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We describe the transition from extended to localized modes in a disordered elastic medi-
um in 2+a dimensions as a phase transition in an appropriate nonlinear 0 model. The
latter is derived by considering fluctuations about the mean-field approximation to the repli-
ca field Lagrangian for the system. Within this framework, we calculate the averaged one-
and two-particle phonon Green's functions obtaining the phonon density of states and
frequency-dependent, zero-temperature thermal diffusivity, respectively. Momentum-shell
integration of the nonlinear 0. model reveals how this diffusivity renormalizes at longer
length scales and hence the nature of normal modes at a given frequency. We demonstrate
that all finite-frequency phonons in one and two dimensions are localized with low-

frequency localization lengths diverging as 1/co and e ' ",respectively, and that a mobility

edge, co+, separating low-frequency extended states from high-frequency localized states ex-
ists above d =2. The phonon localization length at this mobility edge is shown to diverge as

CO —Nttt

I. INTRODUCTION

The transition from extended to localized states of
an electron in a random potential is a problem of
considerable interest in solid-state physics. Recent
studies have shown that it is possible to describe this
phenomenon as a phase transition in an appropriate
field theory. ' Within the framework of such a
field theory, the fundamental nature of the "Ander-
son transition" becomes manifest. It also leads to a
derivation from first principles of the scaling theory
of localization of Abrahams et al. Here we exploit
the field-theoretical formulation to study the transi-
tion from extended to localized states in a disordered
elastic medium supporting longitudinal and trans-
verse oscillations. Such a model, as we shall show,
lends insight into the nature of phonon eigenstates,
sound propagation, and thermal transport in a disor-
dered solid at low temperatures. We demonstrate
that all finite-frequency states are localized in one
and two dimensions, and that a mobility edge exists
above two dimensions. Localization lengths are cal-
culated in all cases. These results are contrasted
with those of an electron propagating in a random
potential. In particular, we find that above two di-
mensions all phonon states sufficiently close to zero
frequency remain extended. Phonon localization in
one dimension has been studied extensively (see
Ishii for a review) and recently the effect of phonon

localization on thermal conductivity has been dis-
cussed by Jackie. In two dimensions the effects of
phonon localization on the Kosterlitz-Thouless tran-
sition have been discussed by Miyake and Ito.

II. THE MODEL

As in usual theories of critical phenomena, we
postulate that the nature of the localization transi-
tion is independent of the details of lattice structure
and microscopic interactions. This universality hy-
pothesis forms the basis of our description of pho-
nons in a continuum field-theory limit. Specifically,
we consider a disordered elastic medium in d dimen-
sions characterized by a vector displacement field

P; (x,t) where the index i runs over the d spatial di-
mensions. For small deviations from equilibrium,
the dynamical properties of the system are deter-
mined by the Lagrangian

L = Jd x[ , m(x)P;P; ——,—X(VP) )su;ku;k], —

(2.1a)

where A, and p are the usual Lame coefficients
measuring stiffness to bulk and shear deformation,
and the strain tensor takes the form

(2.1b)
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We have introduced the randomness into the kinetic
energy density by means of a random mass density
m(x) of the form

m(x) =mo+m'(x) . (2.2a)

mo is the average mass density and we characterize
the fluctuating mass density by the correlation func-
tion

(m'(x}m'(y)) =y 5 (x —y), (2.2b)

where y is a parameter measuring the amount of dis-
order.

Although in the present paper, we consider in de-
tail only mass disorder, we assert that at the mean-
field level of approximation which we make, intro-
duction of randomness into the Lame coefficients
merely adds mathematical complexity but essentially
no new physics. A model supporting this claim is
discussed in Sec. VIII. As in the analogous problem
of an electron propagating in a Gaussian random
white-noise potential considered by McKane and
Stone, the disorder involves fluctuations of all
wavelengths with equal probability as indicated by
the 5-function nature of the correlation function
(2.2b).

The nature of the normal modes of (2.1}is studied

by introducing a point-localized excitation or im-
pulse, and examining its evolution in time on aver-

age as it scatters from random fluctuations in its en-
vironment. If the initial excitation, when considered
in a normal-mode expansion, contains states which
are extended, the random scattering gives rise to dif-
fusive behavior. Localized states suppress this dif-
fusive behavior on sufficiently long length scales in
a manner revealed by a renormalization-group
transformation. This is what we now proceed to
describe.

III. THE AVERAGE DIFFUSIVITY

The dynamical properties of the elastic medium
described by Eq. (2.1}are governed by the associated
Euler-Lagrange equation

m(x)P;=(l+p)B;(V P)+pV2$;, i=1, . . . , d

(3.1)

where 8;:—8/Bx;.
In the absence of disorder, i.e., m(x)=mo, the

solutions of (3.1) decouple into purely longitudinal
(V X P =0) and purely transverse (V P =0) waves.
However, in the presence of a spatially varying
mass, which gives rise to random scattering, all nor-
mal modes will contain, in general, a mixture of
both polarizations.

GJ+(x,y, t)=0, t &0

G;J+(x,y, O) =5;~5"(x—y) .

(3.2a}

(3.2b)

(3.2c)

The time evolution of the deformation is then given
in terms of the initial velocity by

P;(x,t)= fd y GJ+(x,y, t)PJ(y, O) . (3.2d)

For the purpose of studying the subsequent diffusive
behavior of an initial velocity impulse that is con-
fined to a small region of space, for example near

y =0, this expression can be approximated by
evaluating the Green's function at y =0 and taking
it out of the integration. Furthermore, since averag-
ing restores isotropy to the medium, it is sufficient
to consider the initial excitation of only one com-
ponent of the vector field P;, such as i =1. The ran-
dom scattering ensures that after a short time, waves
of all possible polarizations will be activated. Under
these conditions we may rewrite (3.2d) as

P;(x, t)=cG;I (x,O, t),
where

c—:fd"y ((},(y, O) .

(3.3a)

(3.3b)

The initial conditions (3.2b) and (3.2c) can be incor-
porated into the equation of motion by Fourier
transformation,

Gz(x,y, co+)= f dt e
"+ GJ+(x,y, t) . (3.4)

We use the notation ~+——co+i g for the retarded and
advanced Green's functions, respectively. Since the
Lagrangian (3.1) has no explicit time dependence,
the energy density

E(x,t) = , m(x)P;P;+ —,A( —V P) +pu ku s

(3.5a)

is a locally conserved quantity and satisfies a can-
tinuity equation of the form

BE(x,t) = —V J
Bt

(3.5b)

In formulating a theory for the propagation of an
initially injected disturbance, and in particular its
subsequent diffusive behavior, it is such a conserved
density that is of interest. We define a diffusion
coefficient for our disordered elastic medium to be

We consider the response of the ith component of
the displacement field at position x to a velocity im-

pulse in PJ(y) as defined by the retarded Green's
functions:

m(x)G;+(x,y, t)=(A+ij)B;dkGk++pV G;+,
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D= limt~ oo

t 'fd xx E(xt}

fd xE(x, t)
(3.6)

1 m(x)lim-
t f 2

=c lim (2g) co Gki(x, O, co+)
2m(x) . dco

2 g~o 277

Clearly, if all states are localized, the mean-square
spatial extent of our initially injected energy density
will remain localized as t~ 00 so that the diffusion
coefficient (3.6) vanishes. In the opposite extreme of
a perfectly ordered medium possessing propagating
waves, the mean-square distance traversed by the en-

ergy density from its origin would be proportional to
the square of the time elapsed, leading to an infinite
diffusion coefficient. We will show that the inter-
mediate regime of extended waves undergoing ran-
dom scattering gives rise to a finite diffusivity on
average.

The long-time behavior of the kinetic-energy den-

sity of the medium in response to an initial impulse
of the form described by (3.3) can be expressed in
terms of the retarded and advanced Green's func-
tions as

XGki(x, O, & )

X Gk i(x,O, co ) . (3.8)

A similar analysis for the numerator in (3.6) yields

(3.7)

It is a straightforward exercise to show that the po-
tential and kinetic energies contribute equally to the
total energy so that the denominator of (3.6) may be
simply expressed as

lim fd xE(x, t)
t~m

2
= lim f dco fd~x m(x)co 6k i(x,O, co+)

y~O 7T

2 2

lim — d xx E(x,t)=lim1 g 2 . 2gc
dco d xx m(x)co Gki(x, O, co+)Gki(x, O, co ) .

t~OO f g~O 77
(3.9)

Combining and symmetrizing over all possible initial polarizations we obtain the fundamental result for the
average diffusivity in the limit of weak disorder:

f „d~~'fd'x x'«ki(x 0-+ }Gki(x 0 ~ }~ensem—hieD= lim2g
si o f" dcoco'f d x(Gk;(x, 0,co~)Gk;(x, O, co )),„„m„,

(3.10)

We stipulate here that the expression (3.10) is valid

only in the limit g amp of weak disorder since we
have replaced the m (x) appearing explicitly in (3.8}
and (3.9) by its average value mp. The averaging
over all realizations of the random mass field is
denoted here by an enclosure by angular brackets.
The numerator and denominator in (3.10) can be
averaged separately because the denominator is sim-

ply the total energy of the medium, which is the
same for a11 realizations of the mass field.

The frequency sum appearing in Eq. (3.9) suggests
a spectral decomposition of the average diffusivity:

f dco E(co)Dp(co)
D:— (3.11)

dco E(co)

where E(~) is an energy density associated with
modes of frequency u. This can be regarded as a
defining equation for a frequency-dependent dif-
fusivity Dp(co}. It is this quantity which we now
proceed to evaluate in a mean-field approximation.

IV. METHOD OF CALCULATION

where
lip

L+-= —, g fd~xP;(x)A;~(co+)P, (x)
a=1

(4.1b)

and

A;J(co+)=[ +mco(x)+@V ]5;J+(A.+y, ){};&J.
(4.1c)

Here, we use the abbreviated symbol DP to denote

We now describe the method of calculation of the
averaged one- and two-particle Green's functions
relevant to the phonon density of states and dif-
fusivity, respectively. In order to facilitate the pro-
cess of averaging over the random mass density, we
utilize a replica field representation of the Green's
functions. The one-particle Green's function may be
written as

G J(x,y, co+ )= —lim fDP P,'(x )Pjl(y)e
+

(4.1a)
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functional integration over all fields [P; I. For the
two-particle Green's function we introduce two sets
of replica indices denoted with + and —signs:

~
Gz(x,y, co+)

~

i

= lim D;+x J+y; x J y

The replica indices p, and v here run freely from 1 to
n++n . In performing the average, we have used

a probability distribution for the fiuctuating part of
the mass field m '(x) of the form

P[m'(x)] cc exp — fd x[m'(x}]1

2

X -(1.++I.-)Xe (4.2)
(4.4)

X exp[ (Lo++L—o +L;„,)]

(4.3a)

where Lo+ and Lo are obtained from (4.1b) by re-

placing A,&(co+) by A J(oi+ }, that is, m(x) by mo in
(4.1c},and

L,—=— 4

fd x pppjpj . (4.3b)

Averaging over all realizations of the random mass
field we obtain

& ~G,,(x,y, ~+)~'&, „,
= lim D,'+x J'+y,' x J1 y

A Gaussian distribution of this form gives rise to a
quartic coupling in the interaction part of the La-
grangian (4.3b). Strictly speaking, such a distribu-
tion includes a tail of physically inadmissible nega-
tive masses

m(x) =mo+m'(x }(0 . (4 5)

In principle, this unphysical tail could be removed

by introducing a modified probability distribution
which would produce couplings of a higher order.
However, as we will show, interactions of a higher
order than quartic are irrelevant to the critical
behavior, and so we retain the form of the Lagrang-
ian given by (4.3b).

Following standard methods, we introduce a con-

jugate field Q„'„, where i and j are spatial indices
and p and v are replica indices. The interacting part
of the field theory (4.3b) can be represented in terms
of Qas

T

e '"'=constX fDQ exp —, fd x(Q'~—„Q&~„+ycoppJQg„} (4.6)

This substitution clearly reduces the field theory to a Q-dependent quadratic form on the P fields. Having in-

troduced this conjugate field, all relevant Green s functions may be obtained from the generating function

Z(J)= lim fD/DQ exp ——,(p,A(Q)p) ——,fd x(Q'~„Q'~„—2J&„Q„'„)
g+ ~0

(4.7)

where the quadratic form involves a d-dimensional spatial integration and sums over the spatial and replica in-

dices associated with the fields P and Q:

A~(co+)+yes Q~+i+(x) yea Q'+J (x) PJ+(x)
(0 A(Q)(('& —=fd x(0i+(x)~Pi (x )) iQij ( ) Ao( ) iQij'

( ) ~
—

( )
(4.8)

The superscripts + and —on the P fields denote
n+- and n - component vectors, respectively, in re-
plica space and likewise for each i and j, Q++ (x) is
an n+Xn matrix. AJ denotes A,J multiplied by
the identity matrix in replica space. Z(J) is essen-
tially the functional integral (4.3a) with the addition
of a souce J&„. By evaluating derivatives of Z(J)

CO(Q'J, )= y (G,,(x,x,~ ))
2

(4.9a)

with respect to J at J=0 before and after integration
over P in (4.7), we may express the averaged one-

and two-particle Green's functions in terms of corre-
lation functions involving only Q. Namely,
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and similarly with two differentiations

(Q'~ (x)Q '~(0))
/~4

(G ci( x,O, co~)Gik(x, O, co ))„~ bi, .
4

(4.9b)

Here, Q'+~+ denotes the (1,1) element of the matrix
Q~++. This latter correlation function is precisely
that which appears in the average diffusivity (3.10).
These are the quantities which we now proceed to
evaluate in a mean-field approximation.

V. THE AVERAGED ONE-PARTICLE
GREEN'S FUNCTION

normalization as will be explained later. In the
present case, we may write

G,J(x,y, co+)I
AJ '(Qp)=

G,J(x,y, co )I

(5.5a)

where

G~( x, y, co+)= [[Ap(cop)+yco Q ~+I],J ']~ .

Using the expansion (5.4) and (S.lb), the condition
for a diagonal stationary point is simply

2

Q++ ——— G(x,x,co+ ),++ (5.6a)

By integrating over the P fields in (4.7) we obtain
a field theory involving only the Q field:

Z(0}= lim fDQe (S.la)
n+ -+0

where

2

Q =— G(xxco ),
0 0Qi =Q i=O.

Here we have made use of the symmetry

(5.6b)

(5.6c}

(5.7a)

L [Q]= —,lndetA(g)+ —,fd x Q'J„Q'1„.

(S.lb)

An analogous relation, of course, holds for G:

G(x,x,co+)—=—Gs(x,x,co+) .1
+ —

g gg 7 s + (5.7b)

{5.2)

We may formally perform such an expansion by
writing the matrix A(Q) of Eq. (4.8) as

A(g) =A(gp)+ycoig (5.3)

and then making use of the identity

ln detA(Q)=lndetA(Qp)+yco TrA '(Qp)g

——,y co TrA '(gp)QA '(Qp)Q

+ 0 ~ ~ {5.4)

Mean-field theory carresponds to evaluating (S.la)
in a saddle-point approximation in the vicinity of a
stationary point of L [Q]. A saddle point Qp of the

Q field is a point such that L[g] contains no terms

linear in a small displacement Q —=Q —Qp. Further-
more, if we expand L about Qp, keeping only qua-
dratic fluctuations in Q, then the saddle-point value
of Q determines the averaged one-particle Green's
function of {4.9a):

AJ(co+)=(nipco++yg++co+ —{uk )5J0 2 0 2 2

—(){,+p, )k;kl . (5.8)

The matrix k&k~ has one eigenvalue k and the
remaining (d —1) eigenvalues are zero, allowing the
trace appearing in (5.7b} to be expressed in terms of
the eigenvalues of the matrix G,J,

Physically, (Q'+~+(x}) measures the average re-
sponse of the ith component of the displacement
field to an impulse in the jth component, both at the
same point x. Since averaging restores isotropy to
the medium, there is no preferred direction for the
jth component to respond to and so the symmetry
relation (5.7) is self-evident.

Equations (5.6} constitute a "coherent-potential
appraximation" (CPA} to the one-particle Green's
function. The physical nature of this approximation
becomes more apparent upon evaluating the on-site
element of the CPA Green's function using the
momentum representation of the operator

We restrict our attention for the time being to those
stationary paints of Lfg] that are relevant to the
evaluation of the averaged one-particle Green's
function, namely those which are diagonal in the re-
plica indices p and v. Nondiagonal saddle points
need only be taken into account at the stage of re-

GL+(k) = [(rnp+yg ~+ )co+ —(A +2@)k ]

and

Gz+(k): [(rnp+yg++—}co+—pk ]

{5.9a)

(5.9b)
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cu -tsar)
I/2

C

(f 4 f )I/2
C

-E
C

&& p(f)

Ec

E)I/2

-E

L[Q]=—,fd x Q„'„Q„'„

——,y c0 TrA '(Qc)QA '(Qo)Q+

(6.2)

(b)

FIG. 1. Comparison of the phonon density of states (a)
and the electron density of states (b) in the coherent-
potential approximation.

Therefore,

2

Qo++ = — fddk[G~+(k)+(d 1)Gr+—(k)] .++ 2d

(5.10)

GL and GT are longitudinal and transverse propaga-
tors, respectively. The form of Eqs. (5.9} reveals
that the coherent-potential approximation consists
of replacing the disordered elastic medium by an ef-
fective medium with a renormalized mass mp

+yg++ which is complex whenever Img++ jO.
The complex mass simply expresses, of course, the
fact that k is not a good "quantum number" for the
disordered medium and that states of a given k de-

cay as a result of scattering.
It is shown in Appendix A that the CPA density

of states

p(co) ac —Img ~+
1 p (5.11)

VI. MEAN-FIELD THEORY
FOR DIFFUSIVITY

By means of Eq. (4.9b), we may reexpress the dif-
fusion coefficient (3.10) entirely in terms of the Q
fields.

f fd xx (Q+ (x)g" +(0))
D = lim2g f" d, fd'x(gkk (x)g" (0)&

(6.1}

We have used here the fact that Q+ ——0.
In evaluating D, we again retain only quadratic

fluctuations in Q for the expansion of L[g] about
its saddle point:

has c0~ ' behavior near co=0 and (c0, —co)'j
behavior at the upper band edge co, . Figure 1 shows
a comparison of the phonon and electron density of
states in the CPA.

The correlation function appearing in (6.1) can now
be formally expressed as

(Q+ (x}g"+(0))=(x
I ckk,"; IO), (6.4a)

where C ' is defined by

fd z CJ „(x—z)C „ki(z —y)=5;k5&i5 (x —y) .

(6.4b)

C is a function of the difference of its two coordi-
nate space arguments so that by introducing a
Fourier transform

Cijkl (p ) 2fiik ~jl

yco f—d ex'~'"

X Gs(O, x,co+ )Gjk(x, O, c0 },
(6.5}

the diffusion coefficient can be expressed in terms of
(6.5) as

D =—lim2g
g~p

f dco 8 8
jjkk(P} I p=0

Bp Bp.

(6.6)

From (6.5) it can also be seen that C is a Hermitian
operator and thus can be diagonalized in its Carte-
sian indices by a unitary transformation

d d

Cjki(p)= g pe "(p)v j "(p)vk7"(p) . (6.7a)
m =1n =1

Here, e "(p) are the associated eigenvalues and the
eigenvectors v " satisfy the orthonormality condi-
tion

The terms of this expansion relevant to the evalua-
tion of D may be written as

, f—dxd yQ'~j (x)C,jkl(x —y)g +(y) .

(6.3a)

With the use of the explicit form of matrix A (Qo)
given in (5.5a) it is straightforward to show that

C jm(x —y}=25 (x y}5;k—5jl
d

—y c0 Gs(y, x,cvp)Gjk(x, y, co } .

(6.3b}
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u,j "(p)u,l
" (p)=5, 5„„, . (6.7b)

Examination of (6.6) reveals that D =0 unless at
least one of the eigenvalues e "(p) vanishes in the
limit as g~O for p =0. We show in Appendix B
that there is in fact only one such eigenvalue which
we denote e "(p), and for which the corresponding
eigenvector uki (p) =5~id . Since this is the only
contributing eigenvalue in (6.6) as rl~0, we may re-

place C~~kk(p) in the same equation by the projection

Cp(pi) =

near co=0, and

4

fd'p Ga+(p) Gi(p}
~P ~Pm

—4 —(ad+2) (6.12b)

Cp(co) and C2(co) are the eigenvalues corresponding
to the eigenvector Ski of Cpjkl and Cljkl respectively:

4gmpd
0 -i}y cg

' +" (6.12a)
yp) ImQ+ ~

(6.8)

dpi C2(cp)

~ co Cp(pi)
D = lim2g

g~p ~ dcof—"pi2 Cp(cp)

where

(6.9a}

In terms of the low-momentum expansion coeffi-
cients of e "(p), namely ep' and e', the diffusion
coefficient becomes

Using (6.10b) we arrive at the result for the band-
edge behavior of the diffusivity:

D (pi) y
—'pi-'~+" (6.13)

In d =3, this gives an co low-frequency phonon
scattering cross section, reminiscent of Rayleigh
scattering. Physically, such behavior arises because
of the extreme short-range nature of the scattering
centers as expressed by the 5-function correlation of
the random mass disorder.

Cp(co) =ep'(co) (6.9b)
VII. RENORMALIZATION

and

C2(co):—ge (pi) . (6.9c}

and

E(pi) ~ 1

cp Cp(co)
(6.10a)

We infer, using (3.11), that the energy density and
frequency-dependent diffusivity are given by

We wish to determine the nature of the normal
modes of frequency co by considering how Dp(co) re-
normalizes as we integrate over short-wavelength
fluctuations of the field theory and rescale to longer
lengths. Following Schafer and Wegner, ' we define
an effective Lagrangian based on (6.2) and (6.3), re-
taining only second-order fluctuations in Q and only
second-order terms in the low-momentum expansion
(6.8) of the operator C. In coordinate space this be-
comes

C2(pi)
Dp(co) ~

Cp(~)
(6.10b)

L'"[Q]= , C;;ki( —)fd 8 Q„"„( )&„Q„„'( ).
(7.1)

0 mn+lJkl (P )=Cijkl +Cjt'klImpn +
where

C(~jki =25ik5ii y'~' fd—'p Gii+ (p)GJk (p.)

(6.11a)

(6.11b)

and

Cjki=y co fd p Gi+;(p)
5 Glk(p) .

Bp
'

Bp„

(6.11c)

We leave the explicit evaluation of the functions
Cp(pi} aiid C2(N) to Appeiidix B aiid siiilply state
the results here. From (6.5) we see that

We neglect here the remaining nonzero eigenvalues
of the matrix C'jkl and all other finite-mass terms in
obtaining this massless field theory in Q. Also,
since Qp is independent of x as a result of transla-
tional symmetry, (7.1) is invariant under the substi-

tution Q ~Q.
In the spirit of the previous mean-field approxi-

mation, we would like to restrict Q to the vicinity of
the previously determined saddle point Qp. Howev-
er, in doing so, we note that the exact Lagrangian
L [Q] described by Eq. (5.1) has an internal global
symmetry. Namely, L [Q] is invariant if an orthog-
onal transformation UGO(n++n ) on the replica
indices is simultaneously applied to each of the ma-
trices Q'1:
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QV~UrQ~JU (7 2)

I 0
+iim(Q++)Ur(x) 0 I U(x) .

(7.3)

Here U is allowed to fluctuate from point to point in
space. These fluctuations correspond to the fluctua-
tions away from the saddle-point manifold that we
will allow in the effective Lagrangian (7.1). We
have used the symmetry condition (5.7a} to elim-
inate the spatial indices on Q(x). With the restric-
tion (7.3), the effective Lagrangian simplifies to

L' [Q]= , C;; "(a)}fu—'xa Q„„(x)a„g,„(x) .

(7.4)

But C;,zz" ——Ct(co)5„~, as can be verified by compar-
ing (6.11c) with (6.12b). Thus by rescaling Q(x) in
(7.4) and dropping the real part which is indepen-
dent of x, we arrive at the final form of the effective
Lagrangian:

This is a direct consequence of the fact that when

iI~0, all of the replica fields p of (4.3} are
equivalent and can be freely rotated among them-
selves. Therefore, for every orthogonal transforma-
tion U that can be applied to the original diagonal
saddle point Qo, there is a new saddle point
Urg eU. Instead of restricting Q in (7.1) to a neigh-
borhood of the original saddle point Q e, we should
extend it to a neighborhood that encompasses the
entire manifold of saddle points generated by the
transformations (7.2). The simplest nontrivial
neighborhood of this type is given by

Q(x) —=Ur(x)Q oU(x)

I 0
=Re(Q++) 0 I

0

1—,~Dp(co)p(co) .
go

(7 6)

The physical picture that emerges from this general-
ized nonlinear n model is that of a phase transition
in a fixed-length spin system. Straightforward
momentum shell integration and rescaling, or other-
wise, ' ' yields the following differential recursion
relation for the resistance g in d =2+ e dimensions:

dg (L)
d lnL

eg ——(n+ +n —2)(g ) (7.7)

In the limit n++n ~0, we obtain the fundamen-
tal scaling relation for the zero-temperature thermal
resistance

dg (L)
e +2( }=—6g+ g {7.8}

dg
d lnL

(7.9a}

which has the solution

2~=L /L
go

(7.9b)

The length scale L, at which the resistance g
reaches some fixed value such as g =1, defines the
localization length g:

This is identical in form to the scaling relation for
the resistance of an electron in a random poten-
tial. ' In two dimensions and below, there is a sin-

gle unstable fixed point at g =0. Flow is toward in-
finite resistance on longer length scales so that all
states are localized. In both one and two dimensions
we obtain localization lengths that diverge as we ap-
proach the single extended state at co=0. For d =1
(7.8) can be approximated by

L' [Q]= ', fd'x—a.g„„(x)a.g„„(x), (7.5a)
go

g/Lo- {d=1)1

N2
(7.9c)

where

1 Ci(co) i 1
(Im(g ))—

go 4 CO

(7.5b)

where we have made use of the asymptotic behavior
(7.5b) of the bare conductance I/ge. A similar
analysis fox d =2 yields an even more rapidly
diverging localization length near zero frequency:

and g/Lo-e'~" (d =2) . (7.10)

I 0
Q(x)=iUr{x) 0 I U(x) . (7.5c)

Combining (6.10b) and (6.12a) we see that the cou-
pling constant here is the frequency-dependent bare
conductance

Above two dimensions (e & 0), the g =0 fixed point
exchanges stability with a new fixed point at
g =e/2. This new unstable fixed point represents
a mobility edge between localized and extended pho-
non states. Solving (7.8} in general for e+0 we ob-
tain
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d & 'I f 1/su~ /

E+E1

go
(7.15)

]~q(„)
12 f-e"2

]i@(E)
d &1,2

Here, the bare resistance will lie above the fixed
point e/2 and be renormalized ta infinity, giving
rise to localized states at the top and bottom of the
band. These results are summarized in Fig. 2.

VIII. DISCUSSION

diz f )Eaai)

E

(b)

FIG. 2. For both phonons (a) and electrons (b) all
states are localized (shaded) in two or less dimensions.
Above two dimensions high-frequency phonon states may
become localized whereas the electron band may show lo-
calization at both the upper and lower band edges.

go g —e/2
L/Lo ——

g go —&/2
(7.1 1)

go —e/2-(co —c0') . (7.12)

Setting g =1, we see that the localization length
diverges at the mobility edge as

O'I 0- 1

(co c0 )— (7.13)

This is of course the same localization length ex-
ponent that occurs in the problem af electron locali-
zation in 2+@dimensions. Also, in the region of ex-
tended states the conductivity

—-(co"—co)', t =(d —2)v= 1 . (7.14)
g

2

The feature that distinguishes phonon lacalization
from that of electrons is the asymptotic form of the
bare conductance (7.5b). For sufficiently low fre-
quencies the bare resistance gp-co will always lie
below the nontrivial fixed point at e/2, and hence
flow will be toward zero resistance. Therefore, law-
frequency phonon states in 2+m dimensions are ex-
tended. This is to be contrasted with results for an
electron in a random patential, where it can be
shown that the bare conductance at either CPA
band edge +E, is of the form

Since e/2 corresponds to a phanon mobility edge
co, we may write

E(T)=fdcop(a))C(co, T)DO(c0), (8.2a)

where C(co, T) is the contribution of modes of fre-
quency co ta the specific hest:

C(c0, T)=Rco (e ~ —1)T' (8.2b)

We have shown that the transition from extended
to localized states of a disordered elastic medium,
like the analogous phenomenon for an electron in a
random patential, can be described as a phase transi-
tion in a generalized fixed-length spin system. The
"spin" here is actually a complex matrix and the
resistance g plays the rale of a temperature vari-
able. The theory reveals a consistent preference for
localization of the high-frequency modes by way of
the diverging localization lengths as m~0 in two di-
mensions and below, as well as the existence of a
single mobility edge separating high-frequency local-
ized states from low-frequency extended states in
2+a dimensions. In all cases the co =0 mode corre-
sponding to uniform translation of the entire medi-
um is extended. The roots of this preference can of
course be traced to the problem of a single defect in
a phonon system. For example, in a periodic one-
dimensional system of masses connected by springs,
it is easy to verify that the introduction of a single
light mass results in the splitting of a single local-
ized state from the top of the phonon band.

We have presented only the case of "site-
diagonal" disorder. We have studied the effects of
introducing disorder into the Lame coefficients in
(2.1a) in a simpler scalar theory described by a La-
grangian

L. =fd'x[ ,'m,jj ,
'

V-(x)a, ya—,y—j, (8.1)

where the fluctuating part of the spring constants
V(x) = Vo+ V'(x) satisfies

( V'(x) V'(y) ) =y 5 (x —y) .

The localization properties of this model are in fact
the same as those summarized in Fig. 2.

The low-temperature thermal transport properties
of the medium are determined by the thermal con-
ductivity
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dco
2

1
(8.3)

From Eqs. (7.5b} and (7.6) we see that mean-field
theory predicts a low-frequency co behavior for
the quantity p(co)DQ(co) A. s a result, the thermal
conductivity E(T) has an infrared divergence of the
form (A3)

as z~0. With the use of Eqs. (5.9), this yields

where A is the ultraviolet cutoff of the field theory.
The nature of the density of states near co=0 is
determined by the fact that

1'"dk k" '
(o —z)/2

k2—

(~) ( 2)(d —2)/2 d —i (A4)
or in other words, it diverges linearly with the
length L of the sample. This is the usual result for a
model that does not take into account inelastic
scattering processes arising from lattice anharmoni-
city. ' Phonon-phonon interactions, however, which
in a real solid render the thermal conductivity finite,
introduce into the problem a new length scale, the
inelastic mean free path, which must be longer than
the localization length g if localization of phonons
in the harmonic approximation is to be important.
The situation is further complicated by the fact that
the localization length diverges in the low-frequency
regime accessible by low-temperature experiments.
The competing effects of localization and inelastic
scattering on the thermal diffusivity have been dis-
cussed recently by Jackie. He suggested that in cer-
tain types of solids which have a quasi-one-
dimensional chainlike structure a temperature range
may exist in which phonon localization is impor-
tant. Another way to observe localization might be
to study phonons injected into solids at sufficiently
low temperatures where inelastic scattering effects
are small.

SG+=G+ —G+

5co =co co~ 2—~co~(co —co~ ) .2 — 2 2

It is straightforward to show that

(A5a)

(Asb)

5G+ = g c„[a(5co) b5G+]"—,
n=1

where

Q =mp —Qco~G~
2 +

(A6a)

(A6b)

b= co~C (A6c)

It follows from (5.10) that as co~co„

ImG+= —ImG+ d k
b A ~ 1

d O [ReGL '(k)]

The upper band edge co, is determined by the cut-
off A. We obtain the relevant exponent by rewriting
Eq. (5.10) in terms of G+—:—(2/yco )Q++ and ex-

panding it about its value at co„which we denote by
G,+:
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APPENDIX A: DENSITY OF STATES
IN THE COHERENT-POTENTIAL

APPROXIMATION

The density of normal modes in the range co to
co +de is given by

(d —1)

[ReGr '(k)]

O=c, a(5co) +c2[a(5co) b5G+]— (A8)

Solving for 5G+ and taking the imaginary part, we
obtained the desired result

(A7}

Here, we have used the fact that ImGL ——ImGT
=ImG+=0 when co=co, . Comparing (A7) with
the expansion (A6) yields the fundamental result
—bc~ ——1. For small excursions from the band edge
co„(A6a) can then be simplified to

N(co )=—ImG;, (x,x,co ) .1

7T
(Al) IinG+ —(co, —co)'/ (A9)

p(~) =—

(A2)

The density of states p(co) is obtained by multiplying
(A1) by 2'. Combining (A1) and (5.10) yields

Im f d~k[Gq+(k)+(d —1)Gr+(k)],

APPENDIX B: EVALUATION OF Cp(a) )

AND C2(co)

We demonstrate the existence of a Goldstone
mode in the Q+ channel by showing that Co(co)
vanishes as g~0. The averaged one-particle
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Green's function in (6.11) can be written in the form With the use of the above equation and the relations

G~~+(p) =GL+(p),' +Gr+(p) 5;;—
a

Bp
GT+ =2I p~Gr+Gr+ (B7a)

Co(co) =2— fd p Gli (p)Gil (p)+

~4
=2— fd pF(p},

where

(B2a)

(B2b)

F(p) =Gl+, (p)Gl. (p)+(d —1)Gr+(p)Gr (p) .

(B2c}

(Bl)

Clearly G,J+(p) is odd in p, and pl for i&j Th. ere-

fore,

and

ImGz = yco—Q++Gz' Gr,

it is possible to express (6.12b) as

C2(co) = 8

d (ImQ++ )2

X fd p p [2((c (d —1)(lmGz+)

+2(){,+2((c) (ImGL+)

(B7b}

This can be simplified by writing the imaginary part
of Eq. (5.10) in terms of 6+—:—(2/yco+)Q++..

ImG+ =— ImG +2co2)(y co ReG —mo)
1 yco 2 +

2

+(A, +I4) (d —1)lmGz+ImGL+, ] .

(Bg)

X fddpF(p) . (B3)
Consider for instance the first term here, which can
be rewritten using (5.9) as

Dividing by ImG+ and rearranging we observe that

y co ReG+ —mo
—,Co(co}=2co)) f ddp F(p) .

ImG+

(B4)

gd 2

fddpp2(ImG+)2 f2f PP
((h I p')'+f'j'—

(B9a)

Taking the limit 2)~0 in (B3}we observe also that
the integral appearing in (B4) is simply 2d/y co . In
the limit of weak disorder y &&mo, we obtain the re-

sult

where

f (co ) =yco Im Q++ -cod+ (B9b)

Co(co)=- 8dm g 2 ~&+i—21y co . (B5)
y co'ImG+

The calculation of C2(co) given in (6.12b) is likewise

facilitated by the decomposition (Bl}:

GN (p) Gg (p)
8 + 8

~p ~pm

aGT+ aG, aG,+ aG,=(d -1)
ap ap ap ap

+ (6+—6+)(6;—6;) .
p

2

h (co)=co (mo+y ReQ~+ )-co (B9c)

h d I2f )cod( yco 21m Q )
——( (B10)

Using the fact that ImQ++ -ycod gives the result

Since f vanishes rapidly as co~0, the dominant con-

tribution to the integral I comes from the region

pp h. It is straightforward to show that for suffi-
ciently small co

(B6) y
—4 (2dy2)- (B1 I}
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