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Low-temperature renormalization-group study of the random-field model
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The continuous-spin random-field model is investigated by means of the low-temperature
renormalization-group technique with the use of the replica trick. The Wilson-Kogut recur-
sion method is applied. For short-range exchange, the results are in exact agreement with
those of the random-axis model studied by Pelcovits. For long-range exchange varying with
distance R as R ' + ', critical exponents are calculated to first order in d —2'. They are
identical to those in a d —cr expansion of the nonrandom model. However, the hyperscaling
law becomes (d+A, ~)v=2 —a (A, ~ is the eigenvalue associated with the dangerous irrelevant
operator T ), and, for m-component spins, —A, ~——e+(d —20 )/m.

I. INTRODUCTION

Imry and Ma' first discussed the effect of
quenched random magnetic fields on the ordered
phase of ferromagnets with short-range exchange in-
teractions. They used renormalization-group argu-
ments to show that the classical mean-field-like
behavior is found at dimension d above d, =6, in-
stead of d, =4 for pure systems. Arguing heuris-
tically, they concluded that these systems with
m & 2 (m is the number of spin components) have no
long-range order for d &dd ——4 as compared with

d~ =2 for pure systems. Shuster reached the same
conclusion using the replica method. Grinstein has
shown the hyperscaling relation dv=2 —a (for or-
dered systems) becomes (d+A, „)v=2—a, where A,„
is negative and is related to the range of the fer-
romagnetic exchange interactions. For a short-range
exchange interaction, A,„=—2+0(e ) {a=6—d}.
If the exchange forces are long range, varying with
distance R as R '~+ ', then A,„=—o +O{e )

(e=3cr d) Earlie—r, L. acour-Gayet and Toulouse
studied the ideal Bose gas in the presence of a
random-source term and computed exact critical ex-
ponents for Bose condensation. They also found
violations of the familiar scaling laws relating criti-
cal exponents. Aharony et al. and Young used
direct perturbation methods to verify that the criti-
cal exponents of a phase transition in a d-
dimensional (4&d &6) system with short-range ex-
change and a random quenched field are the same as
those of a (d —2)-dimensional pure system. Parisi
and Sourlas reached the same conclusion by using a
geometrical interpretation which stems from a hid-
den supersymmetry of the associated stochastic
equation.

All of the calculations mentioned above are
around the upper critical dimensionalities

d, =6 and 30 for the short-range and long-range ex-
change interactions, respectively. Since the lower
critical dimensionality is d~ ——4 (short-range case) or
d~=2o (long-range case}, it is expected that similar
analyses can be made in d —4 or d —2' expansion.

Recently Pelcovits et al. have studied the
random-axis model (RAM) using the low-

temperature renormalization-group method. '

The critical exponents are calculated to first order in
e=d —4; they are in exact agreement with those of
the pure case where e=d —2. However, hyperscal-
ing does not hold for the RAM unless one incorpo-
rates the dimensionality shift by two; it becomes
(d —2)v=2 —a up to O(e ). This agrees with
Grinstein's predictions which were based on argu-
ments at d near the upper critical dimensionality.

In this paper, we present details of low-
temperature renormalization-group calculations for
the random-field model (RFM). The replica method
is used. We first discuss the case of short-range ex-
change near d =4. The recursion relations are de-
rived; they and therefore their exponents are exactly
the same as those in Ref. 9 which were derived by a
different method for the RAM. We then discuss
lang-range exchange near d —2cr. The critical ex-
ponents v and g are calculated to be
1/(d —2cr)+O(1) and 2 —o+O((d —2o) ), respec-
tively. They are identical to (d —cr) expansions in
the pure system. "' The hyperscaling law is
checked to be (d+k, r)v=2 —a, where Ar is the
eigenvalue associated with the "dangerous irrelevant
variable" T.' We find A, z- ———cr+(2o —d) Im.

The paper is organized as follows. In Sec. II the
replica method is briefly described. The low-
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temperature "effective" Hamiltonian is obtained. In
Sec. III we apply the Wilson-Kogut" renor-
malization-group method to this effective Hamil-
tonian. The critical behavior for long-range ex-
change is discussed in Sec. IV.

II. REPLICA METHOD

Generally there are two methods to treat
quenched random systems. The Hamiltonian is

PF—= —pe
IsI

(2.3)

Here a = 1&. . . , n is the replica index and S denotes
the set [S ]. The next step is to average F over the
random field H; which occurs in each Hamiltonian
H . We assume the H; to be independent and
Gaussian-distributed with H;=0, H; =h. We ob-
tain

H = —~J"S"S —~H"SIJ l J ~ f l

&ij & l

(2.1) —PF= —fd[S]e (2.4)

8= —/JETS; SJ —Dg(x; S;}
(ij) i

(2.2)

where x; is a random direction at site i.
The second method is to transform the quenched

random problem to a translationally invariant one
using the n~0 replica trick. ' Renormalization-
group procedures are carried out on the replica
Hamiltonian and the n~0 limit taken at the end.
For the RFM we replicate the Hamiltonian of Eq.
{2.1}and write the free energy as

Here S; is an m-component vector spin of unit
length and H; is the random field.

The first method is to perform renormalization-
group transformations directly on the probability
distribution. Recursion relations are obtained.
Then the critical exponents can be calculated. Pel-
covits has applied this method to the RAM in a
low-temperature renormalization-group study. The
Hamiltonian is

where
n=0

8=—$$JJSg .SJ —ph/2$$S; .S;, (2.5)
a (ij) a,P i

Herewhich is translationally invariant.

JJ ~
~ RIJ ~

' + ', o & 2 if it is long ranged.
We turn now to the low-temperature expansion.

From Eq. (2.5) we can see that the effective Hamil-
tonian is exactly the same as the fixed length spin
0 (nm) (nonlinear o model) model' in the pure case,
except for the presence of the off-diagonal local sca-
lar product of the second term. Thus we may use
the standard techniques already developed for the
pure case for both short-range' and long-range"'
J7. We write S; =(o;,n.;) where n; has m —1

components and cr; is in the direction of spontane-
ous magnetization. Since (o; ) +n; Pr; = 1 we may
integrate the cr; in Eq. (2.4) and then have to
analyze the following functional integral:

PF= fd[—n;]e (2.6)

n„(k)n„(—k)+ m (k)n ( —k)+
(2~)~ 2T " " 8T

~ [m„(k)m„(—k)+ —,n (k)m ( —k)+ ]+pT[n„(k)m„(—k). + ]

2 ~P
m (k)= f [m (x)] e '"'"d x= g f qn„(p)n„(k —p),

(2.7)

(2.8)

(2.9)

where p are the m —1 (transverse) spin components,
a,P are replica indices, and

2
—4+1 —d/2

I (d/2)

G„~, =5 p5„„,T/q

where cr =2 for short-range JJ.'

{2.10}

We can make a standard 1oopwise expansion of
Eq. (2.5). The corresponding Feynman diagrams in-

volve the propagators" '
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III. RECURSION RELATIONS

In this section only the short-range interaction is
considered. The long-range interaction will be dis-
cussed in the next section. In the actual calculation,
all the terms except the first one in Eq. (2.7} are
treated as perturbations. The vertices relevant to the
perturbation expansions are shown in Fig. 1. It is
noted that the wavy line contributes a factor k /T,
while the solid line denotes T/k .

The standard Wilson-Kogut recursion method is
used here. We decompose the Fourier-transformed
spin field m(k),

r

(a)

(b) a~a

(c)

I)-o-(P

m~ ( k)m„'(-k) k

—s (7k) m (-k) k
2T

~wg(k)n„( k-)

(k)Ha(-k)
2T

n (k), 0& ski &1/b
n(k)= '

m (k), 1/b&~k~&1
(3.1)

(e) —IE'(k)EE' (-%)
2~ 2

T

d p
(k —p}

1/b& )p ~
&1

The coefficient of k is

(3.2)

Kd [1—(1/b) ]'d —2

=K4[lnb —i (d —2)ln b+ ] .

In calculating the differential recursion relations
I

and integrate out n &(k). Upon rescaling the mo-
menta by b and the spins n &(k) by g, we obtain a
Hamiltonian of the form (2.7) with a new tempera-
ture prefactor. We need three recursion relations in-
volving T and 6 to identify the fixed points and cal-
culate the critical exponents. We first consider
(1/T)k m„(k)m„( —k). It is easy to see that there
are three Feynman diagrams in Fig. 2 that might
contribute. The first diagram does not contribute in
the n~0 limit because of the presence of the loop
which carries a factor of n. The expression for the
second is

FIG. 1. Vertices relevant to the perturbation expansions
in Eq. (2.6).

(b & 1) we only need K~lnb. For the third diagram
it is

Kg [1—(1/b)~ ]d —4

because the denominator is p . Similarly only ECdlnb

is necessary. Therefore we have the first recursion
relation,

2 -~-2=g b +Kzlnb+—Kqlnb .—(3.3)T' T ' T

To determine the spin-rescaling factor g, we can
either consider (1/T)k m (k)n ( —k) or follow-
ing Nelson and Pelcovits' (NP) add a magnetic
field h to Heffs

H,rr~H, rr+ g fcd(x)d~x—=H,r(+g fd~xt I ——,'[m—(x)]'——,'[m (x)]4 J . (3.4)
a a

The quadratic term (h/T) fd~x[n (x)] can be absorbed into the propagator. (h/T) fd~x[n (x)] is treat-
ed as a perturbation. We consider the recursion relation for (h /T) m . Nelson and Pelcovits'2 and Pelcovits9
have determined it in the ordered system and the RAM, respectively. The Feynman diagrams involving ran-
domness are shown in Fig. 3. Note that Fig. 3(c) does not contribute in the limit n~0 since it has a closed~2.
loop. The recursion relation for (h /T) m' is

g2b
—d

2T'
h (m —1)K~lnb h g (m+1)K~lnb g K~b g K~lnb

2T 4 1+h 4 T (1+h) 2T (1+h) 2T (1+h)

z z h h (m —1)[3k+T(1+h)]KIilnb
2T 4T (1+h)2

(3.5)
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FIG. 4. Feynman diagrams contributing to the recur-

sion relation for (6/2Ti)m„(k)e„( —k) (a+P).

FIG. 2. Feynman diagrams contributing to the recur-

sion relation for the two-point function (I/2T)m„(k)
Xmq( —k)k .

Ql
=g b + Kg}nb~z ~a+ ~z

(3.8)

b'/T' =(It/T .

From Eqs. (3.5) and (3.6), we obtain (b ~0)

g =b ~[1 , (m ——1—)(T+h)(X'glnb) ] .

(3.6}

(3.7)

The third recursion relation we need is for
(6/2T2)m H(a&p). The relevant Feynman dia-

gratns are shown in Fig 4. Figure 4(a) goes to zero

in the limit n ~0. %'e therefore obtain

By rotational symmetry (which is preserved in the
configurational averaged system} the magnetic field

renormalizes trivially as

It turns out the three recursion relations, Eqs. (3.3),
(3.7), and (3.8} are in exact agreement with Eqs.
(2.10), (2.15), and (2.17) in Ref. 9 for the RAM,
where the critical behavior is discussed in detail.
Therefore it is not repeated here.

%e make one remark about the rephca method in
the nonlinear o model. In Eq. (2.7} there are an in-

finite number of relevant and marginal operators
with the coefficients 1/T and 5/T, respectively. A
natural question arises whether they renormalize
consistently. ' We have checked (6/2T )m rr .
Indeed for tx=p and tx+p they have the same

6,' /2T' ~. It is essentially impossible in the present
formulation to check all orders in m . This point
needs further investigation. '

IV. LONG-RANGE INTERACTION

)---0

In this section we discuss the critical exponents
and scaling laws in the presence of a long-range ex-

change coupling which dies off as P
~ in posi-

tion space. As mentioned earlier, k in Heff for the
short-range case is replaced by k if the interaction
is long ranged. Therefore in Fig. 1 the wavy line

represents a factor (1/T)k, while the solid line

denotes the propagator T/k~.
Following exactly the same procedures as in Sec.

III, we consider the recursion relations for

(I/T)k~nq(k hr„( —k),
(h /T)ir„( k )n„(—k ),

FIG. 3. Feynman diagrams contributing to the recur-
2

sion relation for (h /T) m

(6/2T )m„( k )m„( —k ) .

The recursion relation for T is obtained as usual

from propagator renormalization as in Fig. 2. Fig-
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ure 2(a) gives zero again. The expression for Fig.
2(b) becomes 0

Kd{m —1} ' (4.6)

(4.1)
1/b( (p( &1 2~ d p+

Since the expression for Fig. 2(b) depends on k
analytically it has an expansion in k and has no k
term. The same is true for Fig. 2(c). Thus the dia-
grams in Fig. 2 do not contribute. We have

1
gab d ~ 1

T' T' (4.2)

(lL/T )n q( k )mq( —k )

do not contain any factors k and only Edlnb is
needed for the Feynman integral evaluated at arbi-
trary dimensionality. From Eqs. (4.2), (3.7), and
(3.8), we can obtain the following differential recur-
sion relations (e =b}:

dh
dl

= ( d+ 2—(7)h ~Kd [m 6+(m —1)T]h,
(4.3)

The second and the third relations are exactly the
same as those of the short-range case, since

(h /T)n„( k )n„(—k )

and

T*=O, 2~=0,
(r(m —1)+d—o ~ o

Kd(m —1)
'

Kd

(4.7}

The third and fourth sets of fixed points are unphys-
ical. The second set (for the pure case} has been dis-
cussed before. "' Here we consider the first set of
fixed points.

By linearizing about T~ =0,

I,~ = —(2o —d)/mKd,

and we easily obtain (d & 2o'}

Aa d ——2(r—+O{(d 20—) ) (relevant)

A r ———(r+ (d —2o )( —1/m )

+O((d —2o) } (irrelevant) .

(4 8)

(4.9)

Just as in the pure case' the line separating the
domains of attraction of the long- and short-range
fixed points is given by o.=2—gsR. On this line, A, ~
given here is equal to that of the short-range case
[Eq. (3.4) of Ref. 9].

From Eq. (4.8) we have

dT
dl

=( d+o }T+K—d(m —1)T(T~E) .
(4.4)

v= = +0{1).1 1

d —2o'
(4.10)

2CT —d
mEd

(4.5)

From these equations we can identify four sets of
fixed points,

The determination of g requires some care because
of the "dangerous irrelevant variable, " namely the
temperature. The scaling law near the fixed points
in Eq. (4.5) for the connected correlation function in
momentum space is

G, (k, T A~)=g b dg, (bk, 5Tb, h~)=b (1 (m —1—)(T~+6~)Kdlnb)G, (bk, Tb r, h~}

b[d+(m —()(2a d)lm]g {bk T—b ge} (4.1 1)

Here 5T=T—T*=T—O=T. It is trivial to see
G, (1,T',3k~)=T' as T'~0. By setting bk= 1 in
Eq. (4.11) and using Eq. (4.9), we obtain the scaling
behavior of G, (k, T,h~) as follows:

g (k T g+} k —d —((—(lm)(2n —d)g (1 Tk T Q+)
—d —(1—1/m)(2o —d) —A, &-k

(4.12}

I

Therefore we have

g=2 —o.+O((d —2') ) . (4.13)

Young has shown in (() theory that e expansion
(e=3o —d) for the RFM is different from e expan-
sion (e=2o.—d) for the pure system at order e.
Here in the nonlinear o model, we only show that to
the lowest order in e (e=d —2o. for the RFM and
e=d —o for the pure system) they are the same.
However, there is no reason to expect them to
remain identical at order e .
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Now we check the hyperscaling law by studying
the singular part of the averaged free energy
F(T,h, ) where hr =6—6». We follow exactly the
steps in Refs. 3 and 9. We have

F(T,dr)=b F(Tb orb' "), (4.14)

where A, z and 1/v are given by Eqs. (4.9) and (4.10},
respectively. Choosing h,,b' "=1,we obtain

F(T,b,, )=5„"F(TLL„,1) .

We check the behavior of F(T', 1}as T' ~0. It is
not difficult to see that Fig. 5 contributes the factor

'21,4 1

T'2 T'

The first factor 1/T' comes from the four-point in-
teraction in Fig. 2(b), (1/T' 2)i is due to the two ver-
tices of Fig. 1(c) (6=1), and four propagators con-
tribute T' . Therefore

F(T,h, )-h, f(T),
where f(0) is a finite constant. Thus the hyperscal-
ing law becomes

(d+A, r }v=2—a,

FIG. 5. Typical Feynman diagram for the free energy.
Each circle contributes a factor h, /T2.

Grinstein' has shown A, z
—— tr+—O(e') near d =3tr

and it is speculated that A, z
———0 exactly. However,

in the nonlinear a model near d =2cr, we find

Ar ———o+(d —2o )( —1/m)+O((d —2tr) ),
which is not exactly equal to —cr. In the limit

m ~~ the second term vanishes. It is probable that
A.z

———0. exactly for m~ao, although we have not
checked it.
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