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Monte Carlo simulations have been used to study a triangular lattice-gas (Ising) model
with repulsive nearest-neighbor interactions and attractive next-nearest-neighbor coupling.
We find two ordered (V'3 X V/3) phases (one with % of the sites occupied and one with % of

the sites filled). These ordered phases are separated from the disordered state by a phase
boundary which is second order at high temperatures and which has tricritical points and
first-order transitions at low temperatures. The critical and tricritical exponents are con-
sistent with those predicted for the three-state Potts model. At 50% coverage we find a
low-temperature ordered phase which is separated from the disordered state by an XY-like
line of critical points which exist between upper and lower temperatures T, and T, respec-
tively. Along this line between T, and T, we find nonuniversal critical behavior and identi-
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fy topological (vortexlike) excitations.

I. INTRODUCTION

The triangular Ising antiferromagnet, which is
equivalent to a triangular-lattice—gas model by an ex-
act transformation,” has been of considerable in-
terest ever since it was shown that in zero field there
is no transition to an ordered state at any finite tem-
perature. Further studies®* have shown that an or-
dered ferromagnetic, or (\/3X1/§)-lattice-gas,
phase® exists in nonzero magnetic field, or chemical
potential (see Fig. 1). Campbell and Schick® used a
Bethe-Peierls-Weiss approximation to study the
phase transitions which occur when next-nearest-
neighbor attraction was added so as to make the
model appropriate for the dmdption of physical
adsorption of gases on graphite.”® The results of
this calculation showed two ordered phases,
(V3xV3) and (V3 X V3)*, existing in regions clear-
ly separated in chemical-potential temperature space
and undergoing first-order transitions to the disor-
dered state. Alexander,” however, used symmetry
arguments to predict that the phase transition be-
tween the ordered and disordered state should be-
long to the universality class of the three-state Potts
model. The same result was obtained independently
using a group theory analysis.!® Mihura and Lan-
dau'! studied this same model using a Monte Carlo
method and obtained a very different phase diagram
from Campbell and Schick. They found instead [see
Fig. 1(b)] that the two phases coexist over a wide
range of temperature and that each phase is indeed
separated from the disordered state by a line of
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second-order transitions which becomes first order
only at temperatures below a tricritical point. They
did not, however examine the critical behavior in de-
tail. The phase transition behavior is expected to be
particularly interesting in zero field where the
(V3XV73) and (V3XV3)* states become degen-
erate. This “degenerate” state has been predicted'

to be in the universality class of the XY model with

i
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FIG. 1. (a) Ordered (\/EX\/g)-type states for the
triangular-lattice-gas model. Filled circles represent ada-
toms. Nearest-neighbor coupling (J/xn) and next-nearest-
neighbor coupling (Jynn) are shown on the left. (b)
Schematic phase diagram for R =—1, taken from Ref.
11.
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sixth-order anisotropy.!? This latter model is ex-
pected to have interesting behavior with a low-
temperature ordered phase separated from the disor-
dered phase by an intermediate XY-like state. A
low-temperature study of a generalized Villain
model suggests that a low-temperature ordered
phase is separated from the high-temperature disor-
dered state by an intermediate XY-like state. (This
behavior is similar to that obtained from series ex-
pansions for the Z, model.!®) However, a numerical
study!? of the Migdal recursion relations for this
model contradicts this prediction since it shows no
such behavior.

The purpose of this work is to provide a careful
study not only of the location of phase boundaries
and multicritical points but also of critical behavior.
In Sec. II we review relevant theoretical background,
and we present our results in Sec. III. [We shall see
there that indeed the phase diagram shown in Fig.
1(b) misses one crucial feature at H =0.]

II. THEORETICAL BACKGROUND

A. The model

The next-nearest-neighbor (NNN) triangular Ising
model is described by the Hamiltonian

Y=JNNEU|‘0]'+JNNN 2 o0k +H20,' , (D
NN NNN

where 0;,0;,0,=%*1, Jyny and Jynn are NN- and
NNN-coupling constants, respectively, H is a uni-
form magnetic field, and the sums run over the indi-
cated pairs of neighbors on a triangular lattice. We
define the ratio of interactions by R =JnynN/JNN-
This magnetic model can also be related'* to a
lattice-gas model which is appropriate to adatom ad-
sorption on periodic substrates. For the lattice-gas
model we define site-occupation variables ¢; where
¢;=1 if site i is occupied and ¢; =0 if site i is empty.
If binding energy € is gained when an adatom is ad-
sorbed and adatoms interact with site-site coupling
@, the lattice-gas Hamiltonian can be written

H—puN,=—7 Jeic;p(Ti—T;)
i#j

—(€+#)2Ci+H0 ’ (2)

where p is the chemical potential, N, is the total
number of adsorbed atoms, and H, describes other
degrees of freedom. Using the simple transforma-
tion

¢i=(1—0;)/2, (3)

we find that Eq. (2) becomes identical to Eq. (1)
with

INN=0¢nN/4 (4a)
JNNN=ONNN/4 (4b)
H=—(e+p+3dnn+3dNNN) 5 (4c)

where we have set all couplings between sites farther
apart than next nearest neighbors equal to zero and
have explicitly included the fact that there are six
NN sites and six NNN sites for the triangular lat-
tice. The magnetization of the Ising model

= %20,’ (5)

is then simply related to the coverage of the lattice-
gas model

o= —11\7 }l_;c,- )

by
0=(1—-M)/2. (7

The Ising model in zero field has zero magnetization
(because of time-reversal symmetry) and the corre-
sponding lattice-gas model is therefore one with cov-
erage 9=% [see Eq. (7)].

The ordered states shown in Fig. 1 can best be
described by decomposing the original lattice into
three interpenetrating sublattices made up of sites
connected by NNN bonds. (Each sublattice now has
a lattice constant equal to V'3 times that of the orig-
inal lattice) The (V3XV/3) ordered state corre-
sponds to one sublattice filled and the other two
empty. Since all three sublattices are equivalent,
this state is threefold degenerate. In the (V3XV3)*
state one sublattice is empty and the other two
filled; this state is also threefold degenerate. In
terms of the sublattice magnetizations

Ma=%20,-, a=1,2,3 (8)

i€a

we can define three order parameters

My+M
my= |M,— |22 /2, (9a)
2
t

M, +M

my= My~ | == /2, (9b)
M +M

mi= M3— % /2, (9¢)
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with a corresponding root-mean-square order
parameter

m=—‘§—6(m%+m§+m§)l/2. (10)
This definition of order parameters is computation-
ally convenient although there can be only two in-
dependent order parameters. Clearly an equivalent
lattice-gas order parameter can be defined in terms
of sublattice occupancies.

B. Finite-size scaling

We have studied L XL lattices with periodic
boundary conditions applied so as to remove edge
effects. (Although the free-edge condition might be
more appropriate for comparison with experimental
results on physical systems, the use of periodic
boundary conditions yields results which are less af-
fected by finite lattice size.) The behavior of finite
systems near the critical temperature of the corre-
sponding infinite system can be described by finite-
size scaling theory.!>~!® If the infinite system has
the usual power-law singularities, with critical ex-
ponents a,pB,y,v, etc., the behavior of the finite
L XL system is expressed in terms of a scaled tem-
perature x =tL '/ where t= | 1—T/T, |. Thus near
T, for sufficiently large L we can write finite-size
scaling expressions,

m=L"B"X(x)~Btf asL—>w , (11a)
XT=L""Y(x)=Ct™" asL—>w , (11b)
C—Co=L%"Z(x)=~At™® as L , (11c)

where C, is the nondivergent “background” contri-
bution to the specific heat. In addition, the site-site
correlation scales as a function of two variables
x=tL"andy=r/L:

(00;)=r "F(x,y) asr,L—w . (12)

In the case of exponential singularities, such as the
Kosterlitz-Thouless form!° where the correlation
length diverges as

E=Eexplat~17?) (13)

instead of as ¢ ", finite-size scaling can be extended
by using £/L as the scaling variable. This means,
for example, that

m~L—tX[L~'explat='7)] asr,L—o (142)

XTzL‘):’[L"exp(at"l/z)] asr,L— o0 .
(14b)

C. Monte Carlo method

We have used a standard importance sampling
Monte Carlo method which has been described in
detail elsewhere.'®2%2! We studied L XL lattices
with periodic boundary conditions for 12 <L <90.
Between 100 MCS/s (Monte Carlo steps/site) and
500 MCS/s were first discarded and then
1000—5000 MCS/s were retained for computing
averages. Each data point was repeated at least once
using a different starting configuration. Lattice
configurations were also printed out so that we
could look for domains and other topological con-
figurations. Because the order parameter as we de-
fine it is positive for all possible states, we define the
ordering susceptibility as

x+=—’;—<m2>, (15)
where m is the order parameter defined by Eq. (10)
and N =L? is the total number of sites.

III. RESULTS AND DISCUSSIONS
A. The degenerate state

1. Bulk properties for R =—1

As mentioned earlier for 0=%, i.e., H =0, all six
ground states are degenerate. The zero-field
specific-heat data for the case where the repulsive
NN coupling and attractive NNN interactions are
the same in magnitude, i.e., R =Jynn/Inn=—1,
are shown in Fig. 2. Two clearly separated, rounded
peaks are observed; the magnitudes of the maxima
very quickly become size independent. In Fig. 3 we
show the variation of the order parameter with tem-

1.0
€ osl
R
020 ! 4l0 ! GIO : BIO
kT '
Jnn
FIG. 2. Specific heat vs temperature in zero field for
R=—1. The solid curve shows the estimated infinite-

lattice behavior.
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FIG. 3. Temperature dependence of the order parame-
ter in zero field for R=—1. The solid curve shows the
extrapolated infinite-lattice behavior.

perature. In qualitative terms we see three regions
with  different finite-size behavior.  Below
kT /Jnn ~4 the effects of finite size are quite small,
and above kT/Jyn~35 the order parameter de-
creases rapidly with increasing lattice size. In the
intermediate region the order parameter falls off
rather slowly with increasing L. Since the magneti-
zation will average out to zero if all states are sam-
pled, it was not possible to determine the tempera-
ture dependence from long runs at H =0. Instead,
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FIG. 4. Field dependence of the coverage (magnetiza-
tion) along isotherms for R = —1.
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FIG. 5. High-temperature ordering susceptibility in
zero field for R = — 1. The solid curve shows the extrapo-
lated infinite-lattice behavior.

the behavior of the magnetization in the degenerate
state [or coverage 6=(1—M)/2] was determined
through isothermal field sweeps. The results, shown
in Fig. 4, showed clear evidence of metastability at
low temperature; pronounced hysteresis was ob-
served. (These results are symmetric about H =0
and we only show data for the field being swept in
one direction so as not to confuse the figure.) As
the temperature increases, the discontinuity at H =0
decreases and disappears at kT /Jyny=4.26. For
higher temperatures the slope at H =0 (dM /dH is
the ordinary susceptibility) continuously decreases.
The high-temperature ordering susceptibility data
are shown in Fig. 5. The ordering susceptibility
diverges rapidly and shows pronounced finite-size
rounding as the temperature is decreased.

2. Critical behavior for R = —1

We have relied heavily on finite-size scaling anal-
yses to extract critical behavior from our data. In
Fig. 6 we plot the maximum value of the specific
heat versus lattice size. For comparison we also
show the size variation of the specific-heat peak for
the triangular Ising ferromagnet which has a loga-
rithmic (a@=0) divergence. The peak value for our
model is clearly nondivergent; it does not increase
for L > 30 and the specific-heat exponent a < 0.

The finite-size behavior of the order parameter
and ordering susceptibility could not be fitted to the
usual scaling forms, e.g., Eq. (11). The reason for
this became clear when we examined the critical
behavior of the inverse correlation length. The
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FIG. 6. Size dependence of the specific-heat maximum
for R=—1 along different paths. The dashed curve
shows the results for the NN-triangular ferromagnet.

correlation functions in the NNN direction (i.e.,
sites on the same sublattice) were averaged over the
three equivalent directions and then analyzed assum-
ing an Ornstein-Zernike form:

—Kr
r

where k is the inverse correlation length and the
averages { ) are over sites in a single sublattice. For
T>T,, {o;)=0. (The sign of the NN correlation is

- M
1.0 \ \
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[K(T=Te)/dpn T2

FIG. 7. Temperature dependence of the inverse corre-
lation length in zero field for R=—1. Circles are data
for T>T.=T, and triangles are for T <T.=T,. k is in

units of the inverse NNN distance 7.
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FIG. 8. Finite-size scaling plots in zero field for
R=—1: (a) order parameter with =0.095; (b) high-
temperature ordering susceptibility with c =1.72.

sublattice dependent whereas the NNN correlation is
independent of the sublattice.) We found that the
inverse correlation length goes to zero exponentially
fast (see Fig. 7) from above and below but that there
are two critical temperatures, i.e., kK goes to zero at
different temperatures when “T,” is approached
from above and below. Since this behavior means
that the correlation length diverges exponentially
fast, we used the modified finite-size scaling form
described by Eq. (14) to analyze the order parameter
and ordering susceptibility. As shown in Fig. 8,
both quantities scale extremely well with
T.=T,=4.89Jyn/k for the high-temperature or-
dering susceptibility and T,=T,=4.26Jyn/k for
the order parameter. From Eq. (12) we see that the
site-site correlations should scale as a function of
two variables. If we are at T,, however, one scaling
variable (x=tL!/*) becomes zero and the scaling
function depends only upon the other variable
y=r/L.

We have analyzed the finite-size behavior of the
site-site correlation function in Fig. 9. The errors in
the correlations are less than the size of the data
points. Of course, due to the periodic boundary con-
ditions it is not possible to obtain values for the
correlations at distances » >L /2. We find that for
all temperatures between T, and T, the data scale as
a function of a single variable but using a value of 7
which depends continuously upon temperature (see
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FIG. 9. Finite-size scaling plots for the site-site corre-
lations for R = —1. Data are in units of ryyy (NNN dis-
tance).
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FIG. 10. (a) Vector notation for the six different
“ground-state” NN triangles. The “defect” triangles can-
not exist in the ground state. (b) “Vortex” configuration
with dashed lines separating domains of different ground
states. Sites are labeled by sublattice (i.e., 1, 2, or 3).
Each domain is labeled by a number which denotes the
“minority” sublattice and a + or — superscript which
indicates that the “minority” sublattice is full or empty,
respectively.

Fig. 9) and is thus nonuniversal. This means that
every temperature between T, and T, is a critical
point. Our estimates are 7=0.27+0.02 at T and
7=0.15+0.02 at T,. These values are close to the
theoretical predictions'? of 17=;';— at Ty to 17=-:,- at
T,. (We do not know if the small discrepancy at T,
is due to incorrect location of T, and/or statistical
error, or if it is real and due to an inadequacy of the
theory.)

Since the bulk properties are consistent with XY-
like behavior, it would be desirable to complete the
picture with a description of topological excitations
which play a role equivalent to vortices in the
Kosterlitz-Thouless picture of the XY model.'” Ex-
citations from the ground state are easy to produce.
For example, the removal of one adatom or the fil-
ling of an empty site (i.e., single spin flips in mag-
netic language) are simple elementary excitations.
Such excitations only affect the lattice locally; far
from the excitation the lattice is still in the ground
state. We will attempt to describe “vortexlike” exci-
tations with the aid of Fig. 10. In Fig. 10(a) we
show six NN triangles each of which is in one of the
six degenerate ground states. We develop a simple
schematic representation in which an arrow in the
center of each triangle points towards the occupied
site; in the case of two occupied sites the arrow
points halfway between the two occupied sites. Note
that if we integrate the phase angle between arrows
about the hexagonal path through the arrows, we
obtain a circulation ¢=27. These “vortices” are
“stiff” in that the arrows cannot rotate freely to pro-
duce minor changes in vortex shape and core energy.
Note that the only possible NN triangle states not
included are the “defect states” in which all sites are
either occupied or filled. In Fig. 10(b) we show the
lattice when sites not shown in Fig. 10(a) are con-
sidered; the three sublattices are numbered in the
central part of the lattice. Note that the lattice has
now been broken up into six domains each of which
is in one of the six degenerate ground states. For
purposes of further discussion we assume the stabili-
ty of the six independent domains. We expect, how-
ever, that at finite temperatures the picture shown in
Fig. 10(a) will be somewhat distorted due to the
presence of other excitations. Each domain is la-
beled by a number which identifies the minority sub-
lattice and by a + if that minority sublattice is
filled and a — if that sublattice is empty. Note that
this topological configuration cannot repair itself lo-
cally and that an isolated “defect” (in this case all
sites filled) is at the center. This topological excita-
tion corresponds to a vortex in the XY model. If we
create a similar configuration nearby in which the
order of the appearance of domains is reversed as we
move about the center in the clockwise direction, we
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FIG. 11. Representation of the lattice showing only
isolated defect triangles (vortex cores) for R=—1 in zero
field. The lattices shown are 60X 60.

find another defect in the center but one whose ver-
tex points downwards instead of upwards. This cor-
responds to an antivortex. (In a completely ordered
region the vorticity will, of course, be zero. Since
the vortices appear in “neutral” pairs, if we move
around in a large enough path the net vorticity will
also be zero.) There will of course be other “local”
excitations which appear simultaneously so the pic-
ture of the lattice will not always be quite so tidy as
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FIG. 12. Temperature dependence of the vortex-pair
density in zero field for R = —1.

in Fig. 10. In all cases, however, the presence of a
“vortex” is signaled by the appearance of an isolated
defect triangle. In Fig. 11 we show representations
of the lattice at two temperatures showing only iso-
lated defect triangles. At low temperatures relative-
ly few defects (vortices) are present and when they
do occur they are in tightly bound vortex-antivortex
pairs. As the temperature is increased the number
of vortex pairs increases, and at T'; the pairs begin
to unbind. We find that the density of vortex pairs
obeys a simple Arrhenius law

p=poexp(—AE/kT) , (17)

where AE is the thermal activation energy for for-
mation of a vortex pair. From Fig. 12 we see that
Eq. (17) is valid over a wide range of temperature
with AE=(53+5)Jyn. For comparison we note
that the elementary excitation for the (V3XxV3)
ground state is the addition of a single adatom at a
cost in energy of 12 |Jynn |- In contrast the remov-
al of a single adatom requires energy
(12Jnyn+ | 12Jnnn | ). If we insist that the system
remain at 50%, the simplest local excitation is the
movement of an adatom, i.e., removal of an adatom
and the readsorption in another site. Using the
values just mentioned, we find that moving an ada-
tom costs in energy 12Jnn +24 | Jnnn |- (Moving it
to an unoccupied NN site costs only
10/nyn+24|Junn |-)  These excitations are only
slightly less energetic than vortex-pair excitation.
This situation is quite different in the XY model,
where the elementary excitations are spin waves
which actually have zero energy at k=0. For com-
parison we also note that in the square lattice XY
model the vortex-pair creation energy is
AE ~6.4Jyy and in the plane rotator model*>?
AE ~10JyN. We see that the “stiffness” of the
“vortices” in the present model causes a sig-
nificant increase in excitation energy (even allowing
for the difference in coordination numbers).

3. Bulk properties for R+ —1

We have also studied L =30 lattices with R vary-
ing by 2 orders of magnitude. The specific-heat re-
sults for small R are shown in Fig. 13(a). As R—0,
the low-temperature peak shifts rapidly to lower
temperatures and the upper peak decreases in mag-
nitude and approaches the rounded maximum which
occurs when R =0. For large R both peaks shift to
higher temperature and it is more illuminating to
plot the data versus kT /|Jnynn | as shown in Fig.
13(b). The two peaks shift together and begin to ap-
proach the single specific-heat peak which occurs
when R = — o, i.e., JN\n =0, and the system decom-
poses into two noninteracting NNN Ising triangular
ferromagnets. The same qualitative features can be
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FIG. 13. Temperature dependence of the specific heat
for L =30 over a wide range of R: (a) R> —%. The
heavy solid curve is the exact result for R =0. Data are
plotted vs kT /Jyn. (b) R < — % The heavy solid curve
is the result for R=— . Note that the data are plotted
vs kT /J NNN-

seen in the order-parameter results for L =30 shown
in Fig. 14(a). The finite-lattice behavior becomes
particularly interesting for R > — 1, where the inter-
mediate XY-like region apparently gives rise to a
pronounced shoulder in the order parameter. We
cannot determine with confidence what happens to
T, and T, as a function of R without doing a de-
tailed finite-size analysis or vortex-pair unbinding
search. Both types of analyses are too time consum-
ing for all of the ratios of interactions. Since T, and
T, occur on the low-temperature and high-
temperature shoulders of the specific peaks, respec-
tively, for R = —1 we may use Fig. 13 to draw some
tentative conclusions. As R—— o, T and T, ap-
pear to move towards each other, but we cannot tell
if they merge at a finite value of R. For R > —1 it
appears that T and T, first move apart and then
begin to approach each other as both approach
T=0.
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FIG. 14. Temperature dependence of the order param-
eter for L =30: (a) R > —%; b) R < —%. Note that data

in (a) are plotted vs kT /Jyn whereas data in (b) are plot-
ted vs kT /JnNnN-

B. The ordered phase

1. Critical behavior

Since the phase boundaries for R
=Jnnn/Inn=—1 are symmetric about H=0, we
shall only present results for the (V3xV3) phase.
For a wide range of nonzero fields the transition
from the ordered to disordered state was continuous.
In Fig. 15 we show specific-heat results obtained
from a wide range of lattice sizes for H /Jyn=2.43.
These data show a single peak which grows and
sharpens as the lattice size is increased. The size
dependence of the maximum value of the specific
heat is analyzed in Fig. 6. According to finite-size
scaling theory the specific-heat peak should diverge
as L%’%; hence the slope of the “fit” shown in Fig. 6
suggests a/v=0.44. Best estimates for the three-
state Potts model?*~26 are a=%, v==, or
a/v=0.40. If we subtract off a small negative
“background,” even the point for L =12 will lie on
the straight line. For comparison we also show the
logarithmically diverging specific-heat peak for the
triangular Ising ferromagnet. In Fig. 16 we show
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FIG. 15. Specific heat vs temperature for R=—1,
H/Jnn=2.43.

log-log plots of the critical behavior of the order
parameter and of the high-temperature susceptibili-
ty. Finite-size effects are pronounced, but fits to the
“asymptotic” behavior suggest S=0.1110.02,
Y=1.4240.12. These data are reanalyzed in Fig. 17
using finite-size scaling plots. The data scale ex-
tremely well using 8=0.11, y=1.42, v=0.87, and
the slope for large x =tL!/¥ is consistent with the
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FIG. 16. Critical behavior of the order parameter m
and high-temperature ordering susceptibility X+ for
R=-—1, H/Jnn=243. t'=|1-T./T| and
t=(1-T/T,).
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FIG. 17. Finite-size scaling plots for R=-1,

H/Jyn=2.43. The plots were made using y=142,
B=0.11,v=0.87,t'=|1-T,/T|,and t=(1-T/T,).

values of B and y used to make these plots. The
values are quite close to “exact” values of B—-—

Y= 193 , v_—:-. We have also used finite-size scaling
to analyze the site-site correlations at T,. Since
t =0 at the critical temperature, the finite-size scal-
ing function [see Eq. (12)] depends only upon one
scaling variable y=r/L. As Fig. 18(b) shows, the
data scale quite well with 7=0.27. For comparison
we note that the estimate for the three-state Potts
model?* is 7=0.266. We have also analyzed the
site-site correlation functions in the NNN direction
farther away from 7, assuming a standard
Ornstein-Zernike form

L
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FIG. 18. Finite-size scaling plots for the site-site corre-
lation function along the (11) NNN direction for R =—1:
(@) “tricritical path” H/kT=1.26 with 7=0.21; (b)
H/Jnn=2.43 with =0.27. Data are in units of the
NNN distance 7NnN-
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FIG. 19. Critical behavior of the inverse correlation
length for R=-—1. Open circles are data for
H /Jyn=2.43, closed circles are obtained along the
“tricritical”’path H /kT=1.26,t'=|1—-T./T|. Data are
in terms of the inverse NNN distance 7 nun-

(Uio'j>=—D'—e§% N (18)
r

where « is the inverse correlation length. Using the
resultant values of x we plotted the temperature
dependence of « in Fig. 19. From these data we find
v=0.87 as compared with v=0.833 predicted from
the three-state Potts model.

2. Critical-degenerate crossover

For small values of the field the behavior is dom-
inated by crossover from degenerate phase character

to critical behavior when the temperature is suffi-
ciently close to T,. The specific-heat data shown in
Fig. 20 show the rapid growth of a sharp peak out
of the high-temperature maximum and the disap-
pearance of the low-temperature maximum as the
field is slowly increased. The high-temperature or-
dering susceptibility shows exponential behavior for
large values of t'=|1—-T./T| which becomes
power-law-like with y=1.42+0.12 sufficiently close
to T, (see Fig. 21). We also find that for small
fields the variation of the critical temperature can be
fit reasonably to

HC/JNN=h0exp( —'at_l/z) (19)

(see Fig. 22). Kinzel and Schick?’ have shown that
this kind of exponential variation provides further
evidence of an XY-like phase. This behavior means
that the phase boundary has a cusp at H =0 (see
Fig. 23). In Fig. 24 we show the phase diagram in
coverage-temperature space. The first-order boun-
daries open up into large coexistence regions in this
diagram. (Qualitative features of this diagram were
predicted by den Nijs et al.?®) Although critical ex-
ponents usually change as soon as a symmetry-
breaking field is introduced and then remain invari-
ant, critical amplitudes associated with the new
asymptotic behavior will change continuously. If
the critical temperature 7, has a power-law depen-
dence on the field, i.e.,

T.(H)—T.(0)<H*, (20

the critical amplitudes also have power-law
behavior. For example, the susceptibility amplitude
C varies as

1.5—(b) “5r(c) °
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° &
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FIG. 20. Specific heat vs temperature along paths of constant field for R = —1.
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FIG. 21. High-temperature ordering susceptibility
along paths of constant field for R = —1. Data are for
L =60 with: 0, H/Jyn=0.122; A, H/Jyn=0.244; O,
H /Jyn=0.608; @, H/Jnyn=1.216. The heavy solid curve
shows the result for H /Jyn=0. Solid straight lines have
slope = 1.42.

CacHT T, 21)

where 7, is the zero-field exponent and ¥ the corre-
sponding exponent for H >0. If there is instead an
exponential singularity then Egs. (20) and (21) are
no longer valid since the exponents are infinite. In
order to circumvent this difficulty Binder and Lan-
dau? introduced new critical exponents

@=a/v, B=B/v, ¥=v/v, ¢=¢/v, (22)

which have meaning even if there are exponential
singularities. The critical amplitudes are then given
by
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FIG. 22. Variation of the critical temperature T.(H)
with field; 7.(0)=T,.
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FIG. 23. Phase diagram in the field-temperature plane
for R=—1. Open circles and solid curves show second-
order transitions, and closed circles and dashed lines indi-
cate first-order transitions. Tricritical points are marked
by +.
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CaH- 3 (23¢)

where the amplitudes are defined in Eq. (11). We
have used Egs. (23) to fit the amplitudes obtained
from our data. The data for H/Jyn <1.22 were
consistent ~ with  power-law  behavior _ with
@/$=055+0.06, B/$=004+001, 7/$=045
+0.04. Using these  values, we find that
a@+2B+7=(0.02+0.11)¢, which agrees with the
modified Rushbrooke relation @ +28+7=0.

3. Tricritical behavior

The behavior of the system near the tricritical
point was studied along paths of constant H /kT.
This was done so that the paths stayed almost per-
pendicular to the phase boundary. As the path in-
creases in steepness the asymptotic critical region
shrinks in extent, and modified critical behavior ap-
pears for larger values of |T—T,|. This is seen
clearly in the susceptibility data shown in Fig. 25.
Our estimate for the tricritical path is H/kT=1.26
and ¥,=1.061£0.05. The tricritical value of B as
determined from the order parameter is
B,=0.08+0.02. The theoretical predictions for tri-
critical exponents of the three-state Potts model*®
are ¥,=1.06 and B,=0.06. The agreement is quite
good, especially for ¥,. A finite-size scaling analysis
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FIG. 24. Phase diagram in the coverage temperature
plane for R = —1. Open circles show critical magnetiza-
tions at second-order transitions and closed circles show
the boundaries to coexistence regions. (Data points are
only shown for 6<0.5.) lg. and Ll refer to lattice-gas
and lattice-liquid regions, respectively.

(Fig. 18) of the site-site correlations yields a value of
7,=0.2110.02. The theoretical prediction for the
three-state Potts model?S is 1, =0.19. The difficulty
of locating tricritical points in two dimensions be-
cause of finite-size metastability effects has been dis-
cussed elsewhere.’® We therefore believe that it is
possible that our location of the tricritical point is
slightly in error. Our data suggest nonetheless that
the tricritical region is so large that our estimates
for tricritical exponents should still be reliable. We
have also analyzed the site-site correlation functions
along the tricritical path above T, using the
Ornstein-Zernike form. The resultant variation of
the inverse correlation length k with temperature is
shown in Fig. 19. « is in general much larger along
the tricritical path than along the critical path. This
explains the small finite-size effects. Our estimate
of v,=0.63+0.04 also agrees with the theoretical
prediction®® of v,=7,~0.58. The finite-size
behavior of the specific-heat peak (see Fig. 6) yields
a/v=1.02 or a,=0.64. The predicted values are
a /vy = $=1.43 and a,= %zO. 83. This discrepan-
cy may be due to a slightly incorrect choice of the
“tricritical path” which intersects the phase boun-
dary along the second-order portion just above T.
It is also possible that the difference is due to the
neglect of the background term [see Eq. 11(c)]. The
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FIG. 25. (a) Critical behavior of the order parameter
for R=—1 along the tricritical path H/kT=1.26; (b)
Critical behavior of the high-temperature ordering suscep-
tibility for R = —1 along paths of constant H /kT.

density jump exponent which determines how fast
A6 goes to zero at T, is not in disagreement with the
predicted? value of —;—, however the uncertainty in
T, makes a careful test impossible.

C. Adsorption isotherms

Since properties of adsorbed layers are often
determined by measuring adatom coverage versus
adsorbate gas pressure, we believe that it is impor-
tant to show what adsorption isotherms would look
like for the present model. In Fig. 26 we plot cover-
age versus (u+€)/kT for R=—1 for different iso-
therms which show different qualitative behavior
according to Fig. 24. The adsorption isotherms are
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FIG. 26. Adsorption isotherms for R=—1. The
heavy solid curve is Langmuir’s isotherm. The isotherms
are antisymmetric about 6=0.5, (u+¢€)/kT =0.

antisymmetric about 0c=-;-, 1+€=0. (Note that
/KT is proportional to the gas pressure if the gas is
ideal.) At low temperatures, i.e., below T, and T,
the isotherms show pronounced steps (or risers).
These do not correspond to the filling of a mono-
layer but rather to the filling of a sublattice. As the
temperature increases above T, and T, the risers
tend to round off, and the second lowest tempera-
ture shown in Fig. 26 (kT /Jyn=4.53) there are no
discontinuous steps. At kT /Jyn=>5.62 the system
is initially in the disordered lattice-“gas” state,
enters the ordered state and then leaves it again
reaching 50% coverage. Note that on this scale it is
impossible to determine precisely where the phase
transitions occur. At the highest temperature
shown, kT /Jyn=7.25, there is no transition at all
and the isotherm looks qualitatively like Langmuir’s
isotherm.

IV. CONCLUSIONS

Our studies have yielded a rich phase diagram
with critical and tricritical behavior which we
understand. The exponent values which we have ob-
tained agree well with the predicted exponents for
the three-state Potts model and give no indication of

the “chiral” behavior suggested by Huse and Fish-
er.3! It may be, however, that the effective value of
the “chiral field” is small enough for our model so
that the transition remains in the Potts universality
class. It is also possible that the chiral exponents are
very close to those of the three-state Potts model
and that we cannot distinguish between the two with
the resolution available to us. Although we believe
that the tricritical points as well as T and T, move
continuously to 7 =0 as R —0, we do not yet have
direct evidence to support this idea. Since no
“crossover” occurs when R=0 which for T—0
gives hard hexagons, i.e., simple Potts exponents, it
is also possible that T,—0 for some nonzero R.*
Interpreting the data at 50% coverage to extract the
correct L =0 critical behavior is a difficult and
somewhat confusing task. For example, our con-
clusions differ noticeably from those drawn recently
by Wada et al.>* and Fujiki et al.>* based on less ex-
tensive data. We do not believe that the methods
used in this paper will be fruitful for studying the
small-R behavior for 50% coverage because of the
vast amount of data needed to carry out the finite-
size analyses. Since adsorption of noble gases on
graphite does not extend to a registered, 6=0.5
phase, experimental results on other substrates with
the same symmetry are needed in order to determine
the applicability of the present model to physical
systems. Another possibility would be to study
compositional ordering of krypton-xenon mixtures
or graphite; den Nijs e al.?® have suggested that
this system should have an equivalent phase dia-
gram.
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