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We have analytically obtained the exact Green's functions for electrons and phonons in a
bimetallic superlattice. The electrons are treated in the tight-binding approximation, and

the phonons are of one acoustic branch in a lattice with nearest-neighbor coupling. The
most interesting effects arise near the interfaces when the acoustical or electronic coupling
between layers is large compared to the intralayer coupling. In this large coupling case, the
local phonon density of states at low frequency is enhanced by a linear contribution due to
interface modes. The appearance of electronic interface states in the local density of states
is discussed. The impact of our results on superconducting properties is considered. The in-

fluence of zone-folding effects is found to be small.

I. INTRODUCTION

Recently there has been great interest in the fabri-
cation and measurements of properties of bimetallic
superlattices. Schuller and Falco' have made Nb-Cu
layered ultrathin coherent structures which are su-
perconducting. Durbin et al. have also made
high-quality Nb-Ta superlattices. Geerk et al. have
made superconducting Nb-Al and Nb-Ta superlat-
tice structures, as well.

In this paper, we shall explore the influence of su-
perlattice and interface effects on the local density
of states (LDOS) for electrons and the LDOS for
phonons in a bimetallic superlattice. The locality of
the screened electron-phonon interaction and the
screened Coulomb interaction in a metal will cause
these local densities of states to be significant in the
determination of superconducting properties of these
superlattices. We find that a great deal of interest-
ing qualitative effects can be extracted by consider-
ing simple models. The superconducting properties
of bimetallic superlattices will be further considered
in a separate paper.

Previously, we have presented results on the
LDOS for phonons in a thin metal film backed by a
semi-infinite metal. We have also considered the
transmission coefficient of a single metal-metal in-
terface for phonons and for electrons, using the
Green's-function method.

The Green's-function method has played an im-
portant role in the study of surface and interface
states. There have been a number of contributions
to this field.

A Green's-function theory of surface states was

developed by Kalkstein and Soven. Starting from
the energy eigenvalues of an infinite crystal, they
generated the Green's function of a semi-infinite
crystal using standard techniques. They also includ-
ed the effect of attenuation in the surface potential.
With the aid of this Green's function they calculated
various local and total densities of states for surface
states. An extension of their technique has been
used by Yaniv to investigate the local density of
states at a metal-metal interface. Varea and Rob-
ledo have developed a surface electronic Green's
function in terms of the bulk Green's function via
random walk theory, a different approach which has
the same result as in Ref. 7.

A surface breaks the translational invariance
along the direction perpendicular to it. One can still
take advantage of the unbroken symmetry along the
other two directions, however, and use Bloch's
theorem. ' In Ref. 10, Kohn takes the crystal po-
tential as spherical in the atomic spheres and as
dependent only on the coordinate normal to the film
in the region just outside the bounding atom planes.

In his paper on the calculation of the surface den-

sity of states, Kolar" has presented a derivation of a
closed formula which gives the surface density of
states of a semi-infinite tight-binding crystal in
terms of the Green's function of the corresponding
perfect (infinite) crystal. He has later used his for-
mulation to treat more complex tight-binding sys-
tems. ' A surface Green's function for N interfaces
has been investigated by Bartos, ' N being finite,
while Lee and Joannopoulos' have used the
transfer-matrix approach in the study of electronic
surface states.
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Our work differs from the above authors in that
we use the Green's-function theory to investigate the
local densities of states at the interfaces of a super-
lattice formed by repeating a double-layer film of
metals (a and b) an infinite number of times. Vari-
ous limits such as that of a thin film and bulk (in-
finite) systems are obtained by a simple choice of the
coupling parameters. The formalism developed can
be used both for phonons, and, with some modifica-
tion, for electrons. Our final approach is similar to
that of Kalkstein and Soven.

The lattices of metals a and b are both assumed to
be simple cubic with the same spacings. In addition,
only nearest-neighbor coupled phonons and tight-
binding electrons are considered. For simplicity we
specialize at the beginning to the case of a single s
band for electrons and acoustic branch for phonons.
These assumptions allow us to obtain an exact solu-
tion to the problem of finding the Green's function.
The results of numerical computations are present-
ed.

Section II deals with the formalism. In Sec. III it
is shown how we can use the formalism to treat
phonons and electrons. The meaning of quasi-one-
dimensional subbands is explained in detail in this
section. Sections IVA and IVB deal with results
and interpretations. In Sec. V we discuss the
relevance of our results to superconducting proper-
ties, and in Sec. VI we summarize our conclusions.

II. FORMALISM

We shall consider thin films of metals a and b
having atoms which are coupled by spring constants
K, and K~, with atomic masses M, and M~. Simple
manipulations of the equations of motion for lattice
vibrations show that the relevant dynamical matrix
involves the ratio of the spring constant to the mass
T, ~ ——K, ~/M, ~ as the fundamental parameter. If
the spring constant for springs coupling a layer of
metal a to one of metal b is defined as K, then the
relevant coupling parameter which appears in the
dynamical matrix is T =K/(M, Mb )' . Written in
terms of T, b and T, the equations of motion for vi-
brations in simple cubic lattices with only nearest-
neighbor coupling in the presence of interfaces nor-
mal to the [100] direction (for example), are readily
seen to be identical in form to the equation of
motion for tight-binding electrons in the same sys-
tem. In the electron case, T, ~ and T are interpreted
as interatomic nearest-neighbor overlap integrals,
and co is replaced by the energy E. This mathemat-
ical correspondence will be exploited below to calcu-
late the electron and phonon Green's function for
isolated thin films of metals a and b, an isolated
double layer of metal a and metal b, and a superlat-

(2.1a)

where for phonons

g'=to —cop[3 —cos(kyd} —cos(k,d)],
2T =coo,
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FIG. 1. (a) Double layer of metals a and b with in-

tralayer couplings T, and Tb, interlayer coupling T. (b)
Double layer repeated infinitely to form a superlattice.

tice of these two metals. We shall focus primarily
on the superlattice results.

The superlattice considered in this paper is
formed as follows. Thin films of metals a and b
with effective spring constants (or, for electrons,
overlap integrals) T, and Tb, respectively, are cou-
pled together, with T being the effective spring con-
stant (overlap integral) for this coupling.

Coupling here constitutes a perturbation. This
system of coupled films is then repeated an infinte
number of times. See Fig. 1. The periodicity gen-
erated thereby allows use of Bloch's theorem in ob-
taining the Green's function for the superlattice
from the Green's function of an isolated double-
layer film.

The superlattice Green's function is obtained in
stages as follows. First, we construct the isolated
thin-film Green's function from the bulk Green's
function.

The bulk Green's function is given by (Ref. 7)

Gp(n) = +i
(4T2 yi2)1/2

'
/n(

yr t (4T2 yi2)l/2
X 7
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and d in both cases is the lattice spacing. Equation
(2.1a) is obtained after performing an integration
over k„. Also, k~~ here means parallel to the y —z
plane. For simplicity, we have neglected site-
diagonal perturbations.

If g' & 4T the square root must be interpreted as

i sgn(P')(g' —4T )'/~

Equation (2.1a) can be written more simply as

where E is the energy and 5 a positive infinitesimal.

6, is given in terms of Gp and the perturbation
T, =H, H—p (t =a or b) by the equation

Gt =Gp+GpTt Gt (2.4)

where T, connects layers —1 and 0 and Mp and

Mp+1 only. The film is Mp+ 1 layers thick. 6,
cannot connect any layer inside to any layer outside
the thin film. The result for M &0 is

G (n) =—exp(i
~

n
~
8),

p
where

(4T2 tY2}1/2
tan8=

(2.2a}

(2.2b}

1 sin[(Mp+1 —M)8]sin[(M+1)8]
G, (M,M) =

T sin8 sin[(Mp+ 2)8]

(2.5)

and

p =(4T —f' )'/ =2T sin8=cppsin8 . (2.2c)

(E+i5 H, )G, =—1, (2.3)
I

We then form a thin film by inserting two cleavage
planes, the planes being between layers —1,0 and
Mp and Mp+1. These two cleavage planes isolate
the thin film from the bulk.

Let Hp and H, be the Hamiltonian for the bulk
and the thin film, respectively, and Gp and G, the
corresponding Green's functions. We then have the
operator equation

62t Gt +Gt T62t (2.6)

and employ the fact that Gzt can now connect layers
in a to those in b but G, cannot. The perturbation T
now connects layers —1 and 0. The result for M in
film a is

After having obtained the Green's function for a
thin film G„we now couple two thin films of met-
als a and b, where the interface is formed between
layers —1 and 0 [see Fig. 1(a)].

Film b is Np layers thick. To obtain the Green's
function Gqt for the two-layer system, we again use
Eq. (2.4} rewriting it as

1 sin[(Mp+ 1 —M)8, ][sin[(M + 1)8,]sin[(Np+ 1)8b]—y sin(M8, )sin(Np8b ) J
Gp, (M,M) =

T, sin8, [sin[(Mp+2)8, ]sin[(Np+1)8b] —ysin[(Mp+1)8, ]sin(Np8b)j
(2.7a)

where

8a, b a«tan(4T. , b
—Pa, b } ~Pa, b (2.7b)

(2.7c}

I

G (M M) =Gag(M M)+Gag(M Mp )TG (Mp + 1 M)

+Gg)(M, —Np )TG ( —Np, —1,M} .

(2.10)

From Eq. (2.7b) we see that the tangent has an

imaginary argument except when

I

a

Tb Pb Tb
(2.8)

Hence the allowed (i.e., real) values of 0 are given by
this equation. Note also that

6(Mp+1,M) =e ' 6(—Np, M),

G ( Np 1,M) =e—'bG (M—p, M),
(2.11)

where

The presence of periodicity in the system enables
one to use Bloch's theorem which in the context of
this problem states that 6 's in different superlattice
unit cells must be related by a phase factor. That is,

sgn[im(8a b)]=sgn(Jab) . (2.9) P=ki(Mp+Np+ 1)d

We now move on to the superlattice case [see Fig.
1(b)]. The Green's function G for the superlattice is
obtained in terms of 6&t and the perturbation T by

Using Eqs. (2.7), (2.10), and (2.11),and integrating
over the phase P from n to n, we g—et for
Mp &M &0,
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y(yDE —AB}sin[(Mp —M}8~]+Aa sin[(Mp+ 1 —M)8, ]G{M,M}=-
asin a (a —b )

2 2 1/2 t

where

a =sin[(Mp+ 2)8, ]sin[(Np+ 1)8s ]—y sin[(Mp+ 1)8, ]sin(Np8s ),
A =sin[(M+1}8,]sin[(Np+1)8s] —ysin(M8, )sin(Np8s),

B =sin[(Mp+2)8, ]sin(Np8s) —ysin[(Mp+1)8, ]sin[(Np —1)8s],
C =sin[(Mp+ 1)8,)sin[(Np+ 1 }8&)—y sin(Mp8, )sin(Np8s ),

(2.12)

D =sin[(Mp+ 1 —M}8,]sin8&,

E =sin8 sin8b

a =a +[y E yBC]—,
b =2yaE .

Combining (2.8) and (3.1) we see that

2
0« 6. (3.2)

One can check that Eq. (2.12}gives the right bulk
limit when T, =Tb ——T, i.e., y=1. The result for
one isolated thin film (a or b) is obtained when one
puts T=O (i.e., y=O).

III. PHONONS AND ELECTRONS

The formalism developed can be used for both
phonons and electrons. First let us consider pho-
nons. We see from Eq. (2.8) that the allowed values
of g,'l2T, must lie between —1 and 1 for 8, to be
reaL Indeed one can see from Eq. (2.2) that for high
enough energies Gp(n) falls off exponentially since
Im8, &0 for P', &0. Therefore, the LDOS must
also fall off exponentially outside the range for
which 8, is real. On the other hand, Eq. (2.1b)
yields, since —m & kid, k,d &m,

+1« +5.co'
(3.1)

a

V E
6— V

2T, 2T, 2T,
{3.5a)

I

has to consider the Fermi level for electrons. When
two metals are brought into contact the Fermi levels
become aligned. Since the positions of Fermi levels
in metals depend upon the filling of the bands and
the bandwidths are in general different, the bottoms
(and tops} of the allowed energy ranges for the met-
als in contact do not necessarily coincide. One can
conveniently choose the zero of energy to be halfway
between the bottoms of the allowed energy ranges
for metals a and b and define a parameter V, where
2V is the Fermi-energy difference.

To take into account all these things we rewrite
Eq. (2.1d} as

g,
' =E—2T, [3—cos(k„d) —cos(k,d)]+ V,

(3.4)
gs E 2Th[3 ——co—s(kid) —cos(k, d )]—V. —

Again one can show that the range of allowed en-
ergies in metal a, taking into account all possible
k~, k, values, has a width

Equation (3.2) determines the range of frequencies
allowed in metal a, taking into account all passible
k~, k, values. Similarly from Eqs. (2.8} and (2.lb)
one can easily show that in metal b,

and in metal b,

V E Tb V
(3.5b)

CO b0« 6 (3.3)

This defines the range of frequencies allowed in
metal b. These frequency ranges define the regions
over which the local phonon density of states is ex-
pected to be nonvanishing in bulk metal a or metal
b.

For electrons one is concerned with energy rather
than frequency [see Eq. (2.1d)]. Furthermore, one

In all the plots for electrons, we have plotted E/2T,
on the horizontal axis. We have assumed that the
metals a and b are "good" metals, i.e., "band bend-
ing" is absent near the junction. This is a reasonable
approximation since electrons in metals efficiently
screen any electric field so that, to an excellent ap-
proximation, the band edges change abruptly at the
interface, like a step function.
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A useful framework for discussing many interface
phenomena is provided by the notation of "sub-
bands" for the two metals. A subband is a quasi-
one-dimensional band obtained by determining the
maximum range of frequency {phonons} or energy
(electrons) for which nonexponentially decaying
states are found in a given metal at some fixed set of
wave-vector values (kz and k, ). Since the subbands
are defined at a fixed set of wave vectors, the fre-
quency and energy ranges are different from those
discussed above, where all possible wave vectors
were taken into account.

For example, one finds propagating states in met-
als a and b when 8, and 8b are real. From (2.2c)
one has

0

T~= 2T

a

——1- ———E F

b 2

$2V/(2Ta )—

(b)

sin8, =[1—(y —x+) ] sin8b =[1—(y —Rx ) ]

where

FIG. 2. (a) Subband diagram for phonons in metals a
and b, when Tb ——2T, . (b) Subband diagram for electrons
in metals a and b, for TI, ——2T, . V is half the difference
between Fermi energies of a and b.

and

CO2

(phonons)
a

E+V
(electrons)

a

creases} the subbands of metal a and metal b are rig-
idly shifted upwards. If R is different from unity,
then the amount by which each subband is shifted
will differ. For example, if R=2, the metal a sub-
band will shift up twice as far as the metal b sub-
band with increasing y. For R & 1, if there exists ay
value such that

y —1 —V/2T, =—(y+1+ V/2T, )
1

y =3—cos(k~1) —cos(k,d),
R =T, /Tb .

For each value of y there is a distinct pair of sub-
bands, one on each side of the interface, comprising
a subband configuration (cf. Fig. 2). The metal a
subband is the range of x+ values given by

y —1&x+ (y+1
and the metal b subband is defined by the range

then, at this value, the bottom of the metal a sub-
band may coincide with the top of the metal b sub-
band. For larger y values (increasing angle of in-
cidence) there is no transmission through the inter-
face regardless of the value of the intermetallic cou-
pling, T. It is clear from the subband configuration
at this critical y value that it is no longer possible to
pass from a propagating state in metal a to one in
metal b (or vice versa). The subband picture is
clearly an ideal one for discussing the wave-vector
dependence of interface phenomena.

1—(y —1)(x (—(y+1) .1

R R

It is convenient to choose the subband configura-
tion at normal incidence (k» =k, =0, i.e., y=1) as a
"fiducial" configuration. For phonons, the bottoms
of metal a and metal b subbands coincide for y=1.
For electrons, a nonzero Fermi-energy difference
(2V+0) causes the subband bottoms to be displaced
from one another for y+1.

As the angle of incidence increases (i.e., y in-

IV. RESULTS

In this section, we shall present our results for the
local density of states for the Mth metal a layer of a
superlattice. The quantity we have calculated is

p(x, M) =——g ImG(M, M;x;k„,k, ) . (4.1)
D
7r k, k

For electrons x =E, D=1, and for phonons x =co,
D =2'/(2T, )'/. The Green's function in (4.1) is
given by {2.12).
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A. Phonons
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FIG. 3. Local phonon density of states at the interface,
in metal a of a superlattice for various interlayer coupling,
T. The inset is the low-frequency portion of the large
curve, except that the dashed-dotted curve is replaced by
the bulk a metal result.

The local density of states is plotted as a function
of frequency [frequency has been normalized to
(2T, )'~2, the metal a subband width, and is there-
fore dimensionless in our units]. Variations in the
LDOS are observed as a function of coupling spring
constant T and layer index M. The layer integers
Mp and N0 are each taken to be 5. Also, to simplify
the numerical calculations, a small constant ima-
ginary number (0.01) was added to the phonon fre-
quency, co. In all cases, the total area under the
LDOS curve was checked and found to be within
0.5/o of unity, in reasonable agreement with the
sum rule.

Figure 3 illustrates the dependence on T of the ex-
tra contributions to the LDOS at high and low fre-
quencies. Recall that T is the ratio of the spring
constant E for springs linking a- and b-metal planes
at the interface, divided by the geometric mean of
the a- and b-metal atomic masses. As T increases,
the mechanical coupling grows, and one finds an in-
creasing density of modes at low frequency, for one
expects the coupling at first to eliminate the
geometric cutoff at low q, and then gradually to al-
low for more and more low-q phonons as it in-
creases. One might intuitively expect the density of
low-q (low-(o) modes to saturate at its bulk value,
but this is not the case (cf. inset, Fig. 3).

Figure 4 illustrates that the enhancement of the
low-freqency LDOS by increasing T is a local, inter-

r
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o
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T=B

M=3

- M=5

O
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o
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D

O0
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1.71 2.29 2.86 3.43

~/J 2TQ
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face phenomenon, which disappears as one evaluates
the LDOS farther from the interface. Consistent
with the nearest-neighbor coupling approximation,
the effect is observed only at the interface (M=5).
It is remarkable that increasing the stiffness of the
springs connecting two metal films in a superlattice
(i.e., increasing T) should result in an increase in the
density of modes at low frequency for both metal
films at the interface. A physical explanation of the
origin of this low-frequency LDOS enhancement is
best provided by making use of the analogy between
tight-binding electrons and nearest-neighbor coupled
phonons. We shall therefore defer the explanation
to discussion of the electron case.

A similar enhancement of the LDOS is seen in
Fig. 3 for high frequencies as T increases. In this
case it is easy to see that this arises from the fact
that the metal across the interface (metal b) has a
larger phonon subband bandwidth (by a factor of
V2). There is, in essence, a "leaking" of modes
from metal b at frequencies which are forbidden in
bulk metal a [cf. the subband configuration in Fig.
2(a)]. Hence the stronger mechanical coupling to
the metal b allows excitation of vibrational modes at
frequencies which would be forbidden in bulk metal
a. The exponential attenuation of these modes in
the metal a (cf. Fig. 4) causes the enhancement to be
a local phenomenon.

The superlattice periodicity is expected to yield
"zone-folding" effects. The influence of these on
the LDOS are very subtle, however, because of the
three dimensionality of the system, which smears

FIG. 4. Local phonon density of states in metal a of a
superlattice for large interlayer coupling 1 at the interface
(M=5) and one and two layers into metal a from the in-

terface.
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IA
CV
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I M=~

Ta= I, Tb= I

---- Superlattice
Isolated double layer

.—- —.Bulk

O

out the Van Hove singularities which arise from the
superlattice periodicity. In Fig. 5 we compare the
superlattice LDOS one layer in from the interface
with the bulk LDOS and the LDOS for an isolated
double layer. The superlattice periodicity does
modulate the isolated double layer LDOS to some
extent, but the effects are not dramatic. Incidental-

ly, we plot these LDOS's at a layer away from the
interface because at the interface, the interface mode
phenomena discussed above obscure the superlattice
effects.

It is instructive to investigate the effects of three
dimensionality on the LDOS. These effects are gen-
erated by the k~~ [=(k~+4, )' ] dependence of
(2.12), which appears as y dependence of the sub-
band configuration. As y increases from unity (the
normal incidence value) both subbands shift their
bottoms upward, above ~=0. We therefore con-
clude that Iom values of k~~ are most important at
low frequencies. In order to attain the upper end of
the range of allowed frequencies (near co l2T, =6),
it is clear that la~e k

~

values (i.e., y near 5) are re-

quired in order to shi t the subbands up to this fre-

quency region. Hence at high frequencies large k~~

values are most important.
One may infer from these observations that the

one-dimensional aspects of the superlattice dominate
at low co, while more local features should be em-

phasized at high co. Further, these facts imply that
the roughness of the interface has a greater influence
on the low-frequency behavior, because such rough-
ness has its largest effect on waves traveling normal
to the interface (k~~ =0). The high-frequency

behavior should be less sensitive to surface rough-
ness, because waves which travel at glancing angles
to the interface are least affected by this roughness.

B. Electrons

For electrons the LDOS's are plotted as a func-
tion of energy (energy has been normalized to 2T„
the metal a subband width, and therefore is dimen-
sionless in our units). Unlike phonons, the bottoms
of the a and b subbands do not coincide for normal
incidence (cf. Sec. III for a detailed discussion on
subbands). Instead Fermi levels in both metals must
align when brought in contact. We chose the zero of
energy to be halfway between the bottoms of the a
and b subbands at normal incidence. In Figs. 6(a)
and 6(b) we display normal incidence subbands for
two different choices of parameters.

In the numerical results presented below, the layer
integers were again chosen to be Mp=Np=5 and
the numerical calculations were performed with a
small constant imaginary number (0.01) added to the
electron energy E.

In Fig. 7, we plot the LDOS at the interface in
metal a for the situation represented in Fig. 6(b).
For T=O one has the LDOS at the surface of an iso-
lated metal a film. As T increases one notes the ap-
pearance of interface states in the LDOS at both
ends of the subband, and a downward shift of peak
energies, as in the phonon case.

These interface states are located at energies
which are forbidden in the subbands of bulk metal a,
but allowed in those of bulk metal b. The origin of
these states is simply the leaking phenomenon
described previously for the phonon case. The ex-
tent of the leakage effect increases as the intermetal-
lic coupling T increases. These states were discussed

by Yaniv who showed that they are confined to the
interface layer, but freely propagating parallel to the
interface. These leakage states are thus two dimen-
sional in character.

Figure 8 illustrates the rapid attenuation of these

Ta= 2, Tb = I

l
Y

2Ta

Ta= I, Tb= 2

= -IV

2Ta

C)
C)

0.00 0.57 l. I 4 l .7 I 2.29 2.86 3.43 4.00

~/J'2T,

E
2Ta

$ V/2Ta

E
2T~

Vl2T~
&

I

FIG. 5. Local phonon density of states in metal a one
layer away from the interface for a superlattice compared
to same for an isolated double layer, and to bulk a metal.

(b)
FIG. 6. Subband diagrams for electrons in two situa-

tions.
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these states are localized in the interface planes.
The interface states are two dimensional in character
because they may freely propagate parallel to the in-
terface. '

Such states will therefore contribute a two-
dimensional density-of-states component to the
LDOS at the interface. This two-dimensional com-
ponent exhibits two logarithmic singularities sym-
metrically placed about the subband center (in our
case, a small constant imaginary part added to the
energy obliterates the weak singularities, leaving
only sharp peaks) and falls smoothly to a nonzero
constant at the band edges, dropping discontinuous-
ly to zero there. In Fig. 9 one can clearly discern
the contribution of these large Tinte-rface states to
the LDOS. The phonon LDOS at the interface (cf.
Sec. IV A) shows analogous effects for large T. One
can now explain the extra density of modes at low
frequency as arising from two-dimensional interface
modes. At low frequency, the two-dimensional
component of the LDOS varies linearly with fre-
quency, adding to the quadratic frequency variation
arising from the bulklike modes, so that as re~0,
the LDOS varies linearly with co. The implications
of this for superconductivity will be discussed in
Sec. V. As the concentration of interfaces in the su-
perlattice increases, the LDOS at the interface will
obviously become more inAuential in the average
density of states for each film of the superlattice.

The asymmetry which develops in the electron
LDOS as the magnitude of V is increased is shown
in Fig. 9. For V= —2, there is a long, low-energy

tail of states in the LDOS which arises from inter-
face states of the leakage variety discussed above.
The dependence of the LDOS on k~~ is completely
analogous to that discussed in Sec. IVA for pho-
nons.

We have also considered the effects of a site diag-
onal perturbation on electron states at the interface
in both u and b metals. For large enough perturba-
tion of this type, interface states are formed. The
influence of these states upon the LDOS for elec-
trons is qualitatively the same as discussed above for
the large-T case because these states are also two-
dimensional in character.

V. SUPERCONDUCTING PROPERTIES

Vhthin our model we can calculate those one-
electron and phonon properties which are relevant to
superconductivity in each of the metal layers. Of
primary importance is the local electron-phonon in-
teraction (EPI) coupling parameter5 for the ¹h
layer, analogous to the bulk McMillan parameter
(A, ) (Ref. 15):

A,~——2 I da) ai(co,N)F(a), N) Aa

p(Ep, N)

M (~2)~ ' (S.l)

where a (co,N) is the local value of a convolution of
the electron LDOS near the Fermi surface and an
EPI matrix element. The phonon LDOS is F(co,N),
and the electron LDOS at the Fermi energy is
p(EF,N). The average EPI matrix element connect-
ing pairs of electron-hole states near the Fermi sur-
face is designated by I, and M is the ion mass. The
average squared frequency is defined by

(co )~——2 J dcocoa (a),N)F(co, N)/AN .

In the following we shall assume that a (co,N) is in-
dependent of co, so that the average (co )z depends
only on phonon properties. The only quantity
which we cannot calculate in our model is I. %'e

shall henceforth assume that I has the same value in
bulk samples, thin films, and superlattice films of a
given metal. This approximation allows us to com-
pare calculations of lL,~ for bulk samples, thin films,
and superlattice films of a given metal.

As noted in Sec. IV, differences between a thin
film and a superlattice layer of metal a will only be
apparent for strong intermetallic coupling T for
electrons or phonons. . Therefore, below we shall dis-
cuss the case for T, =1, Tb ——2, and T=3 for pho-
nons and electrons. %e shall take Mo ——Eo——5 for
the superlattice (i.e., SX6 superlattice). In such a
superlattice, the concentration of interfaces is 36%.

First, consider the electron LDOS. If there are
interface states, then the LDOS at the edges of the
allowed range of energies increases at the expense of
the LDOS in the central portion of this range (be-
cause the LDOS must obey a sum rule). Assuming
that E~ lies in this central portion, one concludes
that electronic interface states have a negative inAu-

ence on A~. If Ez lies in the upper or lower part of
the allowed energy range, however, there will be a
positive influence. The degree of these influences in-
creases both as the intermetallic coupling T for elec-
trons increases, and as the concentration of inter-
faces increases. In general, it seems that interface
state formation will be undesirable from the point of
view of improving superconducting properties.

In Fig. 10 we display the bulk densities of states
and the single-film average DOS's (defined as the
sum of the LDOS's for each layer divided by the
number of layers in the film) for an isolated film
and a superlattice film. The isolated film result
seems to indicate a higher electron DOS than in
bulk for the central range of allowed energies. The
peaks arise from quantization size effects. However,
had we included a surface perturbation, the isolated
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film DOS would also fall below the bulk DOS for
the central range, just as the superlattice film DOS
does.

The contribution of phonons to the EPI coupling
strength is contained in the factor M(r0 )~ of (5.1).
Scaling all frequencies by (2T, )'/, we find that in
our model the local average is a ratio of two in-

tegrals. In Table I we present our results for these
integrals and their ratio for three cases: the isolated
film, bulk sample, and superlattice layer.

At the interface (M=5) in the six-layer metal a,
the superlattice results indicate a 19% enhancement
of A,5 (due to the interface mode contribution at low

c0) relative to the bulk EPI coupling value. When
the average over six layers is computed, this
enhancement is decreased to a value of 4%. Note
that the isolated film results indicate that phonons
in a film are less effective in producing supercon-
ductivity than are bulk phonons. The reason for
this is obvious: In a film there is a maximum pho-
non wavelength, hence a minimum phonon frequen-

cy which is greater than zero. Because low-

frequency phonons are important in superconduc-

0.0-I.S 0.5 2.5 4.5 6.5 8.5 I0.5
E /2Ta

FIG. 10. Average electron densities of states in metal a
for a bulk sample, a six-layer film, and a six-layer super-

lattice film.

tivity, the presence of a low-frequency cutoff for
phonons will have a deleterious influence on the EPI
coupling strength.

Naturally, the greater the concentration of inter-
faces (36% in the present example) the greater the
influence of the enhancement. For the isolated film,
the decrease in coupling strength will depend on the
"concentration of surface, " hence will become more
prominent with decreasing film thickness.

We conclude that, in general, the superconductivi-

ty of films should worsen with decreasing film
thickness, and the T, of a film should be less than
the bulk T„decreasing with decreasing film thick-
ness. However, exceptions can occur if the Fermi
energy happens to fall near a band edge, where sur-

face states can increase the LDOS above that for a
bulk sample, and cause T, to increase with decreas-

ing film thickness. In the latter case, the favorable
electronic effects would still have to overcome the
unfavorable phonon effect arising from the low-

frequency cutoff in the film.
For superlattices, the only unequivocal statement

which can be made about the superconductivity is
that in any given layer the coupling will be larger
than that of an isolated film of the same thickness.
The reason this is so is that the generally unfavor-
able electronic effects are partially compensated by
the favorable phonon effects which arise from inter-
face modes and the absence of a low-frequency cut-
off. If the bulk coupling is to be improved in a su-
perlattice layer, the ideal situation is one in which
the Fermi energy falls near one of the band edges,
where interface state formation can increase the
LDOS, and strong intermetallic phonon coupling T
produces interface modes. Alternatively, one might
seek a system in which electronic interface states are
negligible but phonon interface modes are plentiful.

There is experimental evidence from Nb-Cu su-
perlattices' which indicates that a superlattice layer

A =fdzF(z, M)/z
Sample

z =N/(2T, )'

B

TABLE I. EPI parameters.

B = dz zF(z, M)
A

B/A =(z )M
B/A

Superlattice
layer

av.

0.694
0.637
0.640
0.657

2.393
2.682
2.679
2.585

3.448
4.210
4.186
3.948

Film

Bulk
av.

0.642
0.640
0.624
0.635
0.645

2.658
2.670
2.756
2.695
2.651

4.140
4.172
4.417
4.243
4.110
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of Nb does indeed have stronger EPI coupling than
an isolated Nb film of the same thickness. Since the
EPI coupling in the Nb superlattice layer is less than
the bulk coupling, and decreases with decreasing
layer thickness (though not as rapidly as the isolated
Nb film coupling decreases), it is evident that the
unfavorable electronic effects are dominating the
favorable phonon effects in the Nb-Cu superlattice.

VI. CONCLUSIONS

We have obtained an analytic expression for the
Green's function of a metal-metal superlattice. This
function describes the behavior of nearest-neighbor
coupled phonons or tight-binding electrons in a su-
perlattice. Because this is a relatively crude model
of a superlattice, we have concentrated primarily on
the qualitative features of the model. We believe
that these features will be evident even in a more de-

tailed theory.
The briefest possible summary of our results from

the LDOS calculations for both electrons and pho-
nons can be given as follows: The most dramatic
and dominant effects in a superlattice arise at the in-

terfaces, are local, interface phenomena, and are ef-
fects which require strongly coupled layers (large T).
For smaller T values, the interface phenomena de-

crease in influence, and the LDOS approaches that
of a single isolated layer.

To study superlattices which differ most from
simple composites, one should endeavor to make
both metal layers as thin as possible in order to ob-
tain a high concentration of interfaces, so that the
interesting interface phenomena will dominate. In
the simple model presented here, this would require
films of only one or two layers. However, realisti-
cally, the influence of interface states should extend
over the range of electronic overlap, or, for phonons,
the range of interatomic coupling. These ranges will
certainly be longer than the single lattice constant
range implicit in the approximate models employed
here. Hence nonbimetallic composite effects may
become evident in superlattices with metal slabs
consisting of several atomic layers. The qualitative
effects should be as discussed above. We conclude
that bimetallic superlattices should allow the study
of the influence of interface phenomena on bulk
properties.
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