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The dielectric constant tris-sarcosine calcium chloride [(CH;-NH-CH,-COOH);-CaCl,]
has been measured with a relative precision of ~0.0005 from the transition temperature T,
to T, 460 K. Over more than 2 orders of magnitude of reduced temperature [(T —T,)/T,],
it follows accurately the logarithmically corrected mean-field behavior of uniaxial dipolar
ferroelectrics. It is shown unambiguously that these corrections are superior to a power law.
Close to T, (T < T.+0.3 K), the dielectric constant becomes affected by roundoff effects.
Previous results on tris-sarcosine calcium chloride are reviewed in the light of these new

findings.

I. INTRODUCTION

Tris-sarcosine calcium chloride (TSCC), a molec-
ular salt of formula (CH;-NH-CH,-COOH);-CaCl,,
exhibits a uniaxial paraelectric-to-ferroelectric tran-
sition on cooling below T,~130 K.! Early measure-
ments of its dielectric and thermal properties were
performed mainly by Makita.> The%tructure of the
paraelectric phase is orthorhombic, with space-
group Pnma,® whereas the ferroelectric phase is be-
lieved to have space-group Pn2ia. The latter is de-
rived from the former by suppression of the planes
of reflection symmetry perpendicular to the fer-
roelectric b axis. All sarcosine molecules are found
to be in the zwitter-ion configuration CH;-NH,*-
CH,-COO~, whereas the protons form very asym-
metric hydrogen bonds N—H - - - Cl, with an N-H
distance typically equal to one-half the H- - - Cl dis-
tance.® For this reason, it can be expected that dipo-
lar interactions between the strongly polar sarcosines
play an important role in the transition, making
TSCC an a priori much better candidate than trigly-
cine sulfate (TGS)*° for the observation of uniaxial
dipolar behavior in a paraelectric.®

There has been a considerable amount of recent
work on the dielectric properties of TSCC and on its
partially brominated isomorphs TSCCB. The mea-
surements on the paraelectric phase have usually
been explained using various variants of Landau
theory,”~!? leading to an unusual spread of values
for the Curie constant.’* This difficulty might not
be surprising in view of the exceptional relative im-
portance of the dielectric background far away from
T,, and of roundoff effects close to T, both influ-
ences having received insufficient attention in some
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of the previous works. However, this spread might
also be indicative of a Curie-Weiss law being only an
approximation to the true critical behavior, making
the effective Curie constant strongly dependent on
the temperature range from which it is derived. Re-
lated difficulties have been noted in comparisons of
low-temperature dielectric,”®!! electro-optic,'* and
EPR measurements,'>!® from which temperature-
dependent polarization exponents S have been de-
rived.

Furthermore, there is a current debate as to the
nature of the transition mechanism, be it order-
disorder or displacive. Although there is some evi-
dence for the former case,>!”18 a soft TO mode has
been observed in the ferroelectric phase.!*~2* The
most recent publications®»?* indicate that its
squared frequency w%o varies considerably from
liquid He to T, —2 K, establishing a definite displa-
cive character to the transition. However, the small
LO-TO splitting'>?° has been taken as a counterar-
gument,?! and the possibilities of either two succes-
sive transitions,?? or of a cell-doubling transition,!’
have been raised. On the other hand, a careful
calorimeter study has demonstrated rather clearly
the existence of a single thermal anomaly.?® That
data has recently been interpreted in terms of loga-
rithmic corrections that could be fitted over narrow
temperature ranges on both sides of the transition.2®

Under these conditions, it appeared worthwhile
performing an accurate measurement of the
paraelectric susceptibility and comparing it with the
predictions of the Larkin-Khmelnitzkii (LK) theory
for uniaxial ferroelectrics.?’ This is all the more so,
as the only other known experimental example of
logarithmic corrections in ferroelectrics is for trigly-
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cine sulfate (TGS).” In that case, there can be pro-
found effects of crystal imperfections, as crystals are
most often grown at temperatures below T, and are
then much less perfect, as recently demonstrated by
Strukov et al.?® Logarithmic corrections have, of
course, been demonstrated in other systems, the best
example being the uniaxial ferromagnet LiTbF,.?
This paper presents measurements of €, the dielec-
tric constant in the direction parallel to the fer-
roelectric axis of TSCC, in the range T, to T, + 120
K. Given our relative accuracy of ~0.0005, we
have been able to detect the contribution of logarith-
mic corrections over the temperature range T, +0.3
K to T, 460 K. Closer to T, the results are affected
by roundoff. Section II presents the experimental
details, in particular the care taken in sample
preparation and annealing. Section III explains the
various fits performed on the data, and demon-
strates that logarithmic corrections produce a supe-
rior agreement between theory and experiment. Sec-
tion IV discusses some other literature data in view
of the present results. In particular, it shows that
the small LO-TO splitting observed is not in
disagreement with the Lyddane-Sachs-Teller (LST)
relation.

II. EXPERIMENTAL

The sample used in the present measurement was
cut from a crystal grown from a seed suspended in a
TSCC aqueous solution.’® The crystal had the shape
of a distorted hexagonal prism of height ~10 mm.
Observations between crossed polarizers revealed
that it was twinned, although not as badly as in the
case of crystals grown from unseeded solutions (see
Ref. 31, Fig. 1). The sample was cut from a large
untwinned face, and its final dimensions after pol-
ishing were 7.3X5.5%X 1.6 mm?®, with the a axis
parallel to the largest dimension and the b axis per-
pendicular to the largest face. Gold electrodes were
sputtered on both large faces, and traces of gold
were carefully removed from the side faces. Copper
wires of 50 um diam were attached to these elec-
trodes with a drop of silver paint. For the final
data, the only one presented in detail here, these
copper wires were replaced by brass wires of the
same diameter, thus reducing the thermal distur-
bance as discussed in the next section.

A first measurement on this sample gave a peak
dielectric constant € ;,,,~400. The sample was
then annealed in an attempt to reduce the defect
density.>? Since the high-temperature phase is fer-
roelastic,’! a uniaxial compressive stress of about 10
N/cm? was applied along b during annealing. It is
expected that this stress helps to maintain the b
direction.3! The stress jig consisted of two parallel

plates pressed together by a spring. Gold foils were
placed between sample and plates to improve pres-
sure homogeneity. The jig was bathed in water-free
pentadecane in a closed container and held at 140°C
for 20 hours. This led to € ;,,x~800. . Repeating
the annealing, this time at 150°C for 100 h, the final
value € 12,1000 was obtained.

The dielectric measurements were carried out in
equipment originally designed for the detection of
flexure resonances.> To this effect, the sample is
mounted in a strain-free manner, simply hanging
from its own wires. The capacitance C and parallel
conductance G are measured with a General Radio
model-1621 precision capacitance measurement sys-
tem. The rms field applied to the sample was 2
V/cm at a frequency of 1 kHz. Under these condi-
tions, the capacitance can be measured with a pre-
cision of ~0.5 to 1 fF, giving a relative precision
slightly better than 10~3 for our smallest capaci-
tance value ~1 pF.

The temperature in the cryostat was regulated us-
ing a Pt-resistance sensor in a dc bridge. A separate
Pt resistance, with an ac bridge consisting of a resis-
tance standard, a Dekatran DT72A seven-decade
transformer, and a lock-in detector were used for
thermometry. This provided for a 0.1-mK resolu-
tion in temperature reading. With He exchange gas
in the cryostat, a stability of 0.5 to 1 mK could be
achieved, meaning that our measurement precision
became limited by the temperature stabilization at
about 1 K above T,. It was also checked that the
measurements were reproducible to 1 mK. The Pt
thermometer was specified to follow closely the
DIN Standard 43760, with deviations smaller than
30% of those allowed by the norm. The bridge ra-
tios were converted to temperature using a fourth-
degree polynomial fit to the DIN curve.’* Although
the relative T measurements are rather precise, the
absolute T accuracy can only be claimed to ~0.5 K.
Furthermore, the great advantage of strain-free sam-
ple mounting has the accompanying disadvantage of
relatively poor thermal contact with the regulated
surroundings and with the thermometer. ‘In particu-
lar, the leads from which the sample is hanging can
produce temperature inhomogeneities to which we
shall revert in the next section.

A good approximation for the dielectric constant
€, is obtained using

€0€pS
C=——, 1
4 (1)
where S is the sample area, d its thickness, and ¢,
the dielectric constant of vacuum. However, in view
of the smallness of both €, and S, fringing-field ef-
fects are not totally negligible. An expression for C
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taking fringing fields into account is derived in the
Appendix, and it was used to extract €, from our
data. It should be remarked that the fringing-field
correction did not in any way change the qualitative
nature of the fit results presented in the following
section, the main effect of the correction being to
reduce the noncritical or background part of the
dielectric constant. A tabulation of the original data
and of €, is available separately.’

III. RESULTS AND FITS

Figure 1 is a logarithmic presentation of the real
part of the measured dielectric constant. For the
purpose of this plot, the reduced temperature,

t=(T-T.)/T,, (2)

was obtained using for T, the value at the peak of
€, 1.=130.785 K. The background €,, was es-
timated from the region where the critical contribu-
tion is small (€,0=3.2). Figure 2 shows the corre-
sponding loss tangent

tand=G/wC , (3)

where o is the measuring frequency. This quantity
is negligibly small above T, +0.6 K. Closer to T, it
starts growing with an initial slope ¥ which might
be of the order of —1.5, in agreement with defect
theories.’® However, beyond the point x indicated
by arrows in Figs. 1 and 2, the growth of the losses
becomes faster. Those measurements (T < T, ) have
not been included in our fits for reasons discussed
below. Points above y (T > T, in Fig. 1), have also
been discarded, and this for two reasons: (i) the rela-
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FIG. 1. The real part of the measured dielectric con-
stant parallel to the b axis. The open circles are centered
on the measured values, and their size does not indicate
the imprecision.
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FIG. 2. The loss tangent measured parallel to the b
axis. The line = —% is shown as guide to the eye.

tive precision becomes worse than 5 10~* for these
points, and (ii) the relative contribution of the criti-
cal part (€, —€,0)/€;, becomes rather small, so that
the exact temperature dependence of the background
€50 Might start playing a role.

The relative precision of the points from y to x is
approximately constant, of the order of 5X 104, as
demonstrated by the deviation plot presented below.
This is due to the combined effect of the
capacitance-measurement precision and the tem-
perature precision. The former is limiting at the
high end and the latter at the low end of the range.
Hence, it is appropriate to make nonlinear least-
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FIG. 3. The relative deviations of the data points from
x and y in Fig. 1 fitted to various models. (a) Curie-Weiss
with T-dependent background; (b) power law with T-
dependent background; (c) log-corrected mean field with
constant background. The variance o of these fits is also
indicated.
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square fits to the logarithm of the data, w=Ine,.
The deviations, Aw =Ag€, /€, are then immediately
relative deviations, as presented in Fig. 3. The quan-
tities plotted in ordinate in that figure are the calcu-
lated minus the measured values. For the fits, we
used a nonlinear estimation procedure developed by
Marquardt,’’” and available to us as APL (A Pro-

gramming Language) routines, including signifi-

cance tests.
As first obvious attempt, the data is fitted to the
Curie-Weiss behavior,

€b=(€bo+€b1T)+% . (4)

The linear temperature dependence of the back-
ground (€,;) was added in an effort to improve the
fit which then has four parameters: €0, €51, M, and
T,. The estimators obtained are

€50=0.81+0.29 , (5a)
€51=0.0125+0.0018 , (5b)
M =0.273+0.002 , (5¢)
T,=130.8314+0.005 , (5d)

where €,, is measured in units of K~! and T, is
measured in units of K. The uncertainty limits indi-
cated are 90% confidence intervals. These are only
meaningful, of course, if (4) has the right functional
form, which is not the case by far, as indicated by
the deviation plot shown in Fig. 3(a). Note that the
Curie constant, MT,=35.7 K, falls well within the
range of published values,” as it should of course.

Closer examination of Fig. 1 indicates that the
slope v of the data points is of the order of 1.1,
which is rather different from the Curie-Weiss value
of 1. This suggests a fit to a power law

€, =(€pot+€p 1 T)+Mt™7. (6)
The estimators are then

€50=2.8710.04 , (7a)

€5;=0.0018+0.0002 , (7b)

M=0.177£0.001, (7¢)

v=1.104510.0015 , (7d)

T.,=130.758+0.0015, (7e)

where again €, is measured in units of K~!. The
fit is now much better, as indicated by the deviation
plot of Fig. 3(b). The change of vertical scale by a
factor of 10 between Figs. 3(b) and 3(a) should be
noted. The much smaller value of €,; and the value
of T, somewhat closer to the value of T at the peak
of €, are more satisfactory. However, the deviation

plot clearly shows a number of zero crossings equal
to the number of fit parameters.

It is well documented that logarithmically
corrected mean-field behavior can lead to apparent
power laws with 7> 1,% although the true critical
behavior is beyond doubt the logarithmic one.*® In
the case of the uniaxial dipolar system, the LK pre-
diction,2”-¢

X~ lat|14gIn(ty/t) | ~173, (8)
does indeed lead to an effective exponent

_dinx~!
Yeft= dinz ’

which is 1 in the limit z— O, but which is greater
than 1 elsewhere. Equation (8), obtained using
Feynman-diagram expansion, has also been con-
firmed with the renormalization-group approach.”
Equation (8), which represents a logarithmically ac-
curate solution, has an asymptotic correction of the
form*!

9)

140 3ln Int

~1 -1/3
t|Int
X oct|Int| It |

(10)

The new term in (10) is zero for t =e ~! and diverges
at t=1. Hence, it is only applicable for small ¢,
where it has a very slow variation. It is thus
neglected in the following.

Although the literature contains several discus-
sions of a crossover to mean-field behavior at suffi-
ciently high ¢,274>* a suitable functional form for
this crossover has not been given. In particular, Eq.
(8) gives no crossover, as seen by calculating (X?)°,
which in mean-field theory should be a constant,
rather than linear in Inz. The empirical replacement
of t by t/ty(1+41¢) in the argument of the logarithm,
as suggested in Ref. 43, leads, in our case as well as
in theirs, to a fitted value ¢3 < 1, meaning that the
susceptibility has a spurious singularity at
t=ty/(1—1ty), the zero of the In function. Specifi-
cally, a five-parameter fit with a temperature-
dependent background as in (6) and a critical part
equal to

Mt~ Int /to(141)| 173,

leads to o=8.2X 10~* with particularly strong devi-
ations in the region t ~#y/(1—tg). It cannot be con-
sidered as an improvement over the power law. In
order to avoid this drawback, and to be able to ex-
tend our fits to the crossover region, we adopted
another empirical expression:

€ =€po-+ %(mx)m , (11a)
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where
x=a+ty/t. (11b)

For a=t, this coincides with the suggestion of Ref.
43. However, with a> 1, (11) crosses over to mean
field smoothly without passing through a zero of the
In function. For small ¢, (11) gives

-173

XVt [Inty/t + 2 , (12)

Lo

which asymptotically is closer to Eq. (8) than Eq.
(10) is. Hence, Eq. (11) is compatible with the LK
theory, and consistent with the neglect of higher-
order corrections. It should be noted that the tem-
perature dependence of the background was not in-
cluded in (11), as the fits were satisfactory with a
constant €.
The estimators obtained by fitting to Eq. (11) are

€50=3.22710.006 , (13a)
M =0.1877+0.0005 , (13b)
to=0.27410.006 , (13c)
a=1.69+0.07, (13d)
T,=130.774510.0005 (13e)

where T, is expressed in units of K. Figure 3(c)
demonstrates that the deviations are now governed
by statistical errors comparable with our estimated
accuracy. The variance o is three times smaller
than that of the power-law fit which used the same
number of parameters. It is 40 times smaller than
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FIG. 4. [(€y—€po)(T —T,)]? vs log,ot for the measured
data points. Here T, and €, have been given their value
from Egs. (13). The dash-dot curve illustrates the modifi-
cation of the graph obtained when T is increased by one
part in 10000. The dashed curve illustrates the effect of a
decrease of background by 5%. The solid curve is derived
from the fit (13) and illustrates the deviations for ¢ < ¢,.

that of the Curie-Weiss fit. The value of T, is
sharply determined and it is now extremely close to
the temperature value at which €p 1, is reached. It
is comforting that a is well above 1. The crossover
region occurs at rather large*

t~ty/a=0.16=10"08

To obtain another objective test for the necessity
of the log correction, the quantity
[(e, —€,0)X(T—T,)]® has been plotted versus log? in
Fig. 4. It is obvious from the calculated curves ex-
plained in the figure caption that mere adjustment
of €y and T, is unable to produce a constant value
for the quantity plotted, as would be required by
mean-field theory. On the contrary, the data points
with ¢> 10726 are well explained in terms of loga-
rithmic corrections crossing over to mean field in
the region t~107%8 The uncertainty of the ex-
ponent z=% in (11a) was investigated in a six-
parameter fit, with z as additional parameter. The
variance o is essentially unchanged, whereas the es-
timators are

€50=3.229+0.011 , (142)
M=0.182+0.017 , (14b)
to=0.32+0.14, (14c)
a=1.75+0.20, (14d)
T, =130.7742+0.0011 , (14e)
2=0.347+0.041 , (14f)

where T, is expressed in units of K. This fit demon-
strates the fine agreement with z= %, with a modest
uncertainty. It also emphasizes the strong correla-
tion between z and the other parameters, as seen
from the large increase of their uncertainties, partic-
ularly true for the cross-over parameters t, and a.
Two features are recognized in Fig. 4 for
t<107%% (i) a shoulder, in the region
1073 <t < 1072, where ¢, is anomalously high, and
(i) a strong roundoff which becomes dominant
below ¢~107>. Similarly, extending the 7=-—1.5
line in Fig. 2, one finds a shoulder followed by
roundoff, although in this case the shoulder is much
enhanced. As will now be explained, considering the
successive measurements performed, the shoulder
should probably be associated with temperature in-
homogeneity and the roundoff with sample quality.
After the first sample anneal, and with 50 um @
copper leads for contact to the coaxial lines, the
shoulder began around t=10"23 but the roundoff
was strong and interfered with it. After the second
anneal, with the same leads, the roundoff was weak-
er and the shoulder started similarly around
t=10"%3, leading to an increase of its peak value.
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A good fit, including the data points in the region
1026 <t <1023 could nevertheless be obtained by
taking a model of inhomogeneous T,.** Specifical-
ly, the sample was considered to be a set of parallel
capacitors with Gaussian distribution of T, and of
variance ~50 mK. Such a model also leads to a
much enhanced shoulder in G since, ignoring log
corrections, C «ct ! but G oct =7~ 1=¢~2" for defect
theories. As a major source of inhomogeneity can
reside in the minute thermal conductivity of the
leads, in a third measurement, for which the results
are presented above, copper was replaced by brass,
which has an order-of-magnitude lower thermal
conductivity around 130 K. The measured T, was
then lowered by ~0.2 K, consistent with the fact
that the colder coax cables had previously been cool-
ing the sample. Also, the beginning of the shoulder
was lowered from ¢=10"23 to t=10"2%, substan-
tiating the above interpretation. Remarkably, the fit
parameters (13a)—(13d) are equal to those of the
second measurement within their accuracy. At this
point we felt that there was not much value in try-
ing to improve the temperature homogeneity further
as the measurement would be quickly limited by
roundoff related to sample quality. In view of the
very strong effect that a temperature spread has on
G and on tand, it is safe to fit €, down to the point
where tand starts deviating appreciably from its
¢t ~1-3 asymptotic behavior (point x) as we have done.

In conclusion, it should be noted that every step
we have taken to improve the results (annealing,
fringe-field correction, change of leads) has not
changed the main qualitative observation that there
is a region which can only be well accounted for by
log corrections. This makes us strongly confident
that the LK behavior is an intrinsic property of
TSCC.

IV. DISCUSSION

The measurement of €, gives quantitative infor-
mation about the critical behavior of the Landau
coefficient A, and demonstrates the great importance
of uniaxial dipolar interactions in TSCC. Other
measurements ought to be reevaluated in this new
light. The present section explores some of the most
immediate and important consequences of our re-
sult.

The critical part of the dielectric constant below
T, immediately follows from Eq. (11),°

1 M
ecrit=5—|_t|_(ln1)l/3 , (15)
where x is still given by (11b) with ¢ replaced by
|¢|. Equation (15) has only asymptotic value, and
as one penetrates more deeply into the low-
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FIG. 5. Soft-mode frequencies: wro is taken from Ref.
23, and w10, max is obtained from Eq. (16). The two data
points are for w; o, using the LO-TO splitting reported in
Ref. 19.

temperature phase, saturation effects are likely to
become important. These are related to higher-order
Landau coefficients (C, D,...) which lead to
P2< |A | /B, where B « 1/Inx, and P is the polariza-
tion.® The same saturation effects give €, <€,
where €., is given by Eq. (15). Nevertheless, one
can use (15) together with the parameters (13), to ob-
tain a reasonable upper limit to oy g, the longitudi-
nal optic frequency, using the LST relation

172

€crit

®L0,max=0T0 |1+ ey (16)

Here, n is the appropriate refractive index, for
which we take a value n=1.5 Using for wyg the
curve obtained by Chen et al.,?* one obtains ©LO,max
as shown in Fig. 5. The two experimental points are
drawn according to the LO-TO splitting given expli-
citly by Prokhorova et al.'’ The agreement is as
good as it can be, as one should expect a modest in-
fluence of saturation at 7, —15 K, and a strong in-
fluence at 77 K. Hence, the w;o behavior is ex-
plained without having to call for another instabili-
ty.2! This suggests that the main transition mechan-
ism in TSCC is indeed displacive, contrary to earlier
beliefs.

A second remark is related to the effective order
parameter exponent defined by

_ din(P)
In the critical region,
(PY=V—A/B « |t |"XInx)'?, (18)

which gives
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FIG. 6. The effective exponent B from Ref. 15.
Curve a is obtained from Eq. (19) with #,=0.06 and
a=1.02. Curve b corresponds to t,=0.05 and a=1.1.

Bur=1—+to/[(to+at)inx]

2
~5—3(nx)"!. (19)
Clearly, this effective exponent, equal to % at T,
can decrease rapidly as |¢| grows and, depending
on the values of the nonunivlersal parameters t, and
a, can become as small as ¢. If Eq. (19) could be
applied in the mean-field region (at>>ty), B
v]vould of course cross over to the mean-field value
- In fact, here also one should expect saturation
which reduces the value of B.s. A comparison of
these ideas with the EPR values of> B is illustrat-
ed in Fig. 6. The curves drawn emphasize the great
sensitivity of Eq. (19) to the exact values of a and ¢.
As these parameters do not necessarily have the
same value above and below T, and as saturation
effects would involve the prefactors of the Landau
coefficients B, C, etc., no real fit has been attempt-
ed. However, it is quite clear that values of a and ¢,
leading to curves between a and b in Fig. 6, together
with some modest saturation component, would be
able to explain the data perfectly.

A short remark has to do with other measure-
ments of the polarization. Direct measurements
usually require a large applied field and could be
further complicated by domains. The effect of the
applied field should be accounted for carefully.*6>
Indirect measurements of P, such as refractive index
ones,'* should consider the effect of fluctuations
leading to (P?)=£(P)>.

In conclusion, inescapable evidence for log correc-
tions in TSCC has been obtained, in agreement with
a recent brief report on the specific heat.?® This ob-
servation is also in qualitative accord with many
other published results. The fact is all the more im-
portant since results on TGS, for which log correc-
tions had been reported over a narrow temperature
range, have been seriously challenged recently.?®4’

It might thus turn out that TSCC is the best current
example of uniaxial dipolar behavior in a ferroelec-
tric.
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APPENDIX: FRINGING-FIELD
CORRECTIONS

We make the approximation of an infinite
straight edge (Fig. 7). The solution of the corre-
sponding Laplace equation in vacuum is a standard
application of conformal mapping.*® The additional
capacitance due to the charges on the inside faces of
the plates is given by

AC=—"Z=21L, (A1)
m

where V is the voltage between the plates, AQ; the
additional charges given by

0
AQ,'= f—wé'() Ey——dK dx N (A2)

and L is the length perpendicular to the xy plane,
which in our case is taken to be the perimeter of the
sample. The capacitance produced by charges on
the outside faces of the plate diverges logarithmical-
ly with the plate extension in the —x direction.

(m

l %

FIG. 7. Edge of a condensor with plates at (y =+d /2,
— o0 <x <0). Region I is filled with a dielectric.
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This contribution to the background is approximat-
ed by Kirchoff’s formula*

€
AC,= L
27

16vnS

1
"

1y, (A3)

S being the plate area.

Now, assume that the plates are filled with a
dielectric whose dielectric-constant tensor has a
principal direction along y, of value €,. The boun-
dary at x =0, —d /2 <y <d /2, being free of mobile
charges, both E, and D, are continuous across that
boundary. Laplace’s equation in both regions I and
II can be written

3’D, %E,

—3_52_ + ?y—z— =0, (A4)
where

x=Ve¢, inl, (A5a)
and

x=§ inll. (A5b)

Hence, D,,E, satisfy the same equation as that of

the vacuum problem, the only difference being a
scale compression given by (A5a). Instead of (A2)
one has

0 V
AQ;= f__w€0€y E,—; dx
0
Ve[ _a Ey—% dé . (A6)

Hence, (A1) is now replaced by
€o
AC;=—V¢,L , (A7)
27
while (A3) is unchanged since there is no scale
compression in region II. Finally, the measured
capacitance Cy, is given by
S €
Cu=coty g+ 3, V&L

€0L
2T

16V S
In—————

1
d

(A8)

and €, is obtained from Cy, by solution of the qua-
dratic equation in V€.

*On leave from the Department of Physics, University of
Trondheim, 7034-NTH Trondheim, Norway.
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