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Damping of second sound in superfluid helium near Tl,
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The damping coefficient of second sound has been measured in liquid helium at saturated

vapor pressure near Tq. The results cover the temperature range 40 mK & Tq —T & 40 pK,
and were obtained by the measurement of decay rates in a high-Q second-sound resonant

cavity. These values are in good agreement with the predictions of nonlinear

renormalization-group analysis applied to the asymmetric planar spin model for liquid heli-

um in the "crossover" and precritical temperature ranges.

INTRODUCTION

In recent years measurements near the superfluid
transition in liquid helium (T~ =2.172 K) have pro-
vided a variety of critical tests and powerful stimuli
for the developing theory of continuous phase tran-
sitions in solids and liquids. There have been several
reviews of this particularly successful interaction of
theory and experiment, ' and the uniqueness of
liquid helium as a testing ground has been described

by Ahlers as follows:

"For the purpose of obtaining quantitative measure-
ments extremely near a phase transition there is no
other known system as suitable as He. The sample
is virtually free of the inhomogeneities which occur
in many other systems in the form of impurities and
strains for instance. The effect upon the transition
of the gravitational field in which we do our experi-
ments is relatively weak and well understood. The
material has reasonably short thermal relaxation
times which makes it possible to obtain measure-
ments at equilibrium on a reasonable time scale.
The transition occurs at a temperature at which the
techniques of high resolution thermometry are very
advanced. The transition temperature can be deter-
mined with very high resolution by noting the onset
of thermal resistance in the fluid. We are able to
study the transition as a function of pressure and
He concentrations. Thus, we have an entire plane

of phase transitions at our disposal. And finally, the
nature of the transition is such that by symmetry the
experiments are always done on the coexistence
curve. Whereas some of these advantages prevail
also for other systems, no other phase transition can
lay claim to all of them. "

The need for further measurements of the at-
tenuation of second sound near T~ and the calcula-
tion from them of the damping coefficient has be-

come clear in recent years. The pioneering measure-

ment of Hanson and Pellam do not extend suffi-
ciently close to T~. Later measurements are in

agreement with the predicted temperature depen-

dence close to the transition, but disagree in magni-

tude with theoretical expectations. However, im-

proved experiments by Ahlers over a restricted tem-
perature range give results completely consistent
with the predictions. Recent theoretical develop-
ments ' ' ' make it clear that the true asymptotic
critical temperature range for dynamic phenomena
near T~ is much smaller than had been thought and
is still experimentally unattainable. However, these
same developments lead to quantitative predictions
for the second-sound damping coefficient in the
temperature range which is accessible and over a
larger range than was previously possible.

The measurements reported here, which extend
from hT=T~ —T=40 pK out to -40 mK where

they overlap the results of Hanson and Pellam, were
briefly reported in Ref. 13. They appear to vindi-

cate the application of nonlinear renormalization-

group techniques using a nonisotropic spin model to
an analysis of the dynamics of liquid helium near
the superfluid transition. '+'

THEORY

A plane second-sound wave traveling in the z
direction in superfluid helium is attenuated accord-
ing to exp( —a2z), where az is the attenuation coeffi-
cient of the liquid. The damping coefficient D2 for
a wave of angular frequency co is defined by

a2(to, T)= —,(to lu )Dp2(T), (l)

where u2 is the second-sound velocity. For linear-
ized hydrodynamics, D2 is independent of frequency
and depends on such properties as the fluid viscosi-
ties, thermal conductivity, and the superfluid densi-
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ty. ' For a plane standing wave, the power, after the
excitation ceases, decays as exp( t—/r), where the
time constant ~ is related to the total attenuation a
by

Here g, is the transverse correlation length and A is
a constant depending on the static properties.

In the nonasymptotic regime, one may calculate a
nonuniversal effective amplitude

1 =2Q2Q
7

(2) R', =A[w(e)f(e)] 'i [1+w(E)],

Until recently, it was thought that measurements
of dynamic properties of He, taken in the reduced
temperature range e= ( Tx T)/T—t, & 3 X 10
would provide tests of asymptotic theories of critical
dynamics. However, it is now realized that true
asymptotic behavior occurs only at values of e much
smaller than those which can be reached, and calcu-
lation of the dynamic properties in the observable
temperature range requires the inclusion of cross-
over terms which provide corrections to the asymp-
totic scaling theory and extend the region of validity
to the "precritical" range. This approach was first
developed by Ferrell and Bhattacharjee. ' A quanti-
tative treatment has been developed using the tech-
niques of nonlinear renormalization-group theory in
the two-loop approximation, ' ' ' and these tech-
niques have been applied to the asymmetric planar
spin model (model R appropriate to liquid helium.
The current state of the theory has recently been re-
viewed '

Based on "He hydrodynamics, one writes the cou-
pled Langevin equations for the entropy density
m (x, t) and the complex order parameter g(x, t),

m=AoV +2goIm P*, +02BH , aa
Bm

~ aa . aa0= —21 o, igog —+ey
Bm

where

H =fd'x( , ro I @ I

-'+ -,
I ~@ I

'+ uo I 0 I

'

+ , m /c~ o—+yom / @ [
2) .

(3)

(4)

Here A.o (real) and I'o (complex) are the kinetic coef-
ficients, gp rp Qp cpp and yp are real constants, and
0 and 8~ are Gaussian noise sources. The behavior
of these equations can be conveniently described in
terms of a parameter representing the ratio of the re-
laxation rates wp=I pc&p/Ap and a dimensionless
coupling constant fo=gogo/2~ I Po, where go is
the amplitude of the correlation length. In the
asymptotic region these parameters take on values
w and f', and the universal amplitude ratio

Rg —= , D2/u2(, — (5)

is given by

R2 ——A(w'f') 'i [1+w'+O(f')] .

and this quantity is related to the second-sound
damping over the same temperature range by

D2 ——2Rp u2(, .eff

The approximate agreement of the temperature

dependence of earlier data ' for e(10 with the

predictions of asymptotic scaling is explained by the
weak variation of Rz with temperature in this

range.

EXPERIMENT

The technique used in the present experiment was

chosen in order to fufill a number of requirements

and will be described in more detail elsewhere. ' To
approach T~ as closely as possible and achieve a
resolution in AT of the order of a few microkelvin, a
resonant technique seemed desirable. It was neces-

sary to use a short sample to reduce the effect of
gravity' on T~ within the resonant cavity and sim-

plify the problem of thermal isolation. A resonance

method also provides a continuous-wave narrow-

band signal to which powerful detection methods

can be applied, and the resonance itself results in

considerable amplification of the excitation signal.

It was therefore possible to use a very small excita-
tion level and reduce both the dc heat flow associat-

ed with it and the finite amplitude effects which can
become serious close to T~, due to the vanishing of
the superfluid density.

In essence, the procedure was to excite a plane-

wave second-sound resonance in a small cylindrical

cavity and record its decay after the excitation was

switched off. The time constant for the decay was

determined and led to values of attenuation which

were much less sensitive to the ultimate temperature
stability of the sample than those deriving from
techniques which rely on measurement of the fre-

quency width of resonance peaks. This procedure,
though a we11-established technique for measuring
absorption effects, had not been applied previously
to second sound in liquid helium. It proved crucial
in obtaining the present results.

The resonant cavity consisted of two quartz opti-
cal flats parallel to within a few wavelengths of
light, separated by a thin stainless-steel annulus (in-

side diameter 14.8 mm, length 3.0 mm). Second
sound was generated thermally using a thin resistive
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FIG. 1. Experimental cell. The outer bath was held
below Tq and was stable to better than 1 mK. The inner
bath was stabilized to k2 pK and could be pumped slowly
through a capillary line which is not shown.

metallic film evaporated onto the lower end piece
and detected by an evaporated gold-lead film having
a normal to superconducting transition spanning the
temperature region of interest. This design helped
minimize energy losses due to reflections at the sur-

faces of the cavity and produced a cell with

500& Q & 1500.
A simplified version of the experimental cell is

shown in Fig. 1. The outer bath was stabilized at a
temperature just below T~. The sample cell stability
of +2 pK was obtained with a conventional feed-
back system. Resonances were excited at frequen-
cies up to the fourth harmonic of the cell ranging
fom 100 Hz —5 kHz. Heat dissipation in the genera-
tor and detector led to the interior of the resonant
cell being at a slightly higher temperature than the
stabilized inner bath. Because of this effect, and be-
cause the calibration of the thermometer drifted
slightly with time, the value of hT for each mea-
surement was determined from the velocity of
second sound within the resonator.

The typical maximum amplitude for the second-
sound resonance was 10 —10 K. The decaying
amplitude was recorded using a high-sensitivity
lock-in amplifier and averaged for a large number of
decays to reduce the effects of thermal and electrical
noise. An averaged decay curve is shown on both
linear and semilogarithmic scales in Fig. 2. From
the slopes of the semilogarithmic plots the decay
rates I/~ for the signals were determined.

At a fixed value of hT decay curves were ob-
tained for up to four harmonics. Decays were also
obtained at several generator powers at each value of
hT to allow extrapolatian of the rates ta zera power
and therefore zero amplitude when providing values
for analysis.

0.80 s iIr

I

2I

IME

Two effects on 1/~ could be noticed when the dc
detector power was varied. The first was a slight
curvature of the semilogarithmic decay curve at suf-
ficiently high detector powers. The system was al-
ways operated so that this effect was negligible. In
addition, at each value of hT there was a detector
power where a much enhanced decay of the reso-
nance occurred. This "singular" power decreased at
smaller hT values and "normal" decay rates could
always be obtained by making measurements at
powers well removed from these singular values.
The source of this anomalous energy loss has not
been identified.

ANALYSIS OF RESULTS

The main goals in the analysis of the measured
decay times were to ensure that the resulting values
of attenuation were representative of the bulk liquid
and were capable of being described by linear super-
fluid hydrodynamics. All results were measured at
low amplitudes where no signal-power dependence
was detected or, if such dependence was unavoid-
able, results were extrapolated to zero signal power.
A typical extrapalation is shown in Fig. 3 where the
results for various detector powers are also indicat-
ed.

In addition to the absarption of energy from the
resonant signal by the bulk helium in the cavity,
there were energy losses at the chamber boundaries
due to the viscous drag on the normal component
near the cylindrica1 walls and to the finite thermal
conductivities of bath the stainless-steel side wall
and the quartz end pieces. All these contributions
were estimated, though the values ultimately used in
the data analysis were determined using their depen-
dence on frequency rather than by subtracting the
calculated corrections.

0
I 2 3 4

TIME (s)
FIG. 2. Typical resonance decay. The initial very

sharp decrease in signal strength was caused by a switch-

ing transient. The curve is the average of 150 decays.
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proximations necessary in determining the material
properties.

The measured total decay rate 1/~ may be con-
sidered to have contributions from bulk helium

1/vH„viscosity 1/v„, and conductivity effects at
both walls and end plates 1/v„. Thus one can write

—0.80-
-I~ 1 1 1 1+—+—

7 7He 7~ 1~
(12)

0.75 ~~

~r

0.70 I I I I
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GENERATOR POWER (IO-8W) He

2 2=2u2ai ——(ro/u2) Di (pn. /a——) D2 (13)

In terms of the damping coefficient D2, the expres-
SiOn fOr 1/wH, iS

FIG. 3. Typical extrapolation of values for 1/~ to zero
generator power for different levels to detector power.
The extrapolation to zero excitation power is used to esti-
mate a best value for 1/~. The hatched region indicates
the error estimate.

Heiserman and Rudnick' and Khalatnikov
have shown that for a second-sound wave in a
cylindrical tube of radius r the viscous drag of the
normal fluid at the wall leads to an attenuation 1 1 1

He 7HP He
(14)

for harmonic p. The essence of the method for ob-
taining 1/7H is to use the difference in frequency
dependence between the bulk contribution and the
surface contributions. To enhance the graphical
presentation of the data, it is useful to compute 1/r„
using Eq. (9). This contribution is significant for
large hT. However, for hT & 1X10 K it is small
and comparable to or less than the error estimates
on 1/~. In addition, it is useful to decompose the
bulk contribution as follows:

av= (1lru2)(p, /p)(rico/2 (9)

where g is the normal fluid viscosity and p„p„,and

p are the superfluid, normal fluid, and total densi-
ties, respectively. The behavior of all relevant prop-
erties close to T~ is known. '

Khalatnikov has also calculated the effective at-
tenuation due to thermal conductivity of the side
wall a, and the end phase aq. These are given by

a, =(2lrpcu2)(c, a;co/2)'~ (10)

and

as =(2/apcu2)(cvavco/2)' ',
where a is the length of the resonator, c is the specif-
ic heat of the helium, and c„cq, sc„and ~q are the
heat capacities per unit volume and thermal conduc-
tivities of steel and quartz, respectively. This treat-
ment assumes the effect of any Kapitza resistance at
the bounding surface to be negligible. That assump-
tion seems to be valid in the present case and is
strengthened by the experimental results of Brow
and Osborne, ' which indicate ac Kapitza resis-
tances to be lower than those measured using dc
thermal currents. In any case, the corrections were
justified experimentally. Values calculated using
Eqs. (10) and (11)at ET=32 mK give 1/~„within a
factor of 2 of that determined experimentally, which
may be considered quite satisfactory given the ap-

Here 1/~Hp denotes that value of 1/~H, which corre-
sponds to the minimum value of D2 (3.58X10
cm s ') from the results of Hanson and Pellam {at
b, T=3.2X10 K). Thus it is a constant which,
using Eq. (13), is equal to 3.93X10 s ' for har-
monic one and 3.54' 10 ' s ' for harmonic three.
d(1/rH, ) represents changes from this value. We
now have 1/~ —1/~„—1/~Hp, which is equal to
1lr„+5( 1lr )H. Although it is necessary to correct
the data of Hanson and Pellam to the Tss tempera-
ture scale, their values can be considered
trustworthy in the sense that they use a method of
measurement that yields a2 directly. Their results
indicate only small changes in D2 over the tempera-
ture range ] )&10 &hT &5X10 K. In that in-
terval 6(1/'THe) is expected to be small and the re-
duced result can be used to check the validity of the
predicted co' dependence for the surface losses. It
should be emphasized that the subtraction of 1/~z
from 1/~ is done only as a convenience in the graph-
ical presentation to remove a large strongly
temperature-dependent contribution at large hT.
Also, the subtraction of 1/~Hp simply reduces the
data by the appropriate constant value and provides
a convenient way of displaying more clearly any
changes, 6(1/rH, ) from the minimum value ob-
tained by Hanson and Pellam.

The resulting values of 1/v, —1/~z —1/7Hp are
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FIG. 4. Reduced decay rate 1/~ —1/~„—1/vHp for
1&ET&50 mK. The viscous surface loss 1/~„varies
from 0.350 s ' at 31 mK to 0.018 s ' at 1 mK for har-
monic one and is increased by a factor of V 3 for harmon-
ic three. The upper two solid lines are related by a factor
of exactly V3. Also shown is the temperature depen-
dence, relative to 1 mK, of the surface loss 1/~„. The
crosses represent the temperature dependence of the data
and are derived from the values for the first harmonic by
removing the frequency dependence. The solid circles
represent the predicted values determined from the tem-

perature dependence of the specific heat of helium.

shown in Fig. 4 for harmonics one and three for
1.0)(10 & hT &4.6)& 10 K. The solid lines are
meant as aids to the eye. The line drawn through
the data points for p =1 yields, after multiplication
by v 3, the upper solid line for p =3. Since the ma-

jor bulk attenuation contribution has been removed
using the Hanson and Pellam data, it is expected
that 6(1/rH, ) is very small. Thus, on the basis of
the good agreement between the p =3 data and the
curve derived from the p =1 data, it is concluded
that for the first and third harmonics, the contribu-
tions to 1/~ from sources other than bulk damping
are proportional to co'

The temperature dependence of the surface losses
is indicated by the crosses in Fig. 4. This informa-
tion is obtained as follows. The data for p =1 con-
tains both a temperature and frequency dependence.
The latter is removed by dividing by the factor
[coi(b,T)/coi(10 K)] '~2, where cubi(ET) is the fre-

quency of the first harmonic at hT. In this way the
surface losses are normalized to the measured value

at 1X10 K, and any variations reflect the tem-
perature dependence. This treatment requires that
the frequency dependence co' is correct and that
any significant corrections from b(1/~H, ) in the
data for p =1 are accounted for. The expected tem-
perature dependence as predicted by Eqs. (10) and
(11),due to the variation of the specific heat of heli-

um, is indicated by the solid circles. Temperature
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FIG. 5. Reduced decay rate 1/~ —1/~„—1/THp for
harmonics one (lower points) and three (upper points) over
the entire range of hT. The critical damping for
hT & 10 results in the increasing separation of the data
as ET~0.

variations in the properties of the reflecting materi-
als have been neglected, and would only account for
a small fraction of the difference between the ob-

served and predicted values. The source of the small
discrepancy is not understood. It may be that the
theory for 1/~& or 1/~„ is incomplete and that more
consideration should be given to the details of the
interface between the helium and the solid. In any
case, by measuring 1/~ for more than one harmonic
at each temperature, knowledge of the temperature
dependence is not required to obtain D2.

The values of 1/~ —1/s„—1/~H p= 1/7 „
+b, (1/rH, ) for the first and third harmonics over
the entire temperature range covered in this experi-
rnent are shown in Fig. 5. The enhanced damping at
low hT is evidenced by the increase in the value of
6(1/rH, ) for the third harmonic. For hT & 10 K,
the error estimates are due to the fractional resolu-
tion (1% or 2%), in determining 1/r with large sur-
face contributions present. At the three smallest
values of hT it is clear that the error estimates are
increasing rapidly as a result of the extrapolations
resulting from the amplitude effects described
above.

Since it is clear that all energy losses other than
those due to bulk helium depend on co', it is possi-
ble to separate the two types of contributions unam-
biguously. The decay rates for the first and third
harmonics are described by the expressions,

2 2 1/2=(D2/up koi+gcoi
7

(15)
1/2=(D2/u 2 )co3+gco3

. 7.3
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with co3 ——3'~. Here geo' represents all the surface
contributions to the decay rate. Data for the first
and third harmonics are used to solve Eqs. (15) for
D2 at each value of 4T.

To determine hT within the resonator, the
second-sound velocity was found from the measured
fundamental frequency fi and resonator length.
The velocity was then used to determine hT (when
(2)& 10 K) using

0.4-

0.3-
&cu4l

0.2-

O.l—

' 0.387

u2 ——f, (2a) =46.28
TA.

(16)

I

IP-5
I

IO-4
(

IO-3 IO-'

measured in m/s, and a graphical interpolation from
the data of Greywall and Ahlers was used for
hT &2X10 K. Uncertainty in hT is the larger or
3 pK or 0.5%%uo.

FIG. 7. Values of Rq vs e. The solid circles () show
values calculated using values of Dq as explained in the
text. The solid curve shows model I calculated values
(Ref. 6) with parameters fitted to the thermal conductivity
dat (Ref. 12) above Tq.

RESULTS AND CONCLUSIONS

Experimental values of D2 plotted against e are
shown in Fig. 6. Also shown are the results of
Ahlers and Hanson and Pellam. The latter are de-
rived from the reported measurements of the at-
tenuation using Eq. (1) and values of E are deter-
mined after translating to the T58 temperature
scale. The agreement among these data sets is
especially satisfactory since in the experiments
second sound was generated both thermally (present
results and Hanson and Pellam) and using flexible
porous filters (Ahlers}. In each case D2 was deter-
mined using a different technique: resonance decay
(present results), resonant linewidth determinations
(Ahlers), and amplitude versus distance measure-
ments (Hanson and Pellam).

Experimental values of the amplitude ratio R2 are
shown in Fig. 7 where they are compared directly
with theoretical values resulting from Eq. (7).' r"

—2.80

CO

CV

E -5.20-
OJ

O
O -3.40-

O

The experimental points are derived from the D2
data using Eq. (8), u2 calculated from Eq. (16), and
taking

3 57 y 10—10&—0.675 (17)

measured in m. The theoretical computations of
R 2 are made'+' identifying certain nonuniversal
parameters determining the behavior of w and f in
Eq. (7} by using thermal conductivity ineasure-
ments' made for T & T~. No further adjustable
parameter is used.

These computed values of R2 are used in con-
junction with Eq. (8) and the values of u2 and g, to
produce theoretical predictions for D2, shown by the
solid line in Fig. 6. Agreement between theory and
experiment is quite satisfactory.

The most recent theoretical work of Ferrell and
Bhattacharjee has also produced predictions for D2
in the temperature range e& 10 by using a "high-
temperature" expansion. Their results differ signifi-
cantly from the measured values, falling low for
e&10 ' . This approach would seem to require
further refinement.

The existence of thermal conductivity data mea-
sured at T & T~ and pressures up to 29 bars makes it
possible to extend quantitative theoretical predic-
tions of D2. ' ' It is of considerable interest there-
fore to extend the measurements also.

-5.60—

IO-5
I

to 4
I

Io-3
I

10 2 Io-I

FIG. 6. logi+q vs e; 0, this work; 0, Ahlers; 0, Han-
son and Pellam. The solid curve shows the values of D2
predicted (Ref. 6) using R 2 .
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