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The cubic lattice gas, a generalization of the n-component face-cubic model, is studied in
two dimensions by variational renormalization-group techniques for general n, and by an
exact mapping onto a solid-on-solid model for » =2. This approach reveals new intercon-
nections among the class of cubic, Potts, and Ashkin-Teller phase-transition phenomena. In
particular, it is shown that the fixed line of the Ashkin-Teller lattice gas serves as the back-
bone for a hierarchy of pairs of fixed points which branch off from it, as n is decreased
from 2, at special points where two operators are marginal. The phase diagrams of the pure
and dilute n-component cubic models are obtained and the orders of all transitions are deter-
mined. The cubic phase transition is found to be first order for all n > n,=2. The evolution
of the results as a function of dimensionality is discussed briefly.

I. INTRODUCTION

Because the cubic model contains as special cases
the Potts and Ashkin-Teller (AT) models, it is not
surprising that it exhibits a complex phase-transition
behavior and has resisted a satisfactory renormal-
ization-group (RG) description. Motivated by the
recent successful calculation of the properties of the
Potts model,"> we have applied similar methods to
this problem in conjunction with exact mapping
techniques. We obtain an RG description which is
not only satisfactory, but also reveals new intercon-
nections between two-dimensional phase-transition
phenomena in which the AT fixed line plays a cen-
tral role.> Most of our calculations concern the cu-
bic model in two dimensions, but the evolution of
the results as a function of dimension is briefly dis-
cussed.

The n-component cubic model can be defined in
several ways. The usual definition* is by a Hamil-
tonian containing two nearest-neighbor interactions
between n-component spins S that point to the faces
of an n-dimensional hypercube, S=(%1,0,0,...),

0,£1,0,...),...,

—B#=3 (5CE;§;—1)
(i,j)
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where the sum is over all nearest-neighbor pairs.
This model is also called the face-cubic or axis
model and should be distinguished from the corner-
cubic or diagonal model, in which the spins point to
the corners of an n-dimensional hypercube. The
Hamiltonian (1.1) can be rewritten in a form that
makes more obvious its important symmetry proper-
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ties. We associate two discrete variables with each
lattice site i: The “axis” variable a;= 1,...,n that
determines which component of S; is nonzero and
an Ising variable o; =+ 1 that determines the sign of
that component. In terms of these variables the cu-
bic model is defined by

—B#=3 [C(64 08y 0 —1)+P(8, o —1].
Gij) v "
(1.2)

For P=0 the Hamiltonian reduces to the 2n-state
Potts model,’ and for n=2 it specializes to the AT
model.® It is convenient to describe the parameter
space in terms of the Boltzmann weights for pairs of
antiparallel and orthogonal spins, respectively:

W, =exp(—C), W,_, =exp(—C—P). (1.3)

The Boltzmann weight for parallel spins is unity by
construction. We consider only the ferromagnetic
sector of the parameter space, which is given by

O<W,,W,_,<1. (1.4)

Often the term cubic model is applied to the
continuous-spin Landau Hamiltonian’

1

B = [d% |5 1V9 | 4rg4u|§?|?

—o e+ ’ (1.5)

a

—

where 3 is an n-component variable. The quartic
term vy, Y2 breaks the isotropic symmetry, favor-
ing spin orientations toward the faces or corners of
an n-dimensional hypercube for v<0 or v>0,
respectively. This Hamiltonian thus describes both
face- and corner-cubic transitions, and elucidates
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their relation to the isotropic or O(n) transition;
however, it exhibits only one of the several transi-
tions of the model (1.1).%°

The cubic model in two dimensions has many ap-
plications, in particular to adsorbed monolayers.'°
For example, with n=3 the model describes the
orientational ordering of diatomic molecules ad-
sorbed in a triangular array,!! as observed in the
N,-graphite system,'? and the magnetic ordering of
planar spins adsorbed in a triangular lattice,! as ob-
served in the O,-graphite system'4; with n=2, the
model describes the transition to (2X1) structures
on centered-rectangular arrays,’>'> as in O on
Ni(110) (Ref. 16); with n=1 the model describes the
transition to (1x1) (%) structures on honeycomb ar-
rays,!” as in He on Kr-plated graphite.!® The limit
n=0 describes the scaling behavior of long polymer
chains,! which have also been studied experimental-
1y* in two dimensions.

With the parameter space restricted as in (1.4), the
cubic model exhibits three phases. In the ferromag-
netic phase, which occurs for C sufficiently large, all
spins tend to align so that (S)0. When C and P
are small or about equal and opposite, the model is
in a paramagnetic or disordered phase. In a third
phase, which occurs at large positive P and small C,
the spins exhibit partial order in the sense that they
all point along one axis, but do not favor either of
the two directions along the axis. The reader may
view Fig. 1(a) as a generic phase diagram, ignoring
all details since they will be discussed later. From
symmetry considerations the transition between the
partially and fully ordered phases is expected to be
in the Ising universality class. For the same reasons
the transition from the paramagnetic to the partially
ordered phase is an n-state Potts transition. These
conclusions are obvious in the following special
cases. In the limit P— « the axis variables are all
equal and the cubic model reduces to an Ising
model. When C=0, the Ising variables do not in-
teract. This leaves only an n-state Potts transition.
The nature of this transition is known to be second
order for n <4 and first order for n>4.2! Now con-
sider the single paramagnetic-to-ferromagnetic tran-
sition. It will be referred to as the “cubic” transition
when P <0. For P=0, the cubic model reduces to a
2n-state Potts model. Hence for all values of n there
is a single phase transition at P=0, which changes
from second to first order with increasing n at n=2.
For this value of n the cubic model is identical with
the AT model. The AT critical line with continu-
ously varying exponents is located at P<O0, and
splits into two Ising-transition lines at the four-state
Potts point P=0.%

A question left open by previous work is the na-
ture of the cubic transition.®?> Because the 2n-state
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FIG. 1. Schematic phase diagrams of the n-component
cubic model for (a) n <2, (b) n=2, and (c) 2 <n <4 exhi-
biting isotropic n-vector O.; Ashkin-Teller AT; n- and
2n-state Potts critical and tricritical P,,P,; Ising I; and
critical end-point (CEP) transitions. The axes are labeled
by the Boltzmann weights W,_, and W,, defined in Eq.
(1.3). Solid and dashed lines denote continuous and first-
order phase transitions, respectively. The double line in-
dicates the AT transitions with continuously varying criti-
cal exponents. For n > 4 the entire n-state Potts transition
line is also first order.

Potts transition is first order for n> 2 we expect, by
continuity, the cubic transition in the neighborhood
of P=0 to be first order. However, for sufficiently
negative P the cubic transition could remain con-
tinuous either for all n or up to some n, beyond
which it is first order everywhere. In either case it is
clear that the change in the nature of the 2n-state
Potts transition must cause an evolution of the cubic
transition with n. The bifurcation point of the cubic
transition into n-state Potts and Ising transitions
must also be affected, becoming a bicritical point, a
critical end point, or a triple point.
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For several reasons it is useful to study these and
other questions by means of a generalization of the
cubic model (1.2) to the dilute cubic model or cubic
lattice gas. The nearest-neighbor Hamiltonian for
this system is

—Bx¥= 2 titj[K'}'C(aai,ajaa,-,aj_l)
(ij)

+P(8a,~,aj-1)]’_A§ti ’

(1.6)

where the variables ¢; specify whether a site i is oc-
cupied (t;=1) or vacant (¢; =0). The number of va-
cancies is controlled by the chemical potential A and
the lattice-gas coupling K. The model (1.6) describes
an even greater variety of phase-transition behaviors
than (1.2). A transition that is continuous in the
pure cubic model can be driven first order by a suf-
ficient amount of dilution. The dilute model also
covers a wider range of applications and may be of
interest, for example, for monolayer experiments in
which coverage can be easily varied. Finally, there
are technical reasons for investigating the dilute
rather than the pure cubic model.! Allowing vacan-
cies to develop under RG transformations enables
one to use the usual approximate RG methods to
obtain subtle features such as the AT fixed line and
changeover between continuous and first-order
phase transitions.

The purpose of this paper is to report results for
the cubic-lattice-gas model obtained, for general n,
by the variational RG and, in the AT limit, n=2,
also by mapping onto a solid-on-solid model. A
summary of these results follows.

First, the cubic transition for n > n, =2 is first or-
der for all P<0. For n <n, it exhibits critical, tri-
critical, or first-order behavior depending on the de-
gree of dilution. The critical point is in the univer-
sality class of the O(n) transition. The tricritical ex-
ponents are those of the 2n-state Potts lattice gas.
The AT tricritical behavior, unlike the critical
behavior, is universal and four-state Potts-type.

Second, the point at which the cubic transition
splits into n-state Potts and Ising branches evolves
with n in the following manner. For n <2, this
point is the 2n-state Potts critical point as long as
the transition is continuous; when the cubic transi-
tion is driven first order by dilution the splitting
occurs at a bicritical point at P>0 with the ex-
ponents of the 2n-state Potts tricritical point. At
n=2 this bicritical point is found to exhibit
nonuniversal exponents with varying dilution. For
n>2, where the cubic transition is always first or-
der, our results indicate that the point of splitting is
an Ising critical end point. However, due to the

character of our calculation, we cannot exclude that
it is an n-state Potts critical end point or a triple
point.

Third, our conclusions as to the interconnections
between the above-mentioned phase transitions are
summarized in Fig. 3. The thermal exponents asso-
ciated with the isotropic n-vector, critical and tri-
critical Potts, and new multicritical transition 4 are
shown as functions of n. The vertical line at n=2
represents the continuous variation of the AT
thermal exponent along the AT fixed line. All of
the exponents shown, with the exception of the mul-
ticritical one, A4 (n), are known exactly. Our map-
ping of the AT lattice onto a solid-on-solid model
establishes that for this model the fixed line consists
of a sequence of segments with an increasing degree
of instability. We conclude that the points at which
this extended AT fixed line changes stability, i.e.,
=0, %, ITG, 'Ts, ..., are bifurcation points at
which pairs of fixed lines branch off as functions of
n for n <2, which describe isotropic, Potts, and mul-
ticritical phase transitions. As suggested by the fig-
ure, we refer to the AT fixed line as the “backbone”
for the phase transitions exhibited by the cubic lat-
tice gas.

Fourth, the calculation produces the topology of
the RG phase diagram of the cubic lattice gas as
function of n, as summarized in Fig. 2 below. The
evolution with n of the pure cubic phase diagram,
inferred from this information, is shown in Fig. 1.

Fifth, though most of the calculations are done
for the two-dimensional model, some conclusions
can be drawn concerning the cubic model in dimen-
sions greater than 2.

The outline of this paper is as follows. Section II
discusses the Kadanoff variational RG as applied to
the cubic model. Some technical details are present-
ed in Appendix B. Section III presents the results of
the RG calculation and the conclusions drawn from
them. The numerical results are interpreted with
the aid of several exact results, some of which are
new and follow from a mapping of the AT lattice
gas onto a solid-on-solid model. The consequences
of this mapping are discussed in Sec. III, while the
mapping itself is presented in Appendix A.

II. METHODS

This section gives a brief summary of the tech-
niques applied in the present study. Details are de-
ferred to Appendixes A and B.

The RG approach presented here embeds the cu-
bic model (1.2) in the enlarged parameter space of a
cubic lattice gas (1.6). This has calculational advan-
tages besides making accessible a greater variety of
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phase-transition problems. First, a central point in
the phase diagram of the cubic model is the 2n-state
Potts transition at P=0, which is continuous for
n<q./2 and first order for n>gq./2, with g,=4 in
two dimensions.?! This changeover has been
described within an approximate RG calculation by
allowing vacancies to be generated under the
transformation as a means of representing disor-
dered Potts-spin configurations.’? The introduction
of the vacancy or dilution concept into the discus-
sion of the Potts model has been very successful.
The phenomenological picture that resulted, i.e., of
merging lines of critical and tricritical Potts fixed
points along which the dilution operator becomes
marginal as n—gq./2, has been confirmed by subse-
quent analytical calculations.>® The latter works
also revealed that the singly and doubly unstable
segments of the Gaussian fixed line are related to
and control the critical and tricritical Potts
behavior, respectively, which explains the extended
den Nijs conjecture!"?® for the thermal exponent of
the Potts model.

The second reason for the extension (1.6) requires
a more detailed explanation, which is given partly
here and partly in Appendix A. When n=2, the
Hamiltonian (1.2) defines the AT model that is
known to exhibit a phase diagram of the kind*
shown in Fig. 1(b) with, for P<0, a thermal ex-
ponent that varies continuously as a function of
P/C.%® This AT fixed line’’ terminates, when P=0,
in a point of four-state Potts symmetry. The
thermal exponent of the AT model can be associated
with the relevant operator of the Gaussian model,
cos(2mh). 2% For definitions and details see Appen-
dix A. When the parameter P becomes positive, the
Gaussian operator cos(4mh) also becomes relevant,
so that flows from the AT model no longer reach
the Gaussian fixed line. An approximate calculation
yields this termination only if it includes the
equivalent of the operator cos(4h). We achieve this
by working in the extended Hamiltonian space (1.6),
as is shown in Appendix A and discussed in Sec. IIIL.
Therefore, introducing the dilution operator is a de-
vice that allows one to capture within an approxi-
mate RG calculation the essential physics of the cu-
bic model.

Specifically, the cubic lattice gas (1.6) in two di-
mensions is investigated by Kadanoff’s variational
RG.3® Details of the approach are described in Ap-
pendix B. In this scheme the Hamiltonian is a sum
of local Hamiltonians each representing the 2¢ sites
of an elementary hypercube in d dimensions,
—B2x° =3 Hy.. For the cubic lattice gas in two di-
mensions this involves 21 coupling constants associ-
ated with the 21 energetically different configura-
tions of {t,a,0} on a square. The calculation of the

renormalized Hamiltonian requires an approxima-
tion which is constructed such that the resulting free
energy is a lower bound to the exact free energy.
The calculation is then optimized with respect to
four parameters by maximizing this lower bound.
The approach is known to yield excellent results for
the critical and tricritical exponents of the Potts
model,2 which are now known exactly.24 It has the
minor disadvantage, in particular when fixed points
in large parameter spaces must be located, that it
does not allow the construction of RG flows. How-
ever, in the present calculation we found it possible
to start from well-identified fixed points at certain
values of n and to generate lines of fixed points as
functions of n by changing » in small steps. Our re-
sults are described in Sec. III.

The interpretation of the numerical results of the
RG calculation is guided by a number of exact re-
sults, which will be addressed in more detail later.
For now we note the following.

(1) The line of 2n-state Potts critical points and
the AT fixed line have the four-state Potts fixed
point in common. At this intersection the 2n-state

. Potts transition changes from continuous to first or-

der,?! and the line of AT critical points bifurcates*
into two Ising transitions. The thermal critical and
tricritical Potts exponents are known exactly.?*

(2) At the isotropic n-vector critical point the cu-
bic anisotropy is irrelevant for n <2.7*3? This im-
plies that at least for some range of interactions the
cubic transition is in the O(n) universality class for
these values of n. The AT and O(n) lines of fixed
points intersect at n=2.2%?%3 The thermal ex-
ponent of the O(n) transition is known exactly.**

(3) The AT lattice gas exhibits a fixed line which
has not only a singly unstable segment as in the pure
AT model, but also a doubly unstable segment. This
result follows from a mapping of the AT lattice gas
onto a solid-on-solid model, which is presented in
Appendix A. The thermal exponent along the AT
fixed line is also known exactly.?%2®

ITII. RESULTS

Our conclusions as to the structure of the phase
diagram of the two-dimensional cubic lattice gas are
presented in Sec. III A below. The evolution with »
of the fixed points which govern the phase-
transition behavior is discussed in Sec. IIIB and
leads to the conclusion that the AT fixed line plays
a special role, tying together these disparate transi-
tions. These conclusions are based on the results of
our approximate RG calculations, presented in Sec.
IIIC, and on the exact mapping of the AT lattice
gas onto a solid-on-solid model, carried out in Ap-
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pendix A. In Sec. IIID we comment on the evolu-
tion with dimensionality of some of our results.

A. Phase diagram

Figures 2(a)—2(c) summarize our conclusions con-
cerning the phase diagrams of the cubic lattice gas
in the parameter space of the Boltzmann weights
(1.3) and the fugacity exp(A). The intersection of
the pure, or zero-fugacity, plane with the various
transition surfaces produces the phase diagrams of
the pure cubic model shown in Figs. 1(a)—1(c).
Qualitative differences exist between the diagrams
for n<2, n=2, 2<n<4, and n>4. In all cases
there is a single cubic transition between the
paramagnetic and ferromagnetic phases at P<O0;
this transition bifurcates into n-state Potts and Ising
transitions at P=0 or P> 0, depending on the values
of n and dilution. The details are as follows.

For n <2, the cubic transition surface (P<0) in
Fig. 2(a) has first- and second-order regions that are
separated by a tricritical line. The continuous tran-
sition is governed by the singly unstable isotropic
fixed point O.(n) located at P<0. (Our reasons for
identifying this transition with the isotropic rather
than cubic universality class are given in Secs. III B
and IIIC.) Its thermal exponent as a function of n,
which is given by Eq. (3.2) below,**% is indicated in
Fig. 3. The transition line in the Potts subspace
P=0 is controlled by the critical, tricritical, and
discontinuity 2n-state Potts fixed points P.(2n),
P,(2n), and P,;(2n). The discontinuity fixed point
P4(2n) is stable against cubic anisotropy so that for
large dilution the single or cubic transition is first
order for P <0 and also for some region P> 0, into
which it then extends. The critical fixed point
P.(2n) is stable in the dilution direction and unstable
under cubic symmetry breaking. The continuous
cubic transition surface for weak dilution splits at
P=0, along the line governed by P.(2n), into the n-
state Potts and Ising surfaces. At the tricritical
fixed point P,(2n) dilution is relevant and cubic an-
isotropy is irrelevant. Consequently, this fixed point
governs the cubic and 2n-state Potts tricritical tran-
sitions for P <0 and a bicritical line for P>0. The
latter is the line along which the first-order
paramagnetic-to-ferromagnetic transition bifurcates
into continuous n-state Potts and Ising transitions
for large dilution. Figure 2(a) clearly exhibits this
role of the fixed point P,(2n). The thermal ex-
ponents associated with P,(2n) and P,(2n) are given
by Eq. (3.1) below?*; their dependence on n is shown
in Fig. 3. Large dilution also drives to first order
the transition on the n-state Potts surface; then the
bifurcation exhibits critical-end-point behavior and
is controlled by the fixed-point CEP. The special

FIG. 2. Schematic phase diagram of the cubic-lattice-
gas model for (a) n<2, (b) n=2, and (c) 2<n<4. The
surfaces separate disordered, partly ordered, and fully or-
dered regions with decreasing W,_,. The fixed points are
denoted as follows: O,, isotropic n vector; P, Potts criti-
cal; P,, Potts tricritical; P, Potts discontinuity; CEP, crit-
ical end point; 4, multicritical; and I, Ising. The double
line is the Ashkin-Teller fixed line, of which the segment
P(4) to A(2) is doubly unstable. The AT tricritical
behavior is controlled by P(4); the dashed flow line
emerging from P(4) lies between the two-state Potts and
Ising surfaces. The discontinuity fixed points P; control
first-order phase transitions.
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FIG. 3. Thermal critical exponents vs n of isotropic n-
vector, 2n-state Potts, and multicritical fixed points. The
curves are labeled as follows: O.(n) and O,(n), the isotro-
pic n-vector critical and low-temperature fixed points;
P.(2n) and P,(2n), the 2n-state Potts critical and tricriti-
cal fixed points, and 4 (n) the multicritical point govern-
ing crossover from bicritical to critical-end-point behavior
[see Fig. 2(a)]. The double vertical line at n=2 represents
the continuously varying AT exponents. The numbers in
parentheses indicate the number of relevant fields at each
of the fixed points. Along the AT line there is also one
marginal operator. The dashed curves indicate the ex-
ponents of fixed points that are not accessible in the
cubic-lattice-gas calculation. The dashed curve labeled (3)
is associated with the fixed point denoted B (n) in the text.
The A4 (n) exponents shown are schematic, but of the other
exponents the exact values are plotted.

point at which the nature of the bifurcation changes
from bicritical to critical-end-point behavior is at-
tracted by the triply unstable fixed point 4 (n). The
thermal exponent of 4 (n) is shown schematically in
Fig. 3. The critical, tricritical, and first-order
behavior of the n-state Potts surface is governed by
the fixed points P.(n), P,(n), and P4(n), respectively.
The Ising-transition surface is continuous every-
where and is controlled by the fixed point I. That
the Ising sheet does not display first-order and tri-
critical transitions is probably a bias of our calcula-
tion. We will return to this point in Sec. III C and
Appendix A.

Figure 2(b) exhibits the RG phase diagram for
n=2, or the AT lattice gas. It looks very similar to
the phase diagram for n <2, but three changes have
occurred that pertain to the nature of the phase

transitions: The fixed point O.(n) has moved to
P =— «; the fixed points P,(2n) and P,(2n) have
merged into one fixed point, labeled P(4); and, most
importantly, a line of fixed points has appeared.
This fixed line, which is indicated by a double line
in the figure, is the “extended” fixed line of the AT
lattice gas. The segment O(2) to P(4) is singly un-
stable (in the temperature direction) and marginal
under cubic anisotropy, while the segment P(4)
to A(2) is doubly unstable (in temperature and dilu-
tion) and marginal in the cubic anisotropy. The
singly unstable segment controls the second-order
AT or cubic transition, which has a thermal ex-
ponent yr that varies as a function of P/C from 0 to
<. The doubly unstable segment describes a bicriti-
cal transition with two continuously varying
relevant exponents, % <yr< % and O<y7,< ¥,
from P(4) to A(2). The derivation of the exponent
values is discussed in Sec. III B [see Egs. (3.3) and
(3.4)]. The variation of the AT thermal exponent is
indicated in Fig. 3 by the vertical double line at
n=2. The AT tricritical transition at P <0 is con-
trolled by P(4) and therefore is universal in contrast
to the AT critical behavior. P(4) also governs the
part of the P=0 line along which the continuous
AT transition bifurcates. This unusual flow pattern
is possible because P(4) has two marginal operators.
The rest of the phase diagram at n=2 is qualitative-
ly identical to that for n <2.

The phase diagram for 2 <n <4 shown in Fig.
2(c) has much less structure. The fixed points
O.(n), P.(2n), P,(2n), and A(n) have disappeared.
The cubic transition, governed by P,;(2n), is now
first order everywhere. This first-order transition
surface splits into n-state Potts and Ising sheets
along a line of critical end points at P> 0, which is
controlled by the CEP. Near this line the n-state
Potts transition is first order as well. However, for
small dilution and sufficiently far from the critical
end point the n-state Potts transition is continuous.
The Ising sheet remains second order and is con-
trolled by the fixed point I.

When n=4, the fixed points P.(n) and P,(n) of
Fig. 2(c) meet and annihilate. Consequently, for
n>4, the n-state Potts surface is first order every-
where and is governed by P,(n). The Ising transi-
tion remains continuous. Hence, for n > 4, the phase
diagram is essentially independent of dilution.

B. Model interconnections

In this section it is shown that the fixed points
that determine the phase structure of the cubic lat-
tice gas occur in pairs. As n approaches 2 from
below, the fixed-point pairs annihilate at special
points of the extended AT fixed line, where it
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changes stability. Thus the AT fixed line is the uni-
fying element of these disparate fixed-point
behaviors. The results in Fig. 3 for the thermal ex-
ponents of the various fixed points indicate this role
of the AT fixed line.

Consider first the most familiar of these fixed-
point pairs, the 2n-state Potts critical and tricritical
fixed points P,(2n) and P,(2n) that are both twofold
unstable. The relevant operators of P,(2n) are tem-
perature and cubic anisotropy, and those of P,(2n)
are temperature and dilution. As n approaches 2
these two fixed points coalesce and simultaneously
meet the AT fixed line at P(4). At the same point
the AT line changes from singly to doubly unstable.
Both dilution and cubic anisotropy are marginal at
P(4). The thermal exponents of P.(2n) and P,(2n)
have been calculated exactly?*:

yT,p=3 1—

2¢im§%n—n] L (3.1)
m

where the plus and minus signs refer to the tricriti-
cal and the critical transition, respectively.

Next consider the cubic lattice gas at the continu-
ous cubic transition. The discrete face-cubic spins
can be regarded as isotropic n-component spins in a
field which forces them to point to the faces of a hy-
percube. Under an exact RG transformation this
field is expected to diminish, so that the cubic model
renormalizes into an O(n) model, when n <2. The
critical behavior of the two-dimensional O(n) model
has become better understood recently.3* The model
has a critical fixed point O.(n) controlling the phase
transition and a low- (but finite) temperature fixed
point O,(n) governing the isotropic low-temperature
phase. The fixed point O,(n) is stable under cubic
anisotropy, as indicated above, but unstable in the
temperature direction. In the low-temperature
phase, however, the isotropic and cubic spin models
are very different. The O(n) model has Goldstone
modes in the low-temperature phase and the cubic
model does not. Therefore, at O,(n) the cubic aniso-
tropy is relevant, while the temperature is irrelevant.
The thermal exponents of O, (n) and O,(n) have
been calculated and are given by>*

-1
1—

yro=4 , (3.2)

lilcos"l(n /2)
m

where the plus sign refers to O.(n) and the minus
sign to Og(n). As n approaches 2, O.(n) and Oy(n)
coalesce and disappear, which indicates the absence
of a finite-temperature phase transition for O(n > 2)
models. At n=2, where O.(n) and Og(n) coincide
on the AT line,>® both temperature and cubic aniso-
tropy are marginal. In Fig. 3 the thermal eigenvalue

of O,(n) is indicated by the dashed line at the bot-
tom. The scenario is remarkably similar to the
behavior of P,(2n) and P,(2n): Two fixed points of
equal degree of instability, located in a subspace of
special symmetry, coalesce the AT fixed line, where
they exchange relevant operators. At the special
point at which the fixed points coincide with the AT
line there are two marginal operators.

Now consider the AT line in more detail. As
shown in Appendix A, the AT lattice gas can be
mapped onto a solid-on-solid model. The critical
behavior of such models is that of a Gaussian model
with a hierarchy of spin-wave fields.?*?° The tem-
perature of the original AT lattice gas is related to
the most relevant spin-wave operator. Its exponent
is known for the pure AT model,”® e.g., on the
square lattice

—1
-1 eP+1

=2
3 41 2

2— 4 cos , (3.3)
T

which defines the thermal AT exponent yr 1=y,
for this lattice. The exponent varies along the line
of critical points given by

exp(C)=1+42exp(—P) .

The less relevant exponents can be expressed in
terms of the thermal exponent?®

ye=2—k*2—y,) , (3.4)

for k=1,2,....
come relevant.
The O(n) fixed points meet the AT line at the
point where y, =0. The 2n-state Potts fixed points
intersect w1th the AT line at P(4), where y,=0
and y; =5. We argue that the fixed point 4 (n) ex-
hibits a 51m11ar behavior. In an appropriately en-
larged parameter space there is another threefold
unstable fixed point B(n). As n approaches 2, 4 (n)
and B(n) coalesce at the AT line and exchange sta-
bility in one of their operators. At that point y; =0,

Y= 190, and y,-ﬁ. This is indicated in Fig. 3,
where the dashed line near yr= 76 represents the
leading eigenvalue of B (n).

The picture that thus emerges for generalized n-
component cubic models is the following. The AT
fixed line consists of a sequence of segments with an
increasing degree of instability. The (k—1)-
fold—unstable segment is separated from the k-
fold—unstable segment by a multicritical point, say
M. The cubic operator is marginal everywhere
along the AT line. At M, the exponent y; changes
sign, which results in a second marginal operator
there. As n decreases from 2, a pair of k-

As y, increases, more operators be-
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fold—unstable fixed points emerges from each M.
The critical and low-temperature fixed points of the
isotropic n-vector model constitute the onefold-
unstable pair emerging from M,, at which yr=0;
the critical and tricritical Potts fixed points consti-
tute the twofold-unstable pair emerging from M,, at
which yT=%; and new multicritical fixed points
A(n) and B(n) form the threefold-unstable pair
N . 16 « e
emerging from M;, at which yr=--. Similarly,
additional k-fold—unstable fixed-point pairg v‘gll
emerge from M,, Ms, etc., at which yr=+, 5,
etc. Thus the AT fixed line plays the role of a back-
bone for a hierarchy of pairs of fixed points of an
increasing degree of instability.

C. Numerical results and discussion

In this section we present the numerical RG re-
sults whose interpretation led to the conclusions
described in Secs. IIIA and IIIB. Frequently we
will contrast results for the pure and dilute n-
component cubic models, (1.2) and (1.6), to demon-
strate how the results of the calculation change
when the parameter space is enlarged. Deviations of
the numerical results from the ideal picture of Fig. 3
will also be discussed.

Consider first the 2n-state Potts subspace P =0 of
the pure and dilute cubic models, (1.2) and (1.6),
respectively. There the calculations reproduce previ-
ous work? such as the thermal critical and tricritical
exponents as a function of #; these results are shown
as the dashed curves in Figs. 4(a) and 4(b). Only
from the lattice-gas calculation does one obtain the
correct changeover in the nature of the Potts phase
transition from continuous at n <g. /2 to first order
at n>q./2. The numerical critical value
q./2=2.04, which is defined by the location of the
tip of the dashed curve in Fig. 4(b), is close to
Baxter’s g, /2=2.2! The numerical exponents agree
well with their exact values (3.1). For the dilute
Potts model no critical fixed points were found for
n <0.7.2 In the larger parameter space of the cubic
model, i.e., P#0, one finds that the Potts critical
fixed point is unstable under cubic anisotropy while
the Potts tricritical and discontinuity fixed points
are stable. The degree of instability is indicated in
the figures by a number in parentheses next to the
curves for the thermal exponents. Figure 5 exhibits
the exponents associated with cubic anisotropy along
the lines of Potts fixed points as obtained for the
pure and dilute cubic models. The quality and inter-
nal consistency of the calculation for the lattice gas
is indicated by the fact that the exponents associated
with cubic anisotropy and dilution (for the latter, see
Fig. 3 of Ref. 36) change sign at values close to one
another and to g, /2.

20 T T

(a)

Yy 1.0

0.5- ~
(b)
1 1
% I 2 3

FIG. 4. Thermal exponents yr vs n from the variation-
al renormalization-group calculation for (a) the pure n-
component cubic model and (b) the cubic lattice gas. The
dashed curves indicate the critical and tricritical fixed
points in the 2n-state Potts subspace. The solid curves
refer to isotropic n-vector, AT, and multicritical transi-
tions. The degree of instability is shown by numbers in
parentheses. The bars across the curves indicate change
of stability. The X symbol indicates the intersection of
the 2n-state Potts and AT lines of fixed points. The two
horizontal bars in (b) near n=2, yr=1.5 give the interval
in which (i) the Potts critical and tricritical fixed points
coalesce, (ii) the AT and Potts lines of fixed points inter-
sect, and (iii) one operator along the AT and two opera-
tors along the Potts fixed line change stability.

Next we discuss the cubic model in the regime
n <2. As function of n, the RG calculation yields,
for the pure cubic model, a line of singly unstable
fixed points in the sector P <0. These fixed points
are identified as governing a critical transition in the
O.(n) universality class. For the dilute cubic model
one finds, in addition, a line of fixed points 4 (n) at
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FIG. 5. Exponent associated with cubic symmetry
breaking vs n along the lines of 2n-state Potts fixed points
as obtained from the variational renormalization group.
The dashed and solid curves indicate results for the pure
and dilute cubic models, respectively. The upper and
lower branches of the solid curve give the critical and tri-
critical values of the exponents.

P >0, which are triply unstable. The thermal ex-
ponents are shown as solid curves in Figs. 4(a) and
4(b) and labeled singly (1) and triply (3) unstable,
respectively. (For the dilute cubic model no critical
fixed poxnt is found when n <0.8, as in the previous
calculation® for the dilute Potts model, and when
1.5<n <1.9. However, in these regimes dilution is
unnecessary. For example, when the fixed points at
either side of the latter interval are approached, the
Boltzmann factors approach the pure fixed-point
values. Fixed points in the gap can be found if neg-
ative fugacities are admitted.) There exist additional
fixed points in the regime P >0. They are, for the
pure cubic model, the Ising I and n-state Potts P,(n)
fixed points and, for the cubic lattice gas, the Ising
I, the critical, tricritical, and discontinuity n-state
Potts P.(n), P,(n), Py(n), and critical-end-point
CEP fixed points. The CEP is doubly unstable, with
the leading exponent equal to the dimensionality.
The location and stability of these fixed points leads
to the phase diagrams of Figs. 2(a) and 1(a).

The results of the RG calculation for the thermal
exponents of the pure and dilute AT model are given
in Figs. 4(a) and 4(b) by the sharply rising solid
curves near n =2. An analysis shows the following.
For the cubic lattice gas the thermal exponent in-
creases as a function of the coupling constant from
yr~0.78 at P/C~=—0.57, through the decoupled
Ising point yr=1 at P/C= —7, to the four-state
Potts point yr=1.5 at P/C =0. We find that the
singly unstable segment of the AT fixed line ter-
minates almost precisely (to within 0.2%) at the
point n =g, /2 at which the lines of critical and tri-
critical Potts fixed points P.(2n) and P,(2n) annihi-
late. Although this is expected, the accuracy ob-

tained by the approximate calculation is gratifying.
For the pure cubic model the RG calculation ap-
proximates rather poorly the singly unstable seg-
ment of the AT fixed line, as shown in Fig. 4(a). It
does produce a change in stability from onefold to
twofold as expected, which it accomplishes by ex-
changing stability with the line of Potts fixed points
P,(2n) at n=2.3. (The changes occur over a range
of n values, in contrast to the calculation for the cu-
bic lattice gas.) However, as discussed in Sec. II and
Appendix A, the limited parameter space does not
allow the correct description of the twofold unstable
segment, which in turn is the reason for the poor ap-
proximation of the singly unstable one. As lines of
fixed points cannot simply end in an analytic calcu-
lation, both AT and P,(2n) continue on for all n.
The former is located in the sector P>0. The
large-n phase diagram that corresponds to this
fixed-point structure would look like the one shown
in Fig. 1(c), but all transitions would be found, in-
correctly, to be continuous, with the single
paramagnetic-to-ferromagnetic transition governed
by the Potts and the bifurcation point governed by
the double unstable “cubic” fixed point. This form
of the phase diagram was found in earlier calcula-
tions.>* Thus the fact that the parameter space is
insufficient to permit first-order transitions has the
result that the P.(n) and AT fixed points play the
role of the discontinuity and critical-end-point ones,
P,(2n) and CEP; these govern the cubic transition
and bifurcation point in the lattice-gas calculation
which implies the phase diagram of Fig. 1(c).

We return to the discussion of the dilute cubic
model in the regime n ~2. The fixed line of the AT
lattice gas is expected to extend beyond the four-
state Potts pomt in a segment that is doubly un-
stable, with y7 in the interval 5 <yr < 96 . Figure
4(b) shows the result of the RG calculation; the seg-
ment is obtained well, though with less precision
than the singly unstable one. In the approximate
treatment, the fixed points swing to values of n
larger than 2, i.e., to about n =2.3, and the change
in stability occurs at n ~2.23 above the tip at an ex-
ponent value yr~1.72, which is close to 176 Along
the AT fixed line there is one operator that is always
marginal, while the other exponents are related to
the thermal exponent by Eq. (3.4), with y,=yr.
Figure 6 exhibits both the numerical and the exact
results, which are shown as solid and dashed curves,
respectively. For yrg—z-, i.e., along the singly un-
stable segment, it is found that the cubic anisotropy
exponent is zero to a very good approximation. The
dilution exponent is irrelevant and poorly follows
the exact value proportional to y; with a slope of 4.
At the multicritical point M} _,, where yrzé, the
two next-to-leading exponents are found to exchange
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FIG. 6. Next-to-leading exponents along the extended
AT fixed lines vs the leading exponent yr. The dashed
lines show the theoretical predictions for the marginal ex-
ponent y=0, and the exponents y; given by Eq. (3.4) with
M=y

roles rather than to cross (not unhke a level split-
ting). Along the segment %< yr < the next-to-
leading exponent y,, now relevant, follows the exact
value of Eq. (3.4) quite accurately. At M _3, where
yT=-;—, a similar phenomenon occurs, in that the
third and fourth largest exponents seem to exchange
roles. Finally, for the AT lattice gas tricritical
behavior is found in the sector P <0, but in contrast
to the AT critical behavior it is universal and
governed by the four-state Potts fixed point. When
one ignores the inaccuracies of the numerical results,
specifically the deviation from n =2 of the doubly
unstable segment of the AT fixed line, then the
fixed-point structure found for n =2 leads to the
phase diagram shown in Fig. 2(b). The intersection
with the zero-fugacity plane yields the phase dia-
gram of Fig. 1(b) for the pure AT model.

Now compare Figs. 4(a) and 4(b) with Fig. 3. One
observes that the parameter space of the pure cubic
model supports only the fixed points O.(n), P.(2n),
and part of the AT fixed line, while the parameter
space of the cubic lattice gas supports, in addition,
the fixed points P,(2n), A(n), and the full AT fixed
line proper as well as the doubly unstable segment.

We turn to a discussion of various discrepancies
between the results in Figs. 4(b) and 3, the latter of
which are exact except for 4 (n) and B(n). In this
context we will also comment on the identification
of the critical transition with the O(n) universality
class. We note the following.

(1) The fact that, in our calculation, the AT fixed
line and the line of isotropic fixed point O.(n) do
not meet at yr=0 for n—27 is easily understood.
We know that the fixed points Og(n) are excluded
from the parameter space of our calculation. The
fixed points Og(n) exist only in a rotationally invari-
ant subspace. However, by its very construction,

our Hamiltonian space is not rotationally invariant
but treats a discrete set of axes specially. An ap-
proximate calculation which includes both O.(n)
and O,(n) is not difficult to envision. Its distin-
guishing feature is that it would describe an O(n)
model in which the discrete perturbations could be
turned on continuously in the form of symmetry-
breaking fields, as for example in the calculation by
José et al.’!

(2) There are numerous arguments that support
identifying the single paramagnetic-to-ferromagnetic
phase transition of the cubic model with the univer-
sality class of the O(n) model. For the O(n) model
in two dimensions cubic anisotropy is marginal,
when n=2,%! and irrelevant when n <2.>> The
equivalence of the transitions has been shown expli-
citly for special isotropic and cubic models.>*3’ For
n < 1.6, the results for the thermal exponent by our
numerical calculation are consistent with the exact
values, though the agreement within 6% is far less
impressive than in the case of the Potts exponents.
The fact that the AT fixed line meets with the criti-
cal point of the planar model, for which y;=0,*
was anticipated by Pfeuty and Toulouse® and has
been derived recently through RG methods.?®%

(3) The AT fixed line and the line of 2n-state
Potts fixed points have the 2n-state Potts fixed point
in common. The comparison between Figs. 3 and
(4b) shows that this feature is very well described by
the cubic-lattice-gas calculation. For the pure cubic
model the RG approach does not produce this
feature nearly as well, as seen from Fig. 4(a). By in-
troducing dilution, one not only brings into the pic-
ture the doubly unstable segment of the AT fixed
line, but also one achieves a convenient description
of the disordered phase of the Potts model’? (see
also Appendix A). This makes it possible to
describe within the approximate RG calculation also
the first-order transition of the Potts model that
takes place between disordered and ordered phases.

(4) Now compare Figs. 4(b) and 3 in the vicinity
of thI% next multicritical point Mj_j;, at which
yr=-. The dashed lines shown in Fig. 3 are miss-
ing in Fig. 4(b), and the results that are obtained are
less accurate than those near the multicritical point
M; _,=P(4), at which yT=%. One may conclude
that enlarging the parameter space from the pure to
the dilute n-component cubic model (1.6) has pushed
the difficulties to the next level. In order to achieve
more precision near the point Mj _; of the hierarchy
of multicritical points, one must further enlarge the
parameter space of the calculation, so as to bring
into it the triply unstable segment of the AT fixed
line as well as the line of fixed points B(n). It is
shown in Appendix A that this can be achieved in
principle by introducing two lattice-gas variables:
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The first dilutes the Potts spins a; and then, at sites
occupied by Potts spins, the second dilutes the Ising
spins o;. This generalization incorporates into the
calculation the equivalent of the Gaussian operator
cos(8wh), which is responsible for the termination of
the triply unstable segment of the AT fixed line.
Owing to the large number of coupling and varia-
tional parameters in such a calculation (76 and 9,
respectively) the search for fixed points is involved
and has not been executed successfully.

Now we consider results for the n-component cu-
bic lattice gas when n >2. Figure 4(b) shows that
no onefold unstable critical fixed points exist for
n >2. This implies that the cubic transition is first
order for such n, i.e., in two dimensions n,=2.
There exist twofold and threefold unstable fixed
points out to n =~2.3, but we believe that their devia-
tion from n =2 is an artifact of the calculation and
that the face-cubic model does not exhibit any con-
tinuous transitions for n >2. The fact that in our
picture all fixed points annihilate in pairs at the AT
fixed line necessitates a sharp division between con-
tinuous behavior for n <2 and first-order behavior
for n >2. This leads to the phase diagram of Fig.
2(c). For n > 2, the whole cubic transition surface is
first order, governed by P;(2n), and only features on
the sheets of n-state Potts and Ising transitions de-
pend on the values of n and dilution. When
n—q. =4 (in our approximation g, ~4.08), then the
critical and tricritical fixed points on the Potts sheet
also annihilate, so that for n >g, the whole Potts
sheet is governed by the first-order discontinuity
fixed point Py(n).

Lastly, we comment on the nature of the transi-
tion between the partly and the fully ordered phases.
The RG treatment presented here is biased in that it
cannot yield a first-order transition between these
two phases. A calculation permitting first-order
transitions on both the n-state Potts and Ising sheets
could employ the double dilution procedure men-
tioned earlier, in which the partially ordered phases
can be characterized*® by the spin state 0=0. For
details see the last three paragraphs of Appendix A.
Then, for n > 2, the bifurcation of the cubic transi-
tion into n-state Potts and Ising transitions could
have the character of an n-state Potts critical end
point, or a triple point, or remain an Ising critical
end point. The present calculation cannot rule out
the first two possibilities.

D. Cubic model atd >2

With the aid of the knowledge obtained above and
a few additional exact results it is not difficult to
discern several features of the evolution of the face-
cubic model with dimensionality. First, one knows’

from expansions in d=4—e that the single
paramagnetic-to-ferromagnetic transition is
governed by the isotropic fixed point for n <n.(d)
and is first order for n >n.(d). For d >4, n.=4.
Thus such transitions can be continuous when
n <n.(d). However, the behavior of this transition
at P =0, which is that of the 2n-state Potts model, is
also known®*3*% and is continuous only for
n <q.(d)/2 and first order for n >gq.(d)/2. For
d>4, g.(d)=2.*" It follows, therefore, that for
values of n in the interval n.(d)>n >q.(d)/2 the
paramagnetic-to-ferromagnetic transition can either
be critical, tricritical, or first order depending on the
value of the coupling constant P/C.° The fixed
point that governs the tricritical behavior is referred
to as the cubic fixed point in the literature’ and
denoted Cy(n), i.e., face-cubic, in the following dis-
cussion.

The comparison of the properties of the n-
component cubic model for different values of di-
mension suggests that the AT fixed line evolves con-
tinuously into the line of doubly unstable cubic fixed
points Cf(n), when dimensionality is increased from
2. The graphs for the thermal exponents reflect this
evolution. In Fig. 3 the thermal exponent along the
AT fixed line is given by the vertical double line at
n =2. In an analogous figure for higher dimensions,
the graph of the thermal exponent along Cg(n)
would appear tilted, i.e., yr decreasing as a function
of n. We have tested this relation between the line
of fixed points Cs(n) at d >2 and the AT fixed line
at d =2 by performing a variational RG calculation
for the pure cubic model cmj)loying a lattice with
five nearest neighbors, N =2%=5, i.e,, an effective
dimensionality d ~2.32. The results are shown in
Fig. 7. Comparison with Fig. 4(a) reveals the evolu-
tion with dimensionality. Cubic anisotropy is mar-
ginal in d =2 and relevant in d > 2; therefore, the
singly unstable segment of the AT fixed line evolves
into a doubly unstable segment of the line of fixed
points Cg(n). The largest changes take place near
two dimensions, which is consistent with the results
that g.(d)/2 decreases®®**% and n.(d) increases®*
most rapidly for d >2. In particular, n, chan§es
from 2 in d =2 to approximately 3 in d =2.32,”%
with y7~0.4,*? and g, changes from 2 in d =2 to
approximately 2.8 in d =2.32.3¢ The latter result is
exhibited in Fig. 7 by the tip of the dotted curve.
This indicates the range of n over which in d =2.32
the line of twofold unstable cubic fixed points
should exist. It would be interesting to perform an
analogous calculation for the cubic lattice gas in
d =2.32 dimensions, which would involve 39 cou-
pling and 4 variational parameters. See Appendix B
for details.

For d > 2, how do the lines of isotropic and Potts
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FIG. 7. Thermal exponent yr vs n for the n-component
cubic model in d=2.32 dimensions from the variational
renormalization-group  calculation. Numbers in
parentheses give the degrees of instability. The singly and
doubly unstable portions of the solid curve for small n
denote the exponent yr along the lines of isotropic n-
vector O.(n) and cubic Cg(n) fixed points, respectively,
while the dashed curve denotes the exponent yr along the
line of Potts transitions P.(2n). The analogous results for
the same model in d=2 dimensions are shown in Fig.
4(a). To indicate further the effect of the change in
dimensionality, the results are complemented by data for
the thermal critical and tricritical Potts exponents of Ref.
36 (dotted lines).

fixed points, O.(n) and P,,(2n), connect with the
line Cs(n)? The fixed points O.(n) and Cy(n) are
known to cross for some critical value n.(d), and at
that point the respective thermal exponents as func-
tions of n are tangential.>** This feature is reminis-
cent of the behavior in two dimensions where y7 ap-
proaches zero like y7 o (2—n)!/2.35 Where and how
the lines of cubic and Potts fixed points interconnect
is not known; however, it is unlikely to occur pre-
cisely at g.(d)/2.

The above picture has the following implication
for the phase diagram of the cubic model in three
dimensions, for which® n.(3)=~3.4 and*®
q.(3)/2=1.1. For values of n such that
q.(3)/2 <n <n,(3) the nature of the paramagnetic-
to-ferromagnetic transition depends on the value of
the coupling constant P/C.° Specifically, the
three-dimensional Heisenberg model with face-cubic
anisotropy and the three-dimensional AT model are

expected to exhibit single transitions that are con-
tinuous for sufficiently large and negative P and
first order otherwise. For the case n =3 this con-
clusion is in agreement with mean-field theory* in
which the tricritical point occurs at P=—C/2. For
the AT model, the conclusion agrees with mean-
field theory as well as with the results of series
analysis and Monte Carlo studies.*

IV. SUMMARY

We have investigated the family of phase transi-
tions exhibited by the n-component cubic model in
two dimensions. Several of our viewpoints differ
from those of previous studies. The principle results
are as follows.

(1) The investigation employs the vacancy tech-
nique. This allows one to describe within standard
approximate RG calculations the continuous and
first-order transitions of the cubic model and the
fixed-line behavior of the AT model. We expect
that the method will be useful for other investiga-
tions, such as clock models.

(2) The numerical RG results are interpreted with
the aid of several exact results, some of which are
new. In particular, the lattice-gas version of the AT
model has been mapped onto the body-centered
solid-on-solid model, and RG arguments have been
used to generalize work by Kadanoff and Brown?®
and by Knops® relating the AT and Gaussian
models. This mapping together with the numerical
results of the variational RG shows that the AT line
continues beyond the four-state Potts point as a dou-
bly unstable line of nonuniversal bicritical points.

(3) The combination of our numerical and exact
results suggests a unified picture of the phase transi-
tion occurring in generalized cubic models, one in
which the extended AT fixed line plays a central
role. In particular, at the special points on the AT
fixed line where its stability changes and two opera-
tors are marginal, one of these operators is associat-
ed with the creation of a fixed-point pair as n de-
creases from 2. Of the pair that emerges as the AT
line changes from (k —1)- to k-fold unstable, each
fixed point is k-fold unstable. The critical and low-
temperature fixed points of the isotropic n-vector
model constitute the k =1 pair, the 2n-state Potts
critical and tricritical fixed points constitute the
k =2 pair, and new multicritical points constitute
the k =3 pair.

(4) The successive calculations on the pure cubic
and on the more general cubic lattice gas illustrate
the general principle that the Hamiltonian space of
an approximate RG calculation must be sufficiently
large to permit description of the phenomena of in-
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terest. The subspace of the pure cubic model is ade-
quate for description of the transitions of the model
for small n (n <1.6), but it is inadequate to describe
the changes in the cubic and Potts transition with
increasing n. The enlarged subspace of the cubic
lattice gas is adequate to describe these phenomena
but inadequate to provide a definitive description of,
for example, the bifurcation point when n >2. A
larger subspace containing two dilution fields is
needed to describe this, but it would surely fail in
the description of other features and so on.

(5) The work has application to experimental sys-
tems. For example, it predicts that the face-cubic
Heisenberg model (n =3) exhibits a first-order tran-
sition. Coupled with symmetry argument,'' this
predicts that the orientational ordering of N, on
graphite to a 2 X 1 herringbone array will be first or-
der, a prediction in agreement with the results of a
recent Monte Carlo study.*’

(6) The phase diagrams of the pure cubic model
and the dilute lattice gas have been obtained and are
summarized in the Introduction.

(7) With regard to dimensionality dependence, it
appears that all properties such as g.(d), n.(d), etc.,
evolve continuously with dimension. This observa-
tion coupled with our results for two dimensions
permits us to draw conclusions about the cubic
model in other dimensions, in particular the three-
dimensional AT and Heisenberg models. These con-
clusions are in agreement with results of other calcu-
lations.
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APPENDIX A: THE DILUTE
ASHKIN-TELLER MODEL
AND THE GAUSSIAN FIXED LINE

A relation between the AT critical behavior and
the Gaussian model has been known for some
time.2*? In this Appendix we review this connec-
tion? and generalize it to the dilute AT model. Our
purpose is limited to understanding the effects of di-
lution. For more extensive information on the rela-
tion between the pure AT model and the Gaussian
model we refer to the literature.?®

In this Appendix we will use repeatedly the
Kramers-Wannier duality transformation*®4’ for Is-
ing variables, which can be written as

W, =W, +W_, W_=W,-W_ . (Al

Here W, and W_ are the Boltzmann weights in
the original model for pairs _of like and unlike
nearest-neighbor spins, while W+ and W_ are the
weights for the dual lattice. These Boltzmann
weights may depend on other variables. Note also
that if the original spins do not interact
(W, =W_) then the dual variables are forced to be
equal (W_=0).
The pure AT Hamiltonian is

_B%“ 2 [C(aa a a a
(i,j)

—1)+P(§,, a D] .

(A2)

Both variables ¢ and o assume two values, which
will be denoted as + 1 and —1. The dual transfor-
mation is applied to the o variables. The resulting
model has two sublattices, the original lattice L with
variables a; and the dual lattice D with variables G ;.
It is convenient to define this dual model by means
of the Boltzmann weights for the elementary pla-
quettes consisting of two a and two & variables.
Four representative configurations are shown in Fig.
8(a). Their Boltzmann weights, in terms of the
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FIG. 8. (a) Basic configurations of a dual version of
the pure Ashkin-Teller model and (b) additional configu-
rations for the Ashkin-Teller lattice gas. The top rows
give the values of the spin variables a and & on plaquettes
of original and dual lattice sites (top to bottom and left to
right, respectively). The bottom row shows, for configu-
rations with nonzero Boltzmann weights, the correspond-
ing sets of column heights 4 in the equivalent body-
centered solid-on-solid model.
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weights of the original model, are
(@1,02,03,04)
=(Wnu+W;, Wy —W,,2W,_,,0) . (A3)

All other configurations can be constructed by flip-
ping simultaneously both a spins, or both & spins, or
all four spins. This model is now mapped onto a
body-centered solid-on-solid (SOS) model*® by iden-
tifying

a;=sin(wh;) , (A4)
EJ =C0$(ﬂ'hj ) .

The variables & assume integer values on the sublat-
tice D and half-integer values on L such that each
nearest-neighbor pair of h differs by -;- In Fig. 8(a)
the values of k are given for the configurations of a
and & with nonzero Boltzmann weights. Apart
from an overall additive constant the values h are
uniquely determined by & and a.

The discrete SOS model can be regarded as a
continuous-variable model with strong fields that
force the variables to assume their original discrete
values. When these fields are irrelevant in the RG
sense the model renormalizes to a Gaussian model.*!
When w,=w;, the AT model is critical; the most
relevant operator is

F2=COS[2ﬂ'(h1+h2)] ’ (AS)

where the h; and h, occupy neighboring sites of L
and D. Away from criticality there is also the
operator conjugate to @w; — 3,

Fy=cos[3mh;+hy+h3+hy)] , (A6)

where h,, ..., h4 occupy the corners of an elemen-
tary plaquette, as shown in Fig. 8(a). In the continu-
um, or Gaussian, limit the relevant behavior of F,
and F), is given by

F, <cos(2mh), F,«<cos(4mh) . (A7)

The exponents of these operators can be calculated
in this limit and expressed in terms of the renormal-
ized temperature of the Gaussian model Tg5,%*%

y|=2~—T(;, y2=2——4TG . (A8)

It follows that y, g% in the regime in which F, is
irrelevant. A consequence of this, for the phase dia-
gram of the AT model, is the existence of a line of
critical points, governed by the Gaussian model,
along which the critical exponents vary continuous-
3 . ..
ly. As the thermal exponent y, reaches 5 this criti-
cal line terminates since the presence of the now
relevant operator F, prevents further RG flows to-
ward the Gaussian line. From other work one

knows that the critical line bifurcates into two Ising
lines at this point.?

The above analysis indicates the features that are
necessary for an approximate RG calculation to
yield a qualitatively correct phase diagram for the
AT model. Critical exponents that vary continuous-
ly are described by a line of fixed points. However,
in an analytic RG transformation such a line cannot
terminate. Therefore, a qualitatively correct picture
can emerge only if the space of RG Hamiltonians is
chosen large enough that it includes the continua-
tion of the fixed line beyond the point at which it
stops attracting flows from the AT model proper.
In effect, this means that the Hamiltonian must in-
clude a free parameter with which one can change
the coefficient of the operator F, independently of
those of additional relevant operators. We proceed
by showing that dilution is such a parameter.

The Hamiltonian of the dilute AT model is

—Bx= 3 4K +C(8ai,,,j8,,i,,,j—l)
(i,j)

+P(8gq—1]-AZ L. (A9

Each site carries three variables: ¢;=0,1, q;=*1,
and o0;==1. Only when ;=1 do the g; and o; in-
teract with their neighbors. Again a dual transfor-
mation is applied to o. In addition to the
Boltzmann weight of the pure AT model, i.e., W,,,
W,,, and W,_,, there are now weights W,y and Wy,
for states involving one or two vacant sites, which
are denoted by the suffix 0. Likewise, in the dual
model additional plaquette configurations appear,
which are shown in Fig. 8(b). Only two of these
have nonzero weight:

605=2W10, CO7=2W00 . (AIO)

Now we identify

t;a;=sin(wh;), G;=cos(7h;) . (A11)

Note that the variable & now assumes integer values
on D and both integer and half-integer values on L,
so that nearest-neighbor pairs of 4 either are equal
or differ by % The Hamiltonian is extended by two

new operators,
Fi=1-2t, =cos(2wh,)
F3=(1-2¢t;)(1-2t,)
=cos[2m(h,+h3)],

(A12)

where h; and h, are nearest neighbors on L.
Roughly, the operators F| and F are conjugate to A
and K, respectively, as seen from Eq. (A9). There-
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fore, by adjusting A and X it is possible to make the
coefficients of both cos(2mh) and cos(4h) vanish.
That is the initial condition for flows toward the
segment (3)f the Gaussian line where F, is relevant
and y, > 5. Accordingly, an approximate RG in the
space of dilute AT models will exhibit a fixed line
with a singly and a doubly unstable segment. The
point at which the two segments meet governs the
termination of the fixed-line behavior in the space of
the pure AT model. The doubly unstable segment
attracts no flow from the pure subspace. Its pres-
ence in the space of Hamiltonians, however, is
necessary to describe accurately in an approximate
RG calculation the termination of the singly un-
stable segment.

As one follows the Gaussian line in the direction
of increasing y;, more and more operators become
relevant.?*? The doubly unstable segment is ter-
minated by the operator F; becoming relevant,

4
4#2@]
j=1

4
F3=7 3 cos |2

i=1

=—t1—t3+4t1t3 ’ (A13)

with hy, ..., hs on one elementary plaquette. The
exponent of Fj is
Y3 =2_9TG , (A14)

which becomes positive for y; > 176 The parameters
C, P, K, and A in the Hamiltonian equation (A9) are
sufficient to specify the temperature T and the
coefficients of F;, F,, and F; independently. There-
fore, the space of dilute AT models contains also a
triply unstable critical line with continuously vary-
ing exponents.

For completeness, we briefly discuss a further
generalization. As explained above, dilution is in-
troduced in order to invite the doubly unstable seg-
ment of the AT fixed line into the parameter space,
thus allowing a correct and accurate description of
the termination of the singly unstable segment.
Another reason is that dilution makes possible the
description of first-order transitions between ordered
and disordered phases as discussed in Sec. IL!=*3%
In a real space RG a first-order fixed point occurs at
zero temperature. A disordered phase, however, is
difficult to realize at T=0. Dilution allows an alter-
native description of the disordered phase, as an

TABLE 1. Configurations of cubic spins. Spins are represented by a number, which labels
the axis, and a sign, which symbolizes the direction along the axis. A small O signifies a va-
cancy. The first group of 21 configurations of four spins shows all classes for the dilute cubic
model in d=2 dimensions. The first 11 of those are the configurations without vacancies.
The second group gives the 18 classes of configurations of five spins without vacancies for the
cubic model in d=2.32 dimensions, i.e., N =5=2% For the corresponding dilute model the
second group should be combined with the first group with an extra 0 added.

d=2 d=2.32

1 +1 +1 +1 +1 +1 +1 +1 +1 +1
2 +1 +1 +1 -1 +1 +1 +1 +1 —1
3 +1 +1 +1 +2 +1 +1 +1 +1 +2
4 +1 +1 -1 -1 +1 +1 +1 —1 -1
5 +1 +1 +2 +2 +1 +1 +1 +2 +2
6 +1 +1 -1 +2 +1 +1 +1 -1 +2
7 +1 +1 +2 -2 +1 +1 +1 +2 -2
8 +1 +1 +2 +3 +1 +1 +1 +2 +3
9 +1 —1 +2 -2 +1 +1 -1 -1 +2
10 +1 —1 +2 +3 +1 +1 +2 +2 -2
11 +1 +2 +3 +4 +1 +1 +2 +2 +3
12 +1 +1 +1 0 +1 +1 -1 +2 -2
13 +1 +1 —1 0 +1 +1 —1 +2 +3
14 +1 +1 +2 0 +1 +1 +2 -2 +3
15 +1 —1 +2 0 +1 +1 +2 +3 + 4
16 +1 +2 +3 0 +1 —1 +2 -2 +3
17 +1 +1 0 0 +1 —1 +2 +3 +4
18 +1 -1 0 0 +1 +2 +3 +4 +35
19 +1 +2 0 0

20 +1 0 0 0

21 0 0 0 0
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empty phase, which has the same symmetry, but 9 (10) un u2) 13)
poses no difficulties at T=0. + + © ® ®

In the cubic and AT models there are three + + 4 + ¢ + ¢ + ¢ +
phases—ordered,  disordered, and  partially ® © ® ® e
ordered—and correspondingly three phase transi- FIG. 9. Configuration of a dual version of the doubly
tions. In the dilute models the vacancy is used to dilute Ashkin-Teller lattice gas. The symbols ® and ©
describe the disordered phase, while the cubic spin denote | o | =0 with a= + 1 and — 1, respectively.

states describe the 2n equivalent ordered phases, but
there is no single state that describes the partially or-
dered phase. As a consequence, an RG treatment of
these models will always yield a second-order transi-
tion from the partially to the fully ordered phase.
To examine whether this is correct one should intro-
duce a state that allows one to describe the partially
ordered phases. Since in this phase a is ordered, in
any of its n states, and o is disordered, the natural w9g=2W,|, w=2W,_, a)”=2W|0 ,
choice is 0=0. The number of sites with 0=0 can
be controlled by a new chemical potential in addi-
tion to A. Therefore, in this generalization lattice
sites are either completely vacant, occupied by a and
o (a,c==1) or by a alone (@==*1, 0=0). The
latter states will be indicated symbolically by a short
vertical or horizontal line, | or —. The Boltzmann

Applying a dual transformation to the sign of o
yields the configurations of Fig. 8, with weights as
in (A3) and (A10), and in addition the configura-
tions shown in Fig. 9, with the weights

(A15)
(L)12=2W“, (1)13=2W|_ .

The new states with =0 can be accommodated by
introducing additional values of A,

weights for nearest-neighbor pairs are W,;, W, ti+ o 172
W?—" W”, WT—’ WTO’ W”, Wl_, Wl(), and WOO t;a; T =Sin(77'hi), 5"]=cos(7rh]) .
Since the Hamiltonian is rather unwieldy, we use (A16)

these weights to define the parameter space.

TABLE II. Fixed points of the variational renormalization group for the n=1 component
cubic model in d=2 and in d=2.32 dimensions. The values of the logarithms of the variation-
al weights P,, and P,_, and of the Boltzmann weights of the configurations of four (d=2) and
five (d=2.32) cubic spins are given at the fixed points O,(1) and P.(2). The numbering of the
configurations corresponds to that in Table I.

d=2 d=232
O.(1) P.(2) Oo.(1) P.(2)

InP;, —1.5717 —1.5717 —1.2086 —1.2086
InP,_, —0.7712 —1.5717 —0.5827 —1.2086
1 —0.0558 —0.0558 —0.0889 —0.0888
2 —0.8803 —0.8803 —0.6569 —0.6569
3 —0.4680 —0.8803 —0.3432 —0.6569
4 —1.1735 —1.1735 —0.9504 —0.9504
5 —0.6146 —1.1735 —0.4648 —0.9504
6 —1.0368 —1.3274 —0.7942 —1.0014
7 —0.8894 —1.3274 —0.6409 —1.0014
8 —0.7428 —1.3274 —0.5495 —1.0014
9 —1.1530 —1.4725 —0.9484 —1.1064
10 —1.0177 —1.4725 —0.7884 —1.1064
11 —0.8695 —1.4725 —0.6163 —1.1064
12 —0.9527 —1.1600
13 —0.8676 —1.1600
14 —0.7873 —1.1600
15 —0.6986 —1.1600
16 —0.9515 —1.2119
17 —0.8665 —1.2119

18 —0.7795 —1.2119
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TABLE III. Fixed points of the variational renormalization group for the n=1 component
cubic lattice gas in d=2 dimensions. The values of the logarithms of the variational weights
P,,, P,_,, Py, and Py and of the Boltzmann weights of the configurations of four cubic spins
are given at the fixed points O.(1), P.(2), P,(2), and A(1). The numbering of configurations

corresponds to that in Table I.

O.(1) P.(2) P,(2) A(1)

InP,, —2.1897 —2.1897 —5.9658 —1.6893
InP,_, —0.8335 —2.1897 —5.9658 —9.6069
InPy, —0.8272 —1.2602 —1.5145 —1.6893

InPyg —0.6107 —1.4767 —0.1190 —-0.0
1 —0.1596 —0.1596 —0.0642 —0.0615
2 —1.1334 —1.1334 —2.6780 —1.0631
3 —0.5486 —1.1334 —2.6780 —3.4879
4 —1.5538 —1.5538 —3.5805 —1.4306
5 —0.6590 —1.5538 —3.5805 —4.8142
6 —1.3152 —1.8264 —3.8727 —3.6574
7 —1.1284 —1.8264 —3.8727 —4.8225
8 —0.8682 —1.8264 —3.8727 —5.1482
9 —1.5268 —2.1423 —4.2791 —4.8301
10 —1.3089 —2.1423 —4.2791 —35.1599
11 —1.0659 —2.1423 —4.2791 —5.6525
12 —0.6853 —0.6853 —0.8640 —1.0631
13 —1.4688 —1.4688 —2.5473 —1.5436
14 —1.0097 —1.4688 —2.5473 —3.3540
15 —1.4615 —1.8437 —3.0803 —3.3850
16 —1.2115 —1.8437 —3.0803 —4.0583
17 —1.1529 —1.1529 —1.1398 —1.4305
18 —1.6156 —1.6156 —1.9322 —1.5436
19 —1.3586 —1.6156 —1.9322 —2.5074
20 —1.5068 —1.5068 —0.8790 —1.0631
21 —1.6555 —1.6555 —0.1368 —0.0615

Now £ is integer on the sublattice D and integer,
half-integer, and integer divided by 4 on the sublat-
tice L. The large parameter space makes accessible
a host of new fields; in particular, the operator
F4=cos(8mh) that is conjugate to the new chemical
potential which governs the new allowed 4 values.

APPENDIX B: LOWER-BOUND
RENORMALIZATION GROUP
FOR CUBIC MODELS

In this Appendix we present some technical de-
tails on the numerical methods used to study the cu-
bic model. The purpose is to aid the reader who
wishes to conduct an investigation that is similar to
or generalizes the study reported here.

The Kadanoff variational RG (Ref. 30) is
designed such that it yields a lower bound to the free
energy. A few free parameters are utilized to max-
imize this bound. In general the optimization re-
quires the solution of extremely unwieldy equations,
but at a fixed point these simplify dramatically.
Therefore, in most calculations the optimization is

performed only at the fixed point. The critical ex-
ponents follow as usual from the derivative of the
RG transformation. This derivative is evaluated
while keeping the variational parameters constant at
the value that optimizes the fixed-point free energy.
This somewhat inconsistent procedure*® has been
shown to yield extremely accurate critical exponents
for reasons that are not understood. The same
method is followed in this paper. It should be noted
that the results consist solely in critical exponents,
because the evaluation of phase diagrams or thermo-
dynamic functions would require RG flows and
hence optimization away from fixed points. Such
flows, though possible in principle, tend to demand
much computer time. In practice, phase diagrams
are derived qualitatively from the location and rela-
tive stability of the various fixed points and their
evolution with the number of spin components.

The Kadanoff variational RG equations were
developed for spin models on a d-dimensional hy-
percubic lattice. The Hamiltonian is written as a
sum of local Hamiltonians —B% = ¥, Hy,, each in-
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volving the N =29 sites of an elementary hypercube.
The basic RG transformation reads

W'(s1,5%, ...,5§)

N
W(s1,52 ., sy)V [ Visisi ;P)

i=1

2 N
(s} 2 H V(s;,0;P)

o i=l1

(B1)

The W are the Boltzmann weights (BW) as func-
tions of the original spins s; and the W’ are the re-
normalized BW as functions of the new spins s; .
The function V is a two-spin coupling between a
new and an old spin determined by a set of varia-
tional parameters P. For example, for the cubic lat-
tice gas (1.6) in two dimensions one may use

4
2 t;t'[py +8a,.,a'(p2 +p380,,¢r’)]

i=1

V < exp

+ palt;+t')

However, the discussion in this Appendix is more
general. In Eq. (Bl) the sum in the numerator is
over all possible configurations of the N old spins,
while the denominator is summed over the states of
a single spin coupled to N new spins. Not all the
different configurations on the hypercube will have
different energies. Two different configurations
have the same BW if they can be transformed into
one another by a rotation in spin space or by a per-
mutation of the N arguments. Thus BW are associ-
ated with classes of equivalent configurations. For
the pure and dilute cubic models these classes are
each represented by a member configuration in
Table I for N=4 (i.e,, d=2) and 5 (i.e., d =2.32).
The parameter space of the local Hamiltonians Hy,
is parametrized by the BW of these classes. Like-

wise, the coupling between the old and new spins is
parametrized by means of the BW of two spins:
Py, P,_,, Py, and Py, keeping P, =1.
With these definitions (B1) can be written
) Ruv v
W,=3—W,, (B2)
v v

where the indices u and v signify the equivalence
classes of configurations of {s’} and {s}, respective-
ly, and

N
Q.= 3 I1 V(s;,0;P) with {s}Ev, (B3)
o i=1
N
R,,= [ ]2 I1 V(si,si;P) with {s'}ep . (B4)
sl€Evi=1

Thus the fixed-point equation

R,,
B,=3 = BY (BS)

v v

must be solved simultaneously with the optimization
equation

R,,
wi¥m Q"Wﬁ’—a——"=0. (B6)
p T pxp oP Q
",v a v

Here P, stands for the set P,,, P,_,, Py, and Py.
M, is the multiplicity of u or the number of config-
urations in class p. For example, M, for the first
three classes listed in Table I is 2n, 2nN, and
4n(n —1)N, respectively.

In practice, Eqs. (B5) and (B6) are solved by first
choosing a particular value of n for which the sys-
tem reduces to a simple model. This fixed point is
then followed as a function of n by changing n in
small steps and using the previous fixed-point coor-
dinates as a first guess. In Tables II and III we list
the values of W and P at various fixed points for
n=1.
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