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We study the effect of quenched time-independent random fields coupled linearly to the
order parameter on the dynamical critical behavior of spin systems. We assume that the
dynamics is described by a Langevin equation without conservation of the order parameter.
It is shown that the dominant fluctuations are those induced by the random fields and,
therefore, thermal fluctuations are irrelevant. This allows us to establish a relation between

this model and a quantum spin system in the presence of a quenched random field. More-

over, we find that only static exponents in D dimensions are the same as those of the pure
(D —2)-dimensional theory, but the dynamical exponent z does not satisfy this relation. The
quantum system in D dimensions is studied through its (D+1)-dimensional equivalent
model where the quenched random fields are totally correlated in the additional imaginary-
time (~) direction. The system is anisotropic, and there is a new exponent z& associated with
the scaling behavior in the ~ direction. We find the relation z =2' to all orders in perturba-
tion theory. For the zero-temperature quantum model we find that the static (zero-

frequency) exponents are the same as those of the (D —3)-dimensional pure quantum model.
At finite temperature, when the classical system is finite in the r direction, we predict a
crossover to D-dimensional classical behavior in nonstatic response and correlation func-
tions, with crossover exponent (z&v~D 2~) ', where v~~ q~ is the exponent v for the (D —2)-
dimensional pure classical system. The static correlation functions do not have this cross-
over behavior and are the same as those of the (D —3)-dimensional pure quantum model.
The dimensional shift in static quantities for both quantum and classical dynamical systems
is a consequence of a supersymmetry in the underlying field theory. The exponent

zq ——1+g+O(1/N ) in the large-N limit or z~ ——1+cg+O(e ) in the e expansion where

c = l —
~ [(N+2)/(N+8)t]e and rt is the same as in the (D —2)-dimensional pure classical

system. We also study the above classical random-field Ising problem using the interface
approach, but are unable to draw any definite conclusion about the dynamics at the lower
critical dimension D =3.

I. INTRODUCTION

The study of the static critical behavior of spin
systems with quenched random fields coupled
linearly to the order parameter has been the subject
of recent work. ' It has been recognized that the
leading contribution to the critical behavior arises
from diagrams which are treelike before averaging
over the random field, and that order by order in
perturbation theory these diagrams in D dimensions
are identically equal to the corresponding diagrams
for the pure case in D —2 dimensions.

This dimensionality shift by 2 has been shown to
be a consequence of a hidden supersymmetry in the
Lagrangian field theory. More recently, this result
was extended beyond perturbation theory using the
supersymmetric model.

The tree diagrams mentioned above are generated
by the classical equations of motion, and the loop

expansion arises after averaging over the random-
field probability distribution. This means that the
relevant fluctuations are due to the random fields
and thermal disorder is irrelevant.

In this paper we try to understand whether these
features of the static critical behavior in the presence
of quenched random fields hold also for the case of
the dynamical critical phenomena of spin systems
coupled to time-independent quenched random
fields. We analyze the simplest dynamical model
without conservation of the order parameter,
described by a Langevin equation of motion. '

Several interesting questions arise in this case. In
the first place we note that the Langevin equation is
first order in the time derivatives and that this will
certainly make it difficult to find a supersymmetry
transformation in the Lagrangian, for which
second-order derivatives are required. In dynamical
critical phenomena, correlation and response func-

27 5557 1983 The American Physical Society



5558 DANIEL BOYANOVSKY AND JOHN L. CARDY 27

tions are related by the fluctuation-dissipation
theorem, and this may be modified if again thermal
disorder is shown to be irrelevant, and only fluctua-
tions of the (time-independent) random fields are re-
sponsible for the critical behavior.

We will show that this problem of Langevin
dynamics is closely related to a model recently pro-
posed by Aharony, Gefen, and Shapir' (hereafter
AGS) to study the critical properties of a D-
dimensional zero-temperature quantum spin system
in the presence of random fields.

In AGS the equivalent (D + 1}-dimensional classi-
cal system, with the random field infinitely correlat-
ed in the new r (imaginary-time) direction and un-
correlated in D dimensions, is studied. Again it is
argued that the most infrared divergent diagrams
are treelike before averaging over the random-field
configurations. They calculated the lowest-order
contribution to the spin-spin correlation function
and concluded that there is a dimensional shift
D~D —3. Their analysis led them to conclude that
at finite temperature when the classical (D+ 1)-
dimensional system is finite in the (imaginary-) time
direction 0&r&P= llkT, there is no quantum-to-
classical crossover. In Sec. II we investigate this
further and conclude that zero-frequency (static)
correlation functions like J dr(S(x, r)S(x', 0) do
not have crossover behavior, and their critical prop-
erties are the same as the (D —3)-dimensional quan-
tum system. Therefore the dimensional shift
D~D —3 holds for static correlation functions.
However, nonstatic response or correlation functions
like the equal-time correlation function
(S(x,r)S(0,r) ) do have a crossover behavior to that
of a classical D-dimensional system. We find that
the fact the random field is totally correlated in the
z direction makes the system anisotropic, space and
time scale in a different way, and there is an ex-
ponent zz that characterizes this different scaling
behavior. " There are different correlation lengths
in space and time, and for the system with finite
thickness P in the r direction, we expect two dif-
ferent behaviors if the correlation length in the r
direction g, is smaller or larger than P. When
g', «P we expect the system to behave as if it were
infinite in v; namely at T=O, therefore pure quan-
tum behavior. For g, »P the classical system will
behave as if it were D dimensional (T~ ao },and we
expect classical D-dimensional behavior. This cross-
over will take place when g,=P, and we find the
crossover exponent is (z~v~~ q~) '; v~~ 2~ is the ex-
ponent v for the (D —2)-dimensional classical pure
system.

As it was pointed out before, the most divergent
contributions arise from tree diagrams before
averaging over the random field. These diagrams

are generated by the classical equation of motion
which is second order in the time derivatives. At
this point, one is tempted to draw a similarity be-
tween this equation of motion and the Langevin
equation. However, there are substantial differ-
ences: The latter involves a Gaussian noise and
first-order derivatives in time and, therefore, the
perturbative expansion involves retarded propaga-
tors and also averages over the random (Gaussian)
noise.

In Sec. III we analyze the Langevin dynamics of a
spin system without conservation of the order
parameter and linearly coupled to a time-
independent quenched random field. We show that
the infrared behavior is dominated by diagrams that
only involve the average over random fields and,
therefore, the noise term can be neglected. Since the
random field is time independent the perturbative
expansion is in terms of nonretarded propagators.
We find a dimensional shift D+D —2 for static ex-
ponents, and the dynamical exponent z is related to
zz of the AGS model byz=2zz. In Sec. IV we cal-
culate the exponent zz and show that it is related to
the static exponent g up to order e in the e expan-
sion, and up to order 1/1V in the large-N limit. We
find zq ——1+cd)+O(e },where

3 /+2c= 1 ——
4 (N+8)'

and zz ——1+r}+O(1/N ), where i) is the exponent
of the (D —2)-dimensional pure system. The rela-
tion between z~ and g is a consequence of a symme-
try of the Feynman diagrams to that order.

Section V is devoted to a discussion of the physi-
cally interesting case of the dynamics for Ising-type
systems with random fields for D=3. The statics
are described by the interface model of Kogon and
Wallace, ' and we propose a Langevin equation to
study the dynamics. However, the theory is highly
nonlocal in time and the interactions are nonpolyno-
mial. It is not clear to us if the model is renormaliz-
able and we are unable to draw any conclusions
about the dynamical exponent.

In the Appendix we discuss technical details of
the supersymmetry involved, and the Fourier
transform in superspace is introduced. The dimen-
sional shift by 2 is proved using the superpropaga-
tor.

II. QUANTUM SYSTEM

The correspondence between a D-dimensional
quantum spin system at zero temperature with un-
correlated random longitudinal field, and a (D + 1)-
dimensional classical system with a random field
uncorrelated in D dimensions but infinitely correlat-
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ed in the new (imaginary-} time direction has been
studied by AGS. ' The classical system is described
by a Ginzburg-Landau free-energy functional

F= f dnx [—,(Vlp)2+V(lp)+hip] .

Before studying the (a+I)-dimensional problem
with time-independent fields, we will survey the
main features of the "static" D-dimensional classical
system with uncorrelated random fields. Looking at
the perturbative series it has been argued that the di-
agrams that contribute most to the critical proper-
ties are those that are treelike before averaging over
the fields. Upon averaging, the loop expansion is
generated and two "branches" of the tree diagram
are joined together giving rise to a squared propaga-

I

tor. The tree diagrams are generated by the classical
equation of motion,

—V {p+V'(lp)+h =0,
with

(2.1)

((h (x}))=0, ((h (x)h (x') )) cc 5(x —x'), (2.2)

where enclosure by the double angular brackets
stands for the quenched average generated by the
probability distribution,

P[h]-exp ——, f h (x)d~x (2.3)

Using standard techniques, ' ' we can write

({p(xi) {p(x„))-f &h S'lplp(xi) {p(x )5( —V lp+V'(lp)+h)

(2.4)

)&det[ —V +V"(lp)]exp ——, f h (y)d y

The 5 function can be replaced using a response field y, and the determinant can be written using anticommut-
ing scalar (ghost} fields f and 1(l. After integrating over the random field, one is led to

(lp(xi) lp(x„})—f &lp&lp8'/exp —f d y&[p, lp, f] lp(xi) lp(x„),

with

, t +lp[ ——V t+ V'(—t)]+/[ —V + V "(t)]g . (2.5)

5lp = QE~xil 1p—, Sp =2Q Eil Oil, g,
5/= 0, 5f//= 0 (epx~lp+ 2E~Blllp),

(2.6)

where a is an infinitesimal anticommuting number
and e„an arbitrary vector.

These authors then introduce a superspace charac-
terized by D commuting coordinates x„and two an-
ticommuting coordinates 8,8 with the property

8 —8 —88+88—0

and the superfield

4(X,8,8)=q&(x)+8/(x)+g(x)8+88'(x) .

(2.7)

(2.8)

The above derivation assumes the uniqueness of
the solution of (2.1). While this may not be justified
in general, we are concerned only with demonstrat-
ing a perturbative result. Within perturbation
theory, the solution is unique. In fact, the Feynman
diagrams corresponding to (2.5) reproduce, order by
order, the most-infrared-singular diagrams of the
original problem. It has been noted by Parisi and
Sourlas that this Lagrangian is invariant under the
unexpected supersymmetric transformations,

The change in the superfield under the transforma-
tions (2.6) can be written as'

54(X,8,8) =aeqQq@(x, 8,8),
a aQ„= 8 —x„

(2.9)

Clearly Q„ is the generator of superrotations in the
[x,8,8I superspace. In terms of the superfield, the
action in (2.4) can be written as f d8d8&ss[4],
where

Wss[lP] = ——,lPhss@+ V(lP),

a'
.~ss=~ +-

a8a8

(2.10)

The invariance of (2.10) under the transformations
(2.9) allow Parisi and Sourlas to prove the dimen-
sional shift D~D —2 to all orders. In the Appen-
dix we introduce the Fourier transform in super-
space and prove the dimensional reduction in
momentum space.

Let us define anticommuting variables a,a conju-
gate to 8,8 with the property, '
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f da=0= f da, f daa= f daa=1,
(2.11)

a =a =aa+aa=o.
The superpropagator in momentum superspace is
(see Appendix)

Gss(k, a,a)= =G(k)+aa aG(k}
k +aa ak2

(2.12)

where G(k) = I/k is the propagator for the classi-
cal pure system. The rules for perturbation theory
in momentuin space are (a) conserve k, a,a at each
vertex and (b) to each loop associate f d kdada
with the rules (2.11). In the Appendix we show that
to every order in perturbation theory, the contribu-
tion of each graph is the same as that of the same

graph in the pure (D —2}-dimensional system. Let
us study the AGS model in this context. The
(D + 1)-dimensional classical theory is again
described by a classical equation of motion with a
random field,

therefore infinitely correlated in the ~ direction. We
can repeat the steps leading to Eqs. (2.4) and (2.5)
and end up with the Lagrangian density

W= ——, f dr' y(r')q&(r)

a2
+y — —V p+ V'(y)

a

a2
+i7 — -V'+V"(q) 1{

a

(2.14}

We then see that the first term is nonlocal in time
as a consequence of the time independence of the
random field. This anisotropy in the theory does
not allow us to write a symmetry transformation of
the type given by Eq. (2.6). However, we can still
formally write the action in terms of the superfield
(2.8), and we find

f d~x drd8d8 &[4],
where

with

a2

a
y —V y+ V'(p)+h =0, (2.13)

——,e(a,'+V')e+ V(e) . (2.15)

((h(x))) =0, ((h(x)h(x'))) ~5(x —x') .

In this case the field h is time independent and

I

It is easy to see that the free propagator for this
theory is given by

G (x x', t t', 8 8—') =——exp[ik (x x') +ice(t —t—')] 5(co), — —, 1+ (8—8')(8—8') dk cfco .
(co +k ) (co +k )

aa5(co) 1

(~2+k 2)2 (~2+k 2)
(2.17)

Since the propagator is anisatropic we expect corre-
lation functions to scale differently in the time
direction. We then introduce an anisotropy parame-
ter yo (Ref. 17) which will be nontrivially renormal-
izcd:

G(co,k, a)= 1

ysc0 +k +aa5(co}
(2.18)

The rules for the perturbative expansion are analo-

Performing the transform defined in the Appendix,
we find, in momentum superspace,

G(co, k, a)= 1

co +k +aa5(co)

G,tt(k, a)= 1

k +aa
(2.19}

which is the same propagator as (2.12), and the ar-
guments given in the Appendix for dimensional
reduction as a consequence of supersymmetry hald

(2.16)

I

gous to aforementioned (a) and (b), except that

f ddkdcodada now corresponds to each loop. It
can be seen that every internal f dada brings a
factor 5(co} that cancels the internal f dc0, so that
all internal frequencies vanish and only the external
frequencies flow through the diagram. It is then im-
mediately realized that when the external frequen-
cies vanish (static limit) the correlation functions
can be constructed in perturbation theory using the
effective prapagator
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KBlnpg

BK
(2.20)

where fp stands for the infrared-state fixed point
and a is some momentum scale. ys is defined (in
minimal subtraction}' by

ar„,,
Bco

=yg+ . , I „- =Z I-

(2.21)
ar„,-,

+ ~ ~ ~

Bk

where the ellipses stand for unspecified finite terms.
The response function obeys the renormalization-
group equation (RGE) at the critical point

in this case.
We conclude then that static correlation functions

in D+ 1 dimensions are the same as the correlation
functions of the (D —2)-dimensional pure classical
system and this means a dimensional shift
D~D —3 for the quantum system. However, this
result does not hold for time-dependent correlations.

In the models described by (2.5) and (2.14), the
response functions are

G- = (f&(x,r)y(x', r') ),
whose inverse is the one-particle-irreducible (1PI)
I - . It is easy to show by power counting' ' that
near D=6 [for V(p) -qr ] there is one more quanti-
ty to be renormalized besides the wave function and
coupling constant. This is the anisotropy parameter

yo which is related to BI - /Bco, whose divergences
will not be canceled by wave-function renormaliza-
tion because the full correlation function is anisotro-
pic. For the scaling behavior of response functions
we will need the quantity

(2.24}

I' - (O,p)-rr@(pg), (2.26)

and this then implies the dimensional shift
D~D —3 for the quantum system and therefore no
crossover, according to the arguments of AGS.
However, equal-time response or correlation func-
tions will have this crossover:

J d~rs&q, (~,p)-t g, 'c(pg) . (2.27)

when g, »P, Eq. (2.27) will no longer be valid, and
in this case we expect D-dimensional behavior.

where t [=(T T,—)/T, ] is the reduced temperature

and g is the correlation length g=t ", g,=g", and

y and v are the usual exponents for the classical
(D —2)-dimensional pure system since these are
static (co =0) exponents.

If we consider the original quantum system at fin-
ite temperature T, the equivalent classical system is
finite in the imaginary time direction with thickness
P= 1/kT (k=Boltzmann's constant}. If the correla-

tion length in the time direction g,=g is such that

g, &&P, the system behaves as if it were infinite in
this direction, indeed like a T=O quantum system.
In the other limit when g, »P the system behaves
as a D-dimensional classical system (T~ co ), so that
we expect a crossover behavior for the finite-size
system when g,=P. In terms of the coupling U of
the original quantum system [t=(U —U, )/U, ],

~U U~ T (2.25)

Following Ref. 17 we define the crossover exponent
as (Z~v~n 2~) ', where v~D q~ is the exponent v for
the (D —2}-dimensional pure system.

We can solve the RGE for other correlation func-
tions and we observe that the scaling function will
be of the form given in (2.24). We then find that the
static response or correlation functions do not have
crossover behavior, indeed for the response function

where gz is the renormalized coupling constant.
The solution of (2.22) in the scaling regime is

I ~- (a),k)-k
k A

(2.23)

where 4- is a universal dimensionless scaling func-
tion and zq ——1 —g~/2. We can solve (2.22) away
from the critical point and find'

Xr„- (~,k,gs, y, ,~)=0,
(2.22)

Bgg 81nZ~
pg =K, yy= K

BK BK

III. DYNAMICS OF SYSTEMS
WITH QUENCHED RANDOM FIELDS

In this section we study a simple model to
describe the dynamics of spin systems in the pres-
ence of a time-independent (quenched) random field.
The simplest description of the kinetics is in terms
of the Langevin equation without conservation of
the order parameter ' ':

y, = — +g(x, r),a~ s~ (3.1)
at

where yo is the inverse of the diffusion constant (for
the model without conservation), A is the free-
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energy functional, and f(x, t) is a random Gaussian
noise with correlations:

( i—yoco+k }q&0(k,co}=—h (k,co)+g(k, co) .

(3.4')
(g(x, r) & =0,
(f{x',t')g(x, t) & =2yo5(x —x')5(t t'), —

P = f d x[(Vp) + V(q&)+h(p],

((h (x)h (x') » -5(x —x'),
so that (3.1) becomes

y, = —[—V'yy V'(q )+h]+g(x, r) .
at

(3.2)

(3.3)

(3.4}

We identify Go(k, co) =( —iyoco+k )
' with the (re-

tarded) free response function.
The free correlation function is given by

( ((yo(k, co)(po( —k, —co) » &

2yo+ 5(co )
(3.5)

~

—icoyo+k

This stochastic equation can be written as a field
theory with a Martin-Siggia-Rose Lagrangian. ' '

However, we prefer to study it in a simpler way by
means of the iterative perturbative expansion. To
carry out this expansion we need the free response
and correlation functions, the free terms in (3.4) cor-
responding to V'(y) =0,

We note that the first term in (3.5) is a consequence
of the fluctuation-dissipation theorem, but the
second is not and is completely due to the fluctua-
tions induced by the random field. For definiteness
we study the case of V(y)=(ll, /4!)q&, but the fol-
lowing arguments are general and do not depend on
the form of V(y}. Equation (3.4}can be written as

A
qr(k, co) =go(k, co) — Go(k, co—) f dk~dk2dco~dcoqp(k~, co~)(p(k2, co2)q&(k —k& k2, co c—o~ —co,—) . (3.6)

Equation (3.6) is represented in Fig. 1. The itera-
tion of this formula generates tree graphs where the
branches are qo's. Averaging over noise and random
field means that the branches must be contracted
pairwise in all possible ways and each contraction is
given by (3.5). The diagrams must be ordered in
time because of the retarded nature of the response
functions. However, we recognize from (3.5) that
the most infrared divergent contributions arise only
from the average over the random field. Indeed,
when the contour integrals on the co's of the internal
loops are performed the noise term in (3.5) contri-
butes with its residue at the (causal) poles -1/k,
whereas the term proportional to 5(co) yields a fac-
tor -1/(k ) . So the most infrared contributions
come from the average over the random fields, and
therefore we can neglect the noise term altogether.
This also implies that the internal-loop frequencies
vanish and the external frequencies flow freely
through the graph. The intermediate states are
nonretarded. This is clear since retardation was a

FIG. 1. Graphical representation of Eq. (3.6) in the
text. Thin lines correspond to yo, thick lines to y, and a
line with an arrow to Go. The vertex is —A./3!.

consequence of the fluctuation-dissipation theorem
in the intermediate states, and this was overridden
when we dropped the noise terms. This is analo-
gous, then, to the model described by (2.14), and
indeed the reader can be convinced that 1PI dia-
grams for response and correlation functions can be
generated with the following rules: (a) Draw the
corresponding 1PI diagrams for the pure system; (b)
to each internal line associate a propagator

6 (k, co,a)= [icoyo+ k +aa5(co)]

where the properties of a,a are given by (2.11); (c) at
each vertex conserve k, co and a,a; (d) to each loop
associate f dokdcodada. It is clear to see that
with these rules, integration over a,a in internal
loops will generate all possible pairs of contracted
branches with a factor -1/(k ) and a factor 5(co)
that cancels f dco, the response functions being cal-
culated for external a=a=0. Again in the static
limit (when the external frequencies vanish) we ef-
fectively generate the perturbative contributions us-
ing the propagator {2.12). We recover the supersym-
metry in the form given in the Appendix and, there-
fore, the dimensionality shift D~D —2. However,
nonstatic response or correlation functions do not
bear this property. The theory is anisotropic in the
time direction, and by the same power-counting ar-
guments as before we expect one more quantity to be
renormalized, namely the diffusion coefficient yo as-
sociated with ar,„/5( —ico), where I'„ is the 1PI
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response function kernel, with

(3.7)

where the ellipses stand for unspecified finite terms.
If we define in (2.21) and (3.7)

XR 70 y }R 70 y (3.8)

we then recognize Z& ——Z-.y y'
Solving the ROE obeyed by the response kernel in

the scaling regime, we find

r,"„(k,a))-k ~X

KBlnfgz=2— 2'
BK fp

(3.9)

where zz is given by (2.22). The equality z =2z„ is a
consequence of Z„=Z in (3.8). We see then that
the dynamical exponents of Langevin kinetics and
the AGS model are indeed simply related, and that
the static exponents in D dimensions are the same as
those in D —2 dimensions for the pure system.

IV. CALCULATION OF zq

In the previous sections we have shown the rela-
tion between the dynamical exponents of two dif-
ferent models. The calculation of these exponents
would involve the setup of the perturbative expan-
sion and renormalization-group apparatus. How-
ever, in this section we show that we can calculate
the dynamical exponents easily up to order e in the
e expansion or order 1/N in the large-N liInit, with
the knowledge of the static exponent q up to this or-

der. This is a consequence of an unexpected symme-

try in a certain set of Feynman diagrams.
Even though we do not know of any physical real-

ization of an ¹omponent spin system coupled to
quenched random fields, the large-N expansion is
interesting in its own right. It provides an interpola-
tion between the upper and lower critical dimen-
sionality of the system and complements the e ex-
pansion. In our case it will provide us with results
which can be translated to the e expansion up to or-
der e . We will begin by looking at the diagrams in
the large-N limit. The order parameter now is an
S-component vector tp. Equations (2.1) and (2.2)
now read

—V P; —V;, (q&)+h;=0,

((h;(x) && =0,
((h;(x}hj(x') )) ~ 5 15(x —x'),

(2.1')

(2.2')

where the potential V(y) is 0 (N}-invariant,
V (y)=5V(y)/5y;, and h is an ¹omponent vec-

tor. Hereafter we denote by a crossed propagator
the quantity BG(k)/Bk [G(k)=1/k ]. If we apply
the rules (a) and (b} given in Secs. II and III, we see
that every diagram has a distribution of crossed
propagators such that when they are split open, the
diagram is treelike (Fig. 2). In the large-N limit, the
first nontrivial contribution to I - is of order 1/N
and is given by a series of "string-bubble" diagrams
(Fig. 3), where for rn bubbles we have m + 1 crossed
propagators. We can either have one cross in each
bubble and one cross in the lower line, or one bubble
with two crosses and none in the lower line. Let us
analyze for a diagram with m bubbles the contribu-
tion when one particular bubble has one and two
crosses [Figs. 4(a)—4(c)] and the distribution of
crosses in the rest of the diagram is fixed.

For each particular diagram, we redefine the loop
momenta in such a way that the external momen-
tum p flows along noncrossed lines, denoting a cir-
cled propagator by BG (k;,p)/Bp and using

a (p —k (
—k2) +p —(k( +k2 )

2 G(p —k) —k2) =G'(p —k( —k2)
Bp 2p

(4.1)

To calculate the exponent g we need the wave-
function renormalization constant Z+ which (in
minimal subtraction) is obtained imposing
BI ~(p)/Bp =1 plus finite terms, as @~0, where I
is the response function. Now take the partial
derivative with respect to p of the diagrams in Fig.
4, to be evaluated at co =0 and look at the contribu-
tion where circled propagators are distributed as in

I

Fig. 5. After some change of variables we find that
the sum of diagrams in Fig. 5 amounts to (at exter-
nal co=0)

G'(k4) G'(k ( +kz —k4)G'(p —k) —kz )F(k, +kz ),
where G'(k)=BG(k)/Bk and F is a function that
describes the distribution of crosses in the rest of the
diagram. In order to compute zz for the AGS
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k, k~ k~ k5
4J) p

FIG. 2. Third-order contribution to I- . Lines with

crosses stand for BG(k)/Bk'.
p-k[-kq

(a)

model, we need BI /Bco . Looking at the structure
of the propagator we see that

aG(k, ~) aG „
BC0 Bk

so that taking 8/Boo means inserting another cross.
Note that the external frequencies co flow along the
noncrossed lines. Again looking at diagrams in Fig.
4, when we take [t)rh)rp')„p, circles are replaced
by crosses in Fig. 5, and the sum of these three
terms gives

3G'(k4)G'(ki +kg —k4)G'(p —ki —k2 }F(ki+k2)yp .

This analysis can be carried out for every bubble in
the diagram, and for any string-bubble diagram. We
then conclude

(b)

(c)

FIG. 4. (a) and (b) are contributions with one cross per
bubble; (c) is one bubble with two crosses.

we get

—3'
8co p BP p

(4.2} ya =yp(3 —2Z+) .

From the definition (2.20}we then find,

(4.5)

where I I stands for the loop corrections to the
response kernel [clearly (4.2} does not hold for
zeroth order]. In the minimal subtraction scheme
we can write (g equals the coupling constant)

ar
Bco

=yp 1+ga„(e)g"

A 2Q
3Z-"-2 '

4l) p

(4.6)

ar I+$z.(e)g" +
Bp

(4.3)

where the ellipses represent unspecified finite terms.
From (4.2), a„(e)=3z„(e). If we define

ya ——ypZ~ 1+pa„(e)g"

(o)

Z~
' = I+gz„(e)g"

(4 4)

(b)

m2

FIG. 3. String-bubble diagram with m bubbles.

(c)

FIG. 5. Derivative t}/Bpi
~ s of the diagrams of Fig.

4 circled propagators stand for BG (k&,p)/Bp .
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2cri+—0(e ), z„=1+cd+0(s4},
3 1V+2c= 1 ——
4 (N+8}'

(4.8)

Again since (4.2) holds only for diagrams contribut-
ing up to 0(e ), and since 2} starts at 0(e ), we only
need Z~ up to 0 (e). Since 2} is a static exponent, it
is the same as in the pure (D —2}-dimensional classi-
cal model. We predict, for the (N =1}Ising model,
that zq ——I+(0.0185}e +(0.0182)e +0(e ). A
Pade extrapolation for @=3 yields zz -0.92 for the
D =3 Ising model.

V. CRITICAL DYNAMICS FOR ISING
MODEL WITH RANDOM FIELDS

IN THREE DIMENSIONS

The static critical properties of Ising-type systems
have been studied by Wallace and Zia in the con-
text of the interface model. These authors argued
that deviations from a planar sharp interface (capil-
lary waves) are analogous to the spin waves for a
continuous-spin system; a field-theoretical analysis
of these Goldstone modes indicated that the lower
critical dimensionality for Ising-type systems is 1.
The Hamiltonian that describes the interface model
is invariant under Euclidean rotations which
amount to a rigid rotation of the surface (and also
under translations of the interface). This invariance
is responsible for the renormalizability of the model.

where Z+" is the value of Z+
' at the infrared-

stable fixed point. But in the large-N limit,
Z+ "-1+0(1/N), and since vi= 0 (1/N},

g'„= —2ri+0(1/N ), z„=1+2}+0(1/N2) .
(4 7)

We should not keep 0(1/N ) terms because relation
(4.2) only holds for string-bubble diagrams.

In the e expansion the first two corrections are of
the form of string-bubble diagrams (Fig. 6) and rela-
tion (4.2} holds for these graphs, so we can use (4.6)
to order e. However, one might worry about the
universality of Z+ ". Indeed, this function depends
upon the renormalization scheme, but to 0 (e}, this
function is universal as it is the first nontrivial order
in the renormalization-group P function. To order
e we then find

F=fd x[(Vy) +@2(qP 1)2] . —(5.1)

In the low-temperature limit p ~00, the saddle-
point contribution corresponds to the solution to the
classical equation of motion. In order to take into
account the fluctuations of the interface, the field
configuration is

z —f(x)

[1+ ( Pf )2)1/2 (5.2)

Indeed Ward identities ensure that the field does not
acquire an anomalous dimension, and therefore only
renormalization of the temperature variable is need-
ed. The model has been studied away from the criti-
cal dimension in the e expansion (e=D —1).

More recently, Bausch et al. have studied the
dynamics of the interface model. They recognized
that the Langevin equation must be modified to take
into account the Euclidean invariance properties
mentioned above. Their model is therefore re-
normalizable and they computed the dynamical ex-
ponent z in the e expansion.

The question of the lower critica1 dimensionality
of the Ising model in the presence of a quenched
random field has raised much controversy. On the
basis of the supersymmetry argument of Parisi and
Sourlas this dimension is expected to be D, =3, but
Imry and Ma argued that D, =2. They found that
below D =2 there is an instability in domain forma-
tion, even at T=0. With the use of the replica
method Pytte et al. showed that D, =3. Subse-
quently, Kogon and Wallace' studied the supersym-
metric generalization of the interface, and they con-
cluded that D, =3, and that the critical behavior in
D =3+@ is the same as that of the D =1+@pure
interface as a consequence of this supersymmetry.
More recently, an argument for D, =3 has been
given by Cardy, where in the context of the super-
symmetric model he found topological configura-
tions akin to the domain wall for D =1, whose ef-
fect is to disorder the system at any finite random-
ness.

Our aim here is to study the kinetics of the Ising
model with a random time-independent field at the
lower critical dimensionality D, =3 using the inter-
face approach. Following Wallace and Zia we start
from a Ginzburg-Landau free-energy functional,

&r
FIG. 6. String-bubble diagrams that contribute up to

third order to I - .

where the field f(x) represents the deviation from
planar interface and x stands for (D —1)-
dimensional components perpendicular to the inter-
face. A random field in (5.1}corresponds, after sub-
stituting (5.2) to a term,
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Hy= fd 'xdzh(x, z)P,
[ l + (ff)2]1/2

(5 3)

in the Hamiltonian. Therefore the effective Hamil-
tonian describing the long-wavelength phenomena is

H== fd~ 'x[1+(Vf)2)'/2+HI
T

(5.4)

with

((1(x,z) && =0,
((h(x,z}h(x',z'))) ~5{x—x')5(z —z') .

(5.5)

The kinetics of this system with a nonconserved or-
der parameter is described by the Langevin equation
proposed by Bausch et al.

df 5H= —A,~g +g(x, t),at

g(x, t)= 1+ [7f (x,t)]',
(g(x, t)g(x', t') ) =2k,v g 5(x x')—5(t t'—) .

(5.6)

If we want to study the system at the lower critical
dimension D, =3, one might argue that we should
expect Gaussian exponents and therefore z =2.
However, we should bear in mind that in order to be
able to say so one has to prove the renormalizability
of the theory.

In what follows we will show that the theory de-
fined by (5.3)—(5.6) is by no means easy to analyze,
since highly nonlocal and nonpolynomial interac-
tions arise due to the fact that the random field is
totally correlated in time. Following Martin-
Siggia-Rose theory we write (5.6) in terms of a
dynamic generating functional. Introducing a
response field f, and averaging over the noise leads
to

(f(x,t)f(x', t')) =fS'f SfS'h exp —fd 'xdt xv gf'+—f f +)L,vg

—fdD 'xdzh (x,z) f(x,t)f(x', t') .

peeo~ing the integration over I in (5.7) we get the following te~ in the exponential:

F(x,t)= fdt'Vg(x, t)v'g(x, t')f(x, t)f(x, t')

(5.7)

(5.8)fX dz tc
5 z f(x,t) 5tc— z —f(x, t')

5f(x, t)
' v'g{x, t) 5f(x, t') v'g(x, t')

We can go a step further and argue that, at T=0, the interface is nearly sharp and we can approximate y,'(z)
by 5(z) plus terms with higher powers of T; then (5.8) reduces to

F(x,t}=fdt'&g(x, t)f(x, t)f(x, t')5 (5.9)
&g (x, t')

Either (5.8} or (5.9) are highly nonlocal in time,
and the time-dependent interaction is nonpolynomi-
al. A perturbative analysis does not seem possible,
and we do not see a way of proving the renormaliza-
bility, or even to understand whether the zero-
frequency (static) limit of the theory corresponds to
the well-known results. These complications do not
allow us then to affirm that we should expect z =2
at D, =3. We believe this point deserves to be inves-
tigated in greater detail and further work should be
aimed in this direction.

VI. CONCLUSIONS
In this paper we have studied the effect of

quenched random fields on quantum spin systems

and on critical dynamics of classical spin systems.
The former has been considered through the
equivalent classical spin model in one more dimen-
sion, imaginary time, with the random field totally
correlated in the time direction. We proved by using
supersymmetry arguments that time-independent
correlation functions in D dimensions are the same
as those of the (D —3)-dimensional pure quantum
problem to all orders in perturbation theory. How-
ever, time-dependent correlation functions behave
differently, and do not bear this property. More-
over, the anisotropy of the system forces us to intro-
duce an anisotropy parameter that is nontrivially re-
normalized, giving rise to a new exponent zz, which
describes the scaling properties of nonstatic response
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and correlation functions.
Our conclusions with respect to the static

behavior agree with those first obtained by AGS. '

However, in that paper no reference was made to the
possibility of anisotropic scaling or to the failure of
dimensionality reduction for nonstatic quantities.

The correlation length in the time direction is

g,=t " ' ", where v~n 2~ is the exponent v for
the (D —2)-dimensional classical pure theory. At
finite temperature, when the classical system is fin-
ite in the time direction with thickness P= 1 lkT, we
expect a finite-size crossover when g,—P from
quantum behavior for g, «P to a D-dimensional
classical behavior for g, «P. The crossover ex-
ponent is (zqv~n 2~} '. We predict that this cross-
over can be observed in nonstatic correlation func-
tions like equal-time spin-spin correlation, but static
(zero-frequency) quantities do not have crossover
behavior.

The dynamics of the spin system in D dimensions
with a quenched (time-independent) random field
without conservation of the order parameter is
described by a Langevin equation. We pointed out
that the most infrared divergent contributions arise
from fluctuations in the random field and that the
noise term is irrelevant. This allowed us to prove
that the static exponents are the same as those of the
(D —2}-dimensional pure system to all orders in per-
turbation theory, again as a consequence of the su-
persymmetry recovered in the static (zero-frequency)
limit. It was also recognized that the perturbation
expansion for the time-dependent response functions
was related to all orders to those of the quantum
system mentioned above, and this allowed us to find
the dynamical exponent z =2z&.

We also calculated the exponent zz, which up to
order e in the e expansion (e =6 D), or up t—o order
1/N in the large-N limit, is related to the exponent

We find, for N =1, that zq ——1

+(0.0185)e +(0.0182)e +O(e ). A Pade extrapo-
lation yields zz -0.92 for @=3.

Finally, we looked at the dynamics of an Ising-
type system coupled to a time-independent quenched
random field, using the interface model at the lower
critical dimensionality D, =3. One would naively
expect a Gaussian dynamical exponent z =2, con-
sistent with the estimate given above. However, we
show that the underlying field theory is far from be-
ing trivial and the infinite correlation of the random
field in the time direction brings highly nonlocal
and nonpolynomial interactions along this direction.
A perturbative analysis was not feasible and we were
not able to draw any conclusions about the renor-
malizability of the theory, and therefore the value of
the dynamical exponent z.
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APPENDIX: FOURIER TRANSFORM
IN SUPERSPACE AND DIMENSIONAL

SHIFT

In this Appendix we develop the perturbative
rules in momentum superspace. If we introduce the
variables a, a conjugate to 8,8 with the Grassmann
algebra

a =a =aa+aa=0,

fda= fda=0,

fdaa= fdaa=l,
(Al)

The superpropagator can be read off

G„(k,a}= 1

k +aa
(A6}

This propagator can also be found performing the
transforms (A2) and (A3) in the Green function

4{( x, 8)@(x', 8)) that can be computed from the
field components

and define the Fourier transform in anticommuting
variables as

@F(a,a)=fd8d8exp[i(a8+Ha}]4(8, 8},
(A2}

the following property follows:

fd8d8exp[i (a8+Ha)]=aa=5(a)5(a) .

The superspace Fourier transform is

e(x,8,8)=f exp( —ikx)exp[ i{a8+8—a)]@~(k,a) .

(A3}

The quadratic part of the Parisi and Sourlas su-
peraction is

AF= fdxd8d84(x, 8) —4— e(x,8} .
a'

aerie

(A4)

Using (A 1)—(A3) we find

A, =fdk dada@, (k,a){k +aa)4, ( k, a) . — —

(AS)
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(4(x,8)ip(x', 8) ) =fdk exp[ ik—(x —x')] +(8—8')(8—8')
(k) k

G„(k,a) =fd(x —x')d(8 —8')d(8 —8')

(A7)

Xexp[ik (x —x')exp{ i [a(8—8')+(8—8')a) {(4(x,8)4(x', 8') }
we find (A6).

We can compute the transform (A3} for the superfield given in the text, and we find

(ipse(k, a}ipse(k', a') ) =G„(k,a)5(k +k')5(a+a')5(a+a ') .

(A8)

(A9)

To all orders in perturbation theory we can read off
the field components Green functions by looking at
the coefficients of a,a'. Indeed the supersymmetry

1

k&~k& ——,e„(aa+aa),

a~a+a„k„a,
a~a+ e&k&a,

(A10}

(p(p) -aa+a 'a',

(itii7~) -aa'+a 'a,

(pp) -aaa 'a' .

(A 1 1)

Here the relational operator "-"stands for "coeffi-
cient of";so we see that the momentum dependence
of (yp) and (fg} are the same and the response
function (year) is found setting the external a vari-
ables to zero.

To prove the dimensional shift by 2 we follow the
steps of Ref. 22, and we write the momentum
k =(k,q), where k is a (D —2)-dimensional vector
and q is a two-dimensional vector. To every order
we find an expression of the form

L
I( p )=f gdk;da;da;F( p, k;,q;,a;,a;},

(A12)

with a,a anticommuting variables, ensures that the
full Green function is of the form

G(ki+aa}5(k+k')5(a+a')5(a+a '),
where k,a,a' are external variables, so that

XF(p,k;,qi, a;,a;) . (A13)

This quantity is a supersymmetric invariant there-
fore it is of the form J(p, k;,qi+aiai) and

L
I(p)= fgdk; fd qidaidaiJ(p, k;,qi+aiai)

i=i

BJ(p,k;,qi)
dk; dqi

i=i 5qi

=fdkiJ(p, k;,0) . (A14)

We can integrate over all q s in the same way and
we find

L
I(p )=f ffd k;F( p, k; ) . (A15}

This is the expression we get for the pure system in
D —2 dimensions; indeed, F(p, k;) is a product of
propsgators G (k).

where p are a set of external momenta and chosen
to be defined in a (D —2)-dimensional space, and F
is a product of superpropagators (A6), and L is the
number of loops in the diagram considered. The su-
pertransformation (A10} can be cast in terms of the

q s choosing e& to be an arbitrary two-dimensional
vector.
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