what Eq. (12b) im-

plies we repeated the stability analysis with the new

FIG. 5. Aggregate of 3000 particles with s=0.5. Note
the thickening of the "branches. "

boundary condition. We find, for d=2 [compare
Eq. (6)],

d5~/dt =(m —1)5 A/R(R+mA),

(5/5)/(R /R) =(m —1)R/(R +mA, ) .

(15a)

(15b)

Note that for A, &&R/m, d5/dt is suppressed com-
pared to its value in Eq. (6). It does not change sign
as in the usual dendritic growth case, but if R & A,,
for any m the distortions will become smaller rela-
tive to R as time proceeds instead of larger. Since
the instability leading to DLA is quenched for
R & A, , we expect the DLA density profiles to be uni-
form over distances R &A,. For larger R, the insta-
bilities are again present, and we expect the density
profiles on this scale to be multibranched, like those
of the simple DLA. The same conclusion holds in
three dimensions.

Using these insights we created a number of ag-
gregates with s&1. Plots of a cluster of this type
are shown in Fig. 5, and its correlation functions are
given in Fig. 6. The correlation function does have
the form we hoped for: At sinall distances c(r) is
roughly constant and represents the thickening of
the "branches" of the object; at large distances (but
still smaller than the total size of the object) the
power law is unchanged. The change in behavior
from constant to power law occurs at a distance
which increases as s decreases, in accord with our
prediction of crossover for R =A, -1/s.

We also did simulations with a more ad hoc type
of boundary condition. We take a sticking probabil-



5692 T. A. WJ J JEN AND L. M. SANDER 27

1.0-

0.5-
0.4
0.3

0.2
~
J

liL'

0.1 ~Melgpg

C(r)

S = 0.5

FIG. 7. Aggregate of 3000 particles with t=0.5.
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5.
FIG. 6. Correlation function for the aggregate of Fig.

ity which depends on the number of bonds to filled
neighbor sites B; for a square lattice we put

large-scale properties of large aggregates.
We may describe any given cluster i on a lattice

by a density field [p(x)] which is 1 at an occupied
site and zero elsewhere. Aggregation processes gen-
erate a large class of clusters i, each with a relative
probability f~. Thus, e.g., in the ensemble of "ran-
dom animals, "

any connected pattern of 1's has
fi= 1; any disconnected pattern has fr=0. In the
DLA model the f; for a given cluster cannot be ex-
pressed directly in terms of the p field. One must

s=t (16)

where t is an adjustable parameter less than 1. Thus
a hole (with B=3) is far more likely to fill than a
point (with B=1).

A simulation for t=0.5 is shown in Fig. 7, and
correlation functions for several values of t in Fig. 8.
Once more, small t introduces a minimum length
scale for the object, but the long-range properties
seem to be unaltered.

The simulations of Meakin in higher dimensions
seem to bear out our hypothesis of scale invariance.
For d =3 he finds D=2.51+0.06 by examining only
the radius of gyration. We have presented' data for
c (r) in d=3, which is in agreement with Ref. 7.

1.0-

0.5
0.4
0.3

0.2

0.1

C(r)

~-0.34
0

III. GENERAL FORMULATION

The computer simulations described above, if re-
peated for all possible random walks, would generate
a statistical ensemble of clusters. In this section we
formulate equations for the time development of
this ensemble. We argue that these equations may
be simplified considerably without affecting the

I

2.0
I I I I

5.0 10.0 20.0 50.0
r (LATTICE CONSTANTS)

FIG. 8. Correlation functions for three aggregates with
t(1.
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also know the f; for other clusters; it does not be-

long to an equilibrium ensemble like that of the ran-
dom animals. The f~ are determined instead by a
time-development equation.

We consider the time derivative df;pat for a par-
ticular cluster i. In a given instance the cluster i is
produced by the growth of some other cluster, i —x,
equal to i but for the absence of the site at x. The
growth of i from i —x occurs with an average rate
which we denote v; „(x). The (positive) contribu-
tion to f; from these growth processes is

QU; „(x)f, „.
xCi

(17)

The cluster i also disappears from the ensemble at a
certain rate, as larger clusters grow from it. The
clusters thus produced have one particle added at
some site x, and we denote them as i+x. Combin-
ing the processes which increase and which reduce

f~, we have

= g v; „(x)f; „—g v;(x) f;, (18)
x6i xCBL

where we have used Bi to denote the sites on the per-
imeter of i. By contrast, a thermal equilibrium en-
semble with temperature P ' and energy E; has

df; IdIB=E;f;; there is no coupling of different f, .
Other growth models are governed by time-

development equations of the form of Eq. (18). For
the Eden model, ' the v factor is taken independent
of i and x, so that all perimeter sites grow at the
same rate.

The distinctive feature of diffusive growth is that
the growth rate v is the flux of a diffusing field u, as
discussed in Sec. II above: the effect of the absorb-

ing cluster on the diffusing field u may be expressed

by a boundary condition at the cluster surface. In-
stead, we allow the field u to occupy any site, but in-
troduce a strong absorption at perimeter sites. Such
a site x is indicated by the function

P(x)=[1—p(x)] 1 —/[1 —p(x+1)]

at
u

(20)

Evidently, in the limit of large Z the perimeter sites
become an absorbing boundary, where u~0. For
any Z the local rate of absorption Zu (x) is also the
average rate v( x ) of cluster growth there.

The equations for u and f; determine the proba-

(19)

which is 1 for perimeter sites and 0 elsewhere. Thus
the diffusion equation for u may be written

bility of a given cluster as a function of time given
suitable boundary conditions. The equation for f;
requires an initial condition, e.g. , f; =0 at t=0, ex-
cept for f~

——1 for the single particle at the origin.
The equation for u requires a boundary condition
such as u=1 for R =R where R is a large radius.

The equation for u may be simplified by recalling
that Bu/Bt does not play a crucial role. The field u

changes most rapidly with time near a point x where
a site has just grown. The effect of the new ab-
sorbers is appreciable over distances r of the order of
the lattice spacing —an arbitrarily small fraction of
the growing sites. Thus the u field relaxes every-
where to its new steady-state value in a time in-

dependent of the cluster size. Within this time, only
a small amount of new growth occurs and only a
negligible part of this lies in the region around x
where the time dependence is appreciable. ' When
the growth rate per surface site is negligible com-
pared to the diffusive relaxation time, the time
dependence of the relaxation may be neglected. This
amounts to neglecting the Bu/Bt term. Without this
term, the u field relaxes instantly to the cluster
which exists at that time. We shall adopt this "adia-
batic" approximation in the sequel so that v and u

depend on the cluster, but not otherwise on time.
We may also formulate DLA to derive an equa-

tion for the random variable p(x) itself. The density
p(x) grows in discrete units at an average rate pro-
portional to v(x). We let q(z) be a random noise
variable equal to 1 with probability z and zero with
probability 1 —z. Then in an elementary time step
ht,

p(x, t+ht)=p(x, t)+q(v ht)P(x),

so that

q(v (x)b t )

ht ht

(21)

(22)

where the resolution function w sums to unity and
has a spatial extent of order a. This smoothing will
not alter correlations at distances much larger than
a, yet it gives a smooth density which is easier to
treat. Further, any field p with inverse power corre-
lations will decrease upon averaging. We expect
then, that sufficiently high powers of the field may
be neglected after averaging, as in field theories of
phase transitions. We are thus led to expand out the
expression (19) for P:

Our interest here is to understand the correlations
of the p field on length scales much larger than the
lattice spacing. Accordingly, we may use a continu-
um description for a smoothed field

p, (x)—= g w(x —y)p(y),



5694 T. A. WrrTEN AND L. M. SANDER 27

C

P(x)=[1—p, (x)] 1 —g [1—p, (x+1}] =[1—p, (x}] gp, +0{p,}
n=1

p. p—Xp. +0 (p )

=c V p, +cp, +c(c —3)p, /2+0(p, V p, )+0(p,') . (23)

dpi'
V Q~=

dt

(24)

where r, and g, are renormalized parameters de-

pending on the averaging scale. We may anticipate
several qualitative features of these equations. We
first investigate the transparency of the density pro-
file to the diffusing field u. To this end, we average

p, on a scale comparable to the cluster radius R, and
treat it as a simple absorber of the field u:

V u =Zup, (r) . (25)

This extreme averaging would be justifiable as long
as the cluster is transparent to the diffusing field.
Within the radius R, p, is roughly constant and u
falls off exponentially in a characteristic skin depth
given by 1/h =Zp, (r) In a large. cluster, p, is ex-
pected to become arbitrarily small, so that the skin
depth goes to infinity. But if the cluster is to be
transparent, we require that h/R —+00, so that
R p~{r) must go to zero. For clusters with a Haus-
dorff dimension D, pa{r)-N/R -R . Thus
(R/h) -R' + ' . This result is natural since the
path of our random walker has Hausdorff dimen-
sion 2. The R' + counts the number of intersec-
tions' of the cluster and the random walker, within
radius R, assuming these are independent. For
2+ D & d, the number does not diverge with R, the
number of contacts for potential absorption remains
finite, and the cluster remains transparent to the
diffusing field. But in the reverse case we expect the
cluster to be opaque, with new growth occurring

In addition the averaging runs over many values of
the random variables q, so it seems plausible to re-
place this variable by its average v. To perform this
averaging systematically would require a full-
fledged renormalization treatment. We defer such a
detailed treatment for a planned future paper. Our
present aim is to formulate an equation for the aver-

aged fields which incorporates the above expecta-
tions. Replacing n by its average v, and using the
expanded form of the P(x) term, we postulate that

dpi' 2

dt
=Zua(V Pa+raPa+gaPa+ ' ' ' } t

only on the periphery. This opacity is observed to
be the case in our simulations where indeed

2+D &d.
Since growth occurs only within a thin layer, we

may average the fields only over distances smaller
than this layer. In the growing layer the gradient of
p is large and it is not clear that the V p can be
neglected in the growth equation. No correct sim-
plification of this equation is apparent to us.

To shed light on our growth process, we have
studied its behavior in high-dimensional space with
the aim of deriving its asymptotic D. The motiva-
tion for this approach is the simple behavior of
known aggregates and other dilation-symmetric pro-
files above a certain upper critical dimension. The
case of random animals illustrates this point. Ran-
dom animals or randomly branched chains may be
readily treated under the assumption that there is
only a single path on the object connecting any pair
of points; such objects have D=4. One may investi-
gate the validity of the assumption by estimating the
number of contacts between two parts of the object
which meet at the origin, assuming the two are in-
dependent. The density of points in each of the two
parts falls off as r; thus the density of crossings
goes as r ' "' The nu.mber N(R) of crossings
within radius R goes as

R 2(D —d)+d R 2D —d

The number grows indefinitely with R if 2D &d.
Thus the argument giving D=4 requires 2D &d, or
d& 8. This criterion gives an upper critical dimen-
sion of 8. A more standard field theoretic argu-
ment ' gives the same result. Random linear chains
have D=2 if intersections of links are allowed. By
the same reasoning these intersections are negligible
when d &2D=4. Thus 4 is the upper critical di-
mension in agreement with polymer field theory.

For the DLA problem, there is no upper critical
dimension in this sense. We show this by assuming
the reverse and arriving at a contradiction. Suppose
that D attains an asymptotic value for large d. Since
2D & d the cluster may be treated as a treelike struc-
ture, where self-crossings are not appreciable. Since
2+ D & d, the aggregate is, in addition, transparent
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to the diffusing field from which it grows, by the ar-
gument above. We may thus simplify the growth
model considerably. Since the field u is essentially
uniform within the cluster, we allow all sites adja-
cent to cluster sites to grow with the same probabili-
ty. Since cluster intersections are assumed negligi-
ble, we may allow multiple occupancy of any lattice
site. These simplifications give a model which can
be explicitly solved. We will see that the radius
grows only logarithmically with particle number,
violating the hypothesis.

To show this, we consider the ensemble of n-site
clusters grown from the origin. The n clusters are
grown by adding each successive particle indif-
ferently to the (n —1)c sites adjacent to the existing
ones. The number G (n) of n-site clusters is thus

D

6-
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0,
/

/
/'

/

I I I
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I I I I n///

Qr
0
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/

/
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// /

NIMALS

G(x,n)= QS(x+1,n —1), (26)

where S(y, m) is the number of m-particle clusters
with an arbitrary particle at y. The particle at y
must be the ith particle for some i (m. There are
G ( y, i) ways to arrange the first i particles, and

ic(i+1)c (m —1)c =G(m)/G(i)

ways to arrange the rest. Thus

S(y,m)= g G(y, i) .G(m)

i=i G i)

Inserting this into Eq. (26) for G (x,n), we find

(27)

G(x, n) G(n —1}+ +' G(x+ l, i)
G(n) G(n} -. . . G(i)

The left-hand side is the probability that the nth site
is at x; we denote it by g ( x,n); thus

Jl

g(x, n+1)=—g g g(x+ l, i) .
cn

(29)

This may readily be transformed into a differential
equation by multiplying by n and taking an n differ-
ence:

n (x,n)=V2g .Bg
Bn

In this diffusion equation, inn plays the role of time.
Thus, e.g., the second moment R2 of the distribution
increases as inn.

The radius grows more slowly with n than for any
finite D: The D of this model is 00, contradicting

(n —1}cG(n —1}=c" '(n —I}!.

The number G(x, n}, with the nth site at x is given

by

FIG. 9. Hausdorff dimension D of the density in vari-

ous random aggregates as a function of spatial dimension

d. The values for DLA are from Ref. 4 (d=2) and Ref. 7
(d=3). The two solid lines indicate the approximate
behavior of D(d) for random animals and self-avoiding

walks. The boundaries of the finite density domain

(D &d), the transparent domain (D &d —2), and the
non-self-intersection domain (D &d/2) are indicated by
dashed lines.

the hypothesis that it attains a finite asymptotic
value. We conclude that there is no asymptotic D in
diffusion-limited aggregation (or in the Eden
model). The same argument shows that D & d l2 for
large d.

Given this, there are two possibilities for the
asymptotic behavior of D (see Fig. 9). One is that
D &d —2, so that the clusters are transparent. In
this case the high-d behavior is that of the Eden
model. Assuming this, we are led again to a con-
tradiction.

Our supposedly transparent clusters have D &d,
and hence the perimeter of the cluster has the same
D as the cluster itself. The number of perimeter
sites is proportional to the number of cluster sites,
with some proportionality factor less than the coor-
dination number c. Thus we may repeat the deriva-
tion of G(n), S(y,m), and G(x,n) above for the
Eden model, replacing c by an effective coordination
number c. The sum over neighbors in the equation
for G(x,n) must be multiplied by c/c, since only
this fraction of sites adjacent to a cluster site con-
sists of perimeter sites. These modifications do not
change the qualitative behavior of the growth of
these clusters as compared to the multiple occupan-
cy clusters of our original model. We thus arrive
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again at the contradictory result that D~oo, indi-
cating that the original hypothesis of D &d was
false. This shows that diffusion-limited aggregates
cannot be transparent to the diffusing field, so that
d —2(D &d. It also shows that Eden-model aggre-
gates must be compact, as has been previously
shown numerically' ' for d =2 and 3.

It appears from this study that our Monte Carlo
simulations of DLA correspond to a well-defined
stochastic model which is amenable to treatment in
a continuum language. It appears further that the
model has no upper critical dimension in the usual
sense. Instead, d —D may attain an asymptotic lirn-
it between 0 and 2, so that the aggregates are always
opaque to the diffusing field.

IV. CONSEQUENCES OF SCALE
INVARIANCE IN DLA

S(q)= f d r(p(r'+r)p(r'})e'7'' . (32)

The power-law correlations of p in some range of r
give rise to a conjugate power behavior in S(q) in
the range q-r '. Here S(q) is proportional to the
number of scatterers within a distance q

' of an ar-
bitrary scatterer. Thus S(q)-q D in this range, as
one may check by direct substitution into the defini-
tion of S(q). Since the aggregates are asymptotical-
ly opaque to a scattering wave, a weakly scattered

A number of observable properties of objects
growing via DLA can be deduced simply from the
(assumed) scale invariance of process. We describe
here how aggregates should appear in projection and
cross section, and how they should scatter x rays or
neutrons. We also discuss the gelation expected
when many aggregates grow together.

Projected onto a plane, a diffusion-limited aggre-
gate with D&2 should appear opaque. The project-
ed density

R
o(x,y)= f p(r)dz-R (31)

goes to infinity with the size of the objects, and the
local density correlations do not survive in the pro-
jected density. On the other hand, the cross section
of a diffusion-limited aggregate evidently has
(p(r')p(r'+r)) equal to that of the full aggregate,
so that the exponent A is unchanged in the cross sec-
tion.

A direct way to observe these correlations is by
diffracting a wave from the aggregates. This
method has been successful in detecting power-law
correlations in random-coil polymers. The dif-
fracted intensity as a function of wave vector q mea-
sures the structure function

wave is needed to probe the whole volume of the ag-
gregate.

The growth rate of an aggregate in three dimen-
sions can also be readily deduced. We consider the
regime where the number of free particles is much
greater than the number of aggregated particles, so
that u(oo) is constant in time. Then at large dis-
tances r, the diffusing field u obeys

u (r) =u ( a)o[1 —R (N)/r],

g V u ~, = riu ( ao )R /r

(33)

(34)

The capture "radius" R (N} must be proportional to
the radius of gyration since the aggregates are
opaque to the diffusing field; the quantity in Eq.
(34) is the flux density incident on the object. The
total rate of aggregation is given by

dN/dt =R riu ( ao ) f d r /r

-R (N) -N'~+, (35)

Solving the equation gives N-t ' ". This law
gives the asymptotic growth rate of an aggregate.

In a similar way one may predict gelation (i.e., in-

tersection) of a collection of growing aggregates.
Suppose that cp is the concentration of nucleated ag-
gregates. They will start to intersect and form a gel
when cpR 1. The concentration of monomers
(the "particles" ) is

c=N(R)/R =R =c' (36)

In three dimensions this gives c-cp . Thus the
mass of the gel may be made indefinitely small by
reducing the concentration of seeds. This effect is
augmented by the percolation effects present in ordi-
nary gels.

V. SUMMARY

The DLA model which we have discussed in this
paper seems to be applicable to a wide variety of
phenomena which at first sight are unrelated. As
such, its general properties are worth examining in
detail; it is to this task that we have addressed our-
selves.

The most striking features that we have discussed
are the long-range, universal properties associated
with scale invariance. It is worth repeating explicit-
ly that these long-range properties do not arise from
long-range forces: Whatever occurs in real dust,
smoke, etc., our simulations show that short-range
forces can build up long-range correlations, just as
in the case of critical phenomena.

The remaining theoretical problems associated
with our model seem formidable. We believe it
would be very interesting and useful to understand
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on a deeper level the apparent scale invariance that
we observe; such understanding has been arrived at
in other apparently similar problems (such as that of
the self-avoiding random walk). We have shown
that DLA is much too different from critical phe-
nomena to be treated by a direct translation of the
methods used there. The lack of an upper critical
dimension for the theory is one signal of our diffi-
culty.

Some promising approaches have appeared and
should be pursued. Rikvold has reduced DLA to a
simpler problem by schematically representing the
"screening" effect by a reduction of the flux onto a
point according to a formula involving the number
of neighbors in shells surrounding the site. This is a
further simplification of the mean-field treatment of
Sec. III which may be useful if it indeed contains all
the relevant physics (which is not clear to us at the

moment). Gould, Family, and Stanley are using
the methods of real-space renormalization for DLA
(and other similar problems). Of course, this ap-
proach assumes the existence of scaling symmetry; it
should allow an approximate calculation of D.
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