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Effects of surface exchange anisotropy in Heisenberg ferromagnetic insulators
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We consider an fcc semi-infinite ferromagnetic insulator displaying an anisotropic ex-

change interaction between spins on the (111) surface plane of the form
J

~

((S;"SJ+S;SJ+gS,'-SJ ). We assume all other interactions isotropic. A self-consistent
random-phase-approximation calculation is performed, with a Greens-function method

valid for any spin S, up to the bulk transition temperature T„by the assumption that the
magnetization of the third layer equals the bulk value. For g sufficiently large, the surface
magnetization is nonzero for T& T„up to a transition temperature T,'(g) whenever

g & g, & 1, where T,'(g, ) =T, . For T & T," the system is equivalent to a film of three layers,
where the magnetization of the third one is identically zero as a boundary condition. A
discontinuity of the derivative in the curve of the magnetization of the first two layers
versus temperature is found at T, . The results show clearly a crossover from Heisenberg to
Ising behavior at the surface.

I. INTRODUCTION

In a previous paper we have obtained the layer
magnetization and the spectrum of excitations of a
Heisenberg semi-infinite ferromagnet with isotropic
exchange interactions. There it was found, through
the use of the random-phase approximation (RPA)
for evaluating the one-spin Green's functions, that
the bulk behavior drives the surface magnetic for all

values of the exchange coupling Jz of surface to
bulk. ' It was also found, however, that when Jz de-
creases the surface magnetization oo decreases as
well, and the results indicate that limJ Oo.o

—+ 0 at

all finite temperatures, showing clearly a dimen-
sional crossover from three- to two-dimensional
behavior as Jz~ 0. In other words, it is possible to
realize, by adequate parameters, a system ~here a
surface region of a few atomic layers is almost
paramagnetic, that is where the surface region has a
very small magnetization at all finite temperatures
for which the bulk is ferromagnetic.

It is natural to ask whether it is also possible to
realize the opposite case, i.e., that of a ferromagnet-
ic surface film over a paramagnetic bulk. We know
that a completely isotropic exchange interaction be-

tween surface spins will not sustain long-range or-
der at a finite temperature, but that a purely uniax-
ial interaction, the Ising model, orders for T &0 in
two dimensions. Therefore, a necessary condition
for the surface to be ferromagnetic at a finite tern-

perature is the introduction of uniaxial anisotropy
in such a way that the exchange interaction of two
spinsi and j on the surface is of the form

JII(St St'+S~~Si~+riS(St')

In this paper we show that, in effect, as g be-
comes larger than one the surface layers tend to
decouple from the bulk, their magnetization in-
creasing accordingly. We also find that, as ri in-

creases, more and more layers can sustain spontane-
ous magnetization for T & T„ these layers display-
ing the proximity effect of a ferromagnetic film on
an underlying paramagnetic bulk. Similar results
were found by Sarmento et al. for a semi-infinite
Ising ferromagnetic (S=—,). In Sec. II we develop

the theoretical framework including a short sum-

mary of the main point of Ref. 1, and we state the
present results. In Sec. III we discuss the results ob-
tained.

II. METHOD OF CALCULATION
AND RESULTS

The Hamiltonian

H= —FIJI , (St+St +S; SJ+)+—ritJSfSt'J,i'
where g,j——1 if point i or j is not on the surface,

1983 The American Physical Society



27 EFFECTS OF SURFACE EXCHANGE ANISOTROPY IN. . . 545

and Il;l. =I) & 1 if both points i and j are near neigh-
bors on the surface. We consider, in what follows,
an fcc ferromagnet with a (111) surface and we de-
fine the parameters as in Ref. 1. The equations of
motion for the Green's functions Fourier
transformed over time and the coordinates parallel
to the surface are'

v —2$o.irliie;1(k~~=0) tI;m
m I

+ 2+i y elm(k(()'5il
1

~im v 2 g irirlileil( k(~ =0) ~im
I

+2~i y ~1m (k((@il .
I

In the particular case where only o.0 and 0.
1 are dif-

ferent from the bulk magnetization 0., Q reduces to
the following:

v—a 00 b01

b10 + a11 b12

OI
Xgml'(~& [[)= lj & (2)

v —a22 b

y b o ~ o

(6)

(S,') I;i(kii)
cri ——,ail(k)()=, v= —,

6 ' ' I ' I '

where

(3) where

a00 ——6{a~~cro[2(rl —1)+4A( k
~ ~

)]+BIO I j,
3I~~(3$ —1), 1=0 (surface layer)

Ia(kii) = .
3I(3$ —1), I &0

3IIiti, 1=0
l, l+ I (4)

p= —, j 3+2[cos2Ir(kI —k2)

+cos2IrkI +cos2Irk2]j'

We define the matrix

aII =6[eliT0+4A(k~~)oI]

&22 =6[~I+4«(k~~)],
6 tielir0 ~10= 64&10'1

b I2
———6((io I, b = —6$o,

A=
~ [1—0'(k)()]

As in our previous work, ' the magnetization of a
given plane is obtained through the application of
the relatipns derived by Hewson and Ter-Haar,

where

[S—$1(S)][1+$1(S)] +'+[S+1+$1(S)][/((S)]
y (S)]2S+1 [y (S)]2S+I

cc g2 I d k~~Im[Q ( +iIlIe)]ll
1(&1(S)=—lim — d 01

e-+0+ K co 4& eP"—1
(9)

As can be seen from Fig. 1, the results in this case,
when the surface anisotropy g is sufficiently large,
are quite new in respect to what has been found in
Ref. 1. We measure temperature in units of
12' Ilk'.

I.et us call T, the transition temperature of the
infinite system, which can be calculated as in the
paper of Tahir-Kheli and Ter-Haar, and also as in
the RPA. We find that as T~ T„ the magnetiza-
tion of the first and second layers, o.0 and 0.1,
respectively, does not vanish.

In order to obtain o.0 and o.
1 for T & T„we refer

to Eq. (6), where we see that if o.=O, the matrix 0

0

4-

ecg 3
0)
Ol

2

0

7.5 a0 1 aS sj $.5 ~ I 10.0
Tb Tsc T C

FIG. 1. Magnetization of the first two layers and the
bulk vs T for g= 1.8, e~~ =e&——1. Temperature in units of
12' I/k&. Case a: continuous curves. Case b: four
layers (dash-dotted lines); three layers (dashed lines).
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bio

0 v —azz

(10)

simplifies, and one has only to deal now with a
3)& 3 submatrix of 0, namely

10 .

&c 9-

rgb

/

/

~ I

(n-')„=
(v —a „)(v—app) —b ipbo,

(12)

These expressions are substituted in Eq. (9) to evalu-

ate l(tl(S), (l =0,1), and the two self-consistent equa-

tions (8) are solved as before for the unknowns 0'p

and o.i. Above T, the whole continuum has re-

duced to a single zero frequency that is infinitely

degenerate, while the local surface modes remain

finite, up to a certain higher temperature which we

call T,'.
In Fig. 1 we have plotted the results of the calcu-

lation with o'—0 above T, . It must be remarked
that one can just as well maintain o.=0 as a boun-

dary condition on the third layer of a thin film of
three layers, and calculate the variable o.o and o.

~
for

all T down to T=0. At T=0, of course,

(op, cr~)~S. The film model (o—=0) is related to
previous calculations of the properties of thin films
with surface and/or bulk anisotropy by Diep-The-
Hung et al. These authors also find for a film of
four layers in the bcc and simple cubic structures,
and where s= —,, a transition temperature T,') T,
whenever g is sufficiently large. The consideration
of the film (o =0) enables us to study the depen-

dence of T,' upon g.
In this way we define a critical anisotropy g„

such that T,'(rk)=T, . For rl&rk the surface mag-

netization becomes larger than the bulk magnetiza-
tion cr(T) for T & T„and it does not vanish when o.

does at T, . The temperature T,' as a function of g
is plotted in Fig. 2. The case o.—=0 we call "case b",
while the calculations for T & T, for the semi-

infinite system we denote "case a". It turns out to
be instructive to consider a film with three varied

layers, and correspondingly (op, cr~, o q )+0, while

o 3 =o.=0 for all T. The self-consistent equations
for ot (1=0,1,2) can be written and solved just as
before. The respective results are also plotted in

Figs. 1 and 2. We find that T,' for g = 1.8 varies by
—1.5% when the number of perturbed planes n

varies from two to three.

It is now immediate to calculate 0 '. It is found
that

v —a()(0 ')pp ——
(v —a ) ) )(v —a pp ) b) p bp 1

In order to assess approximately the convergence
of the results with increasing n, we plot in Fig. 3
the relative layer magnetization o~/op for the two
cases considered, namely, n =2 and 3 at
T=8.2) T, and g=1.8)g, . If one assumes that
the space variation of o~ is exponential, from these
results it can be estimated that o.i vanishes for l )5,
so that a five-layer calculation should give a better
matching of cases a and b. This work is already in

progress.
We have plotted in Fig. 4, for T=8.0, the disper-

sion relation of the film eigenvalues co~[A(k~~)], and
those of the corresponding surface localized modes
obtained for the semi-infinite system (case a), which
in this case are the three optical surface magnon
branches cp [A(k~~)] (a=1,2, 3). We observe that
the latter are comprised, for all k~~, between the
eigenfrequencies of the three- and four-layer films.
In the same figure we have indicated for each sur-

face mode of case a, the eigenvalue of the transfer
matrix )[A( k

~ ~

) for A =0.6, which measures the
wave-amplitude decrease of the corresponding mode
between the successive (111)layers towards the inte-
rior of the crystal. It is clear that the higher the en-

ergy, the greater the degree of localization of the
mode near the surface, and this is consistent with
the results of case b

1.0 g
08

&n 0,8.
ao

0.4

0.2-

0
0

+-8.2, g= 1.8

FIG. 3. Profile of the magnetization at T=8.2 and
g=1.8 for the two films considered in Fig. 2: three
layers (dashed line); four layers (dash-dotted line). Dots
indicate assumed extrapolation. n is the layer index.

7

1.0 11 12 1.3 14 15 1.8 1.7 1.8 1.9 2.0

'9

FIG. 2. Critical temperature of the two- and three-
layer films as a function of g. Same temperature units as
in Fig. 1.
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FIG. 4. Dispersion relations of localized magnon
branches (case a, continuous curves) and film eigenfre-
quencies (case b) for three layers (dashed lines) and four
layers (dash-dotted lines) for T=8.0. For case a, the
numbers 1 —3 identify the optical magnon branches and
for each of these, values of g; (i=1,2, 3) for A=0.6 are
also indicated. The shaded region is the bulk continuum.

T,'(rk)=T, .

(2) From the magnetization curves shown in Fig.
1 we conclude that one should expect a discontinui-

ty of the derivative of the magnetization curves of
the different layers at the bulk transition tempera-

ture T„when g ~ g, .
(3) For g (q„ the critical behavior of the surface

is driven by the bulk. It is hoped that the tech-

niques now available will allow the study of the
surface magnetization in samples where g ~ g, .

On the other hand, theoretical results similar to
ours have been obtained for an Ising semi-infinite

ferromagnet. Also in this case, when T~ T, from
below, the magnetization of the surface layer tends

to a finite limit when the surface coupling constant
is larger than that of the bulk, which, on the basis

of the present work, is to be expected, since the Is-

ing Hamiltonian can be considered as the limit of
an anisotropic exchange Heisenberg Hamiltonian,
for infinite uniaxial anisotrOp. From what has
been said above, a similar behavior is found even

with a finite uniaxial anisotropy at the surface.

III. CONCLUSIONS ACKNOWLEDGMENTS

The main conclusions from the preceding sec-
tions can be stated as follows:

(1) In the presence of surface exchange anisotropy
the first layers of an insulating ferromagnet with
isotropic exchange interactions in the bulk can stay
ferromagnetic, that is, they show a nonzero spon-
taneous magnetization at temperatures greater than
the bulk transition temperature T„ if the surface
anisotropy parameter g & q, & 1, where the critical
parameter g, is defined by the condition
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