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Approximations introduced in previous calculations of spin relaxation for spin-polarized

atomic hydrogen are investigated by carrying out a more exact coupled-channel calculation.

With the etception of the high-temperature approximation, the approximations turn out to
be justified up to the 10 level of accuracy. It is shown that at the lowest temperatures for
which experimental data are available, the high-temperature limit underestimates relaxation

rates by a factor of up to 2. For a comparison with experimental data it is also of interest to

pay attention to the expression for the atomic hydrogen relaxation rates in terms of transi-

tion amplitudes for two-particle collisions. Discrepancies by a factor of 2 among previous

derivations of relaxation rates are pointed out. To shed light on these discrepancies we

present two alternative derivations in which special attention is paid to identical-particle as-

pects. Comparing with experiment, we find our theoretical volume relaxation rate to be in

better agreement with measured values than that obtained by other groups. The theoretical

surface relaxation rate, however, still shows a discrepancy with experiment by a factor of or-

der 50.

I. INTRODUCTION

In the last few years important progress has been
made towards the realization of Bose-Einstein con-
densation of atomic hydrogen. Since the first exper-
imental successes achieved by Silvera and Wal-
raven, ' the main ingredients for stabilization of
atomic hydrogen against recombination have been
the creation of electron-spin-polarized hydrogen in a
strong magnetic field at low temperatures and its
confinement in a He-coated cell. Under the experi-
mental conditions, however, recombination still
takes place to a considerable extent, due to the depo-
larizing influence of the hyperfine interaction with
the nuclear spins: Of the two lowest 1s hyper-
fine states populated, the state

~

b ) =
~
tt ) {t elec-

tron spin, 0 proton spin) is still fully electron polar-
ized, but the state

~

a ) =
~
tt ) —e

~
tt ) contains the

electron spin-up state by an amplitude
a=2.5X10 lB {with B in tesla).

Statt and Berlinsky have pointed out that a gas
of pure b-state atoms {H), in which also the nuclear
spins are polarized, would recombine much more
slowly. Such a gas would be obtained automatically
by the preferential recombination of the a atoms.
Recent experiments ' have led to promising results
in this direction. As predicted by Statt and Berlin-
sky, however, the stabilization time of the H gas is
still limited by the b~a transitions induced by

two-particle collisions, both in the bulk and at the
surface. Clearly, the corresponding relaxation time
Ti is of great importance in achieving the condi-
tions necessary for Bose-Einstein condensation.
Cline et al. measured Ti both for volume relaxa-
tion and for relaxation of hydrogen atoms adsorbed
on a He surface. Sprik et al. extended these mea-
surements both by enlarging the temperature range
and by considering also surface relaxation on He
and He- He mixtures.

The measured volume relaxation rates 1/T& were
about a factor of 2 smaller than those calculated by
Statt and Berlinsky and by Siggia and Rucken-
stein. We shall see in the following that the
discrepancy by this factor of 2 can be eliminated.

At the time of the measurements of Cline et al. a
complete calculation of the surface relaxation rates
was not yet available. By the time of the completion
of the measurements of Sprik et al. , four surface
relaxation calculations had been carried out. The
first of these, by Lagendijk, pointed for the first
time to the strong anisotropy expected for the relax-
ation rate with respect to the direction of the stabil-
izing field relative to the He surface, but did not
take into account the finite spatial extent of the
bound-state wave function perpendicular to the sur-
face for an adsorbed hydrogen atom. Three subse-
quent papers, ' submitted for publication almost
simultaneously, did take this effect into account. In

27 5424 1983 The American Physical Society



27 CALCULATION OF NUCLEAR-SPIN-RELAXATION RATE FOR. . . 5425

addition, Siggia and Ruckenstein studied the virtual
atomic hydrogen bulk state mixed into the surface
state by the triplet interaction and found a nonvan-
ishing relaxation rate in lowest order in the spin-spin
interactions for a perpendicular magnetic field.
From angular-momentum conservation along this
field obeyed by the two-atom system, it can be seen,
however, that this contribution should vanish: The
change in spin angular momentum to lowest order
in the spin-spin interactions is +A, while the relative
orbital angular momentum of the two atoms, and
thus also its change, is an even multiple of A, owing
to Bose-Einstein statistics.

The other two papers ' contain theoretical re-
sults which are to a large extent equivalent, except
for a factor-of-2 discrepancy in T&. Reference 10
contains a comparison with experiment from which
it appears (see also Ref. 4) that the theoretical sur-
face relaxation rate is a factor of order 50 smaller
than the experimental value, so that some important
effect seems to have been overlooked in the theoreti-
cal considerations. A discussion of this discrepancy
is outside the scope of this paper. Rather, our pur-
pose is to estimate the reliability of some of the ap-
proximations introduced in the existing calculations
of the volume relaxation by relaxing them in a more
exact calculation. This calculation confirms the va-

lidity of the approximations up to the 10 level of
accuracy, except for the approximation of neglecting
the change in internal energies ef the colliding H
atoms compared with their collision energy, the so-
called high-temperature limit (HTL). Owing to the
low-energy cross section going to infinity instead of
to a constant, deviations from the HTL turn out to
be significant at the lowest temperatures (80—100
mK) for which experimental data are available.

In addition we shall consider two alternative
derivations of the theoretical expression for 1/T& to
shed light on the above-mentioned discrepancies of a
factor of 2. We shall show that the volume and sur-
face relaxation rates calculated in Refs. 6 and 8
should be divided by a factor of 2. The same applies
to the volume relaxation rate as calculated in Ref. 2
and corrected according to Ref. 5, as well as to the
surface relaxation rate calculated in Ref. 9.

In Sec. II we present the above-mentioned more
exact calculation of the volume relaxation. On the
basis of this, we subsequently rely on the usual ap-
proximations in the following sections. In Sec. III
we give an expression for the volume relaxation rate
starting from two-particle scattering of identical bo-
sons, supplemented by some kinetic gas theoretical
considerations. In Sec. IV we use a different start-
ing point: the Kubo-Tomita approach" to the long-
itudinal relaxation rate. This derivation has the ad-
vantage that identical-particle aspects are handled

systematically in second quantization. &n a final

conclusion, presented in Sec. V, we compare our
theoretical relaxation rates with the experimental
values of Refs. 3 and 4.

II. STUDY OF APPROXIMATIONS

In the papers on volume and surface relaxation
rates discussed in the foregoing, various approxima-
tions have been introduced: (1) The distorted-wave
(or plane-wave) approximation, i.e., the transition

amplitudes are calculated to first order in the non-

central spin-dependent interactions. (2) Exchange is
neglected. (3) The Shizgal approximation, 'i i.e., all

magnetic-dipole moments participating in the in-

teratomic interaction are assumed to coincide with
the center of mass of their respective hydrogen
atoms. (4) The coupling matrix elements are only
taken into account up to order e'5 and e"5', where
5=pe/p„ the ratio of proton and electron magnetic
moments. Within the framework of the distorted-
wave approximation [assumption (1)] this implies
that the coupling is restricted to the triplet channels,
i.e., singlet parts of the wave function are left out of
consideration. (5) The high-temperature limit.

Although each of the approximations (1)—(4)
looks reasonable, we considered it worthwhile to in-

vestigate their reliability by a more exact coupled-
channel calculation for H-H scattering in a strong
magnetic field. In particular, the neglect of singlet
channels for which the central potential has a repul-
sive part with a much smaller range might in princi-
ple have significant influence due to the closer ap-
proach of the H atoms.

The coupled-channel (close-coupling) method is
obtained from the time-independent Schrodinger
equation for the scattering process by expanding the
total scattering wave function in a set of internal
states of the scattering partners, which is in princi-
ple complete but in practice restricted. The expan-
sion coefficients depend on the relative radius vector
r of the two nuclei and characterize the probability
amplitudes for the atoms to be in the corresponding
internal states at this relative position. The internal
states may in principle also depend parametrically
on r. After substitution of this expansion the inner
product of both sides of the Schrodinger equation is
taken with each of the internal states. A well-
defined coupled-channel problem is obtained if the
set of internal states as well as the corresponding
matrix elements of the Hamiltonian operator are
specified.

For the spin part of the internal states we choose
states with quantum numbers (S,MS,I,MI) for the
total electron spin S and total proton spin I, mag-
netic quantum numbers referring to the magnetic
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field direction. For the space part we restrict our-
selves to the lowest X~ and X„+ electron states.
Since we are interested in the order of magnitude of
the effect of the finite extent of the electronic proba-
bility distribution around the nuclei, we take simple
Heitler-London wave functions. For the spatial
electronic contribution to the internal energy we
take the triplet and singlet potentials calculated by
Kolos and Wolniewicz. ' The spin contribution
consists of the electron and proton Zeernan energies
in the external magnetic field. Clearly, the antisym-
metry requirement for the electrons thus admits 16
combined space-spin functions. Owing to our re-
striction to these 16 states, nonadiabatic effects from
the nuclear kinetic-energy term survive only in small
diagonal terms which do not contribute to the chan-
nel coupling and are therefore left out.

The matrix elements of all noncentral spin-spin
interactions include four electron-proton Fermi con-
tact terms, as well as one electron-electron and four
electron-proton magnetic dipole-dipole interactions.
In the calculation of these inatrix elements none of
the electrons is assigned preferentially to one of the
nuclei, contrary to the distorted-wave method, where
the coupling interaction is only interatomic. All of
the matrix elements are calculated either analytically
or reduced to Kolos-Wolniewicz —type integrals for
which numerical algorithms exist. ' ' We use a
modified Numerov method' to solve the coupled
equations. Three complications to be dealt with in
the calculation are worth mentioning.

The first is the problem of numerical instability
associated with the tendency to numerical linear
dependence, due to channel coupling in classically
strongly forbidden radial regions. ' We make use of
a well-known recipe to circumvent this problem:
choosing new linear combinations of the solutions at
some radii within the region of the channel cou-
pling.

A second complication is that for our choice of
internal states certain coupling terms among chan-
nels persist into the asymptotic radial region: the
Fermi contact interaction of each electron with "its"
nucleus. It would have been possible to avoid this
by selecting different basis functions from the begin-
ning, i.e., the 16 symmetrized and antisymmetrized
products of four 1s hyperfine states of the two
separate H atoms in an exterior magnetic field. We
did not follow this procedure, however, since this
would require an orthogonal transformation for
each step in the radial integration process to
transform the triplet and singlet potentials. Instead,
we carry out an orthogonal transformation to
asymptotically decoupled channels at an r value
equal to r, which is chosen somewhere between 15ao
and 50ao. Beyond r, we found all approximations

{I)—(4} to be applicable. We simplified the calcula-
tion correspondingly.

A third complication is the implementation of one
of the approximations to be studied, the HTL ap-
proximation, within the coupled-channels frame-
work. The asymptotic internal energies of the bb,
ab, and aa channels are not put in explicitly, but re-
sult automatically from the coupling matrix at large
distances. As a consequence, they are nondegenerate
due to the inclusion of the full Fermi-contact in-
teraction and the spin-Zeeman terms in the
coupled-channel problem. We solved this problem
by adding in the exterior region a constant diagonal
matrix to the coupling matrix making the asymptot-
ic open-channel wave numbers equal. Within r, this
additional contribution is transformed orthogonally
to the (S,Ms, I,MI ) representation.

We now come to the results for approximations
(I)—(4}. We studied them successively within the
framework of the high-temperature limit. Subse-

quently, the reliability of the latter is discussed. The
distorted-wave approximation may be investigated

by varying the strength of the noncentral spin-spin
interactions. It turns out that the S-matrix elements
for a~b and b~a transitions are proportional to
this strength up to corrections at the 10 level.
The same conclusion applies to the exchange effects
and to the Shizgal approximation. Exchange enters
the coupled-channel problem both via the difference
between the triplet and singlet potentials and in ex-
change contributions to the noncentral spin-spin in-
teractions. The latter clearly disappear automatical-
ly with the introduction of the Shizgal approxima-
tion, so that we carry out a combined test. The im-
portance of the difference among triplet and singlet
central potentials follows from a calculation in
which the singlet potential is replaced by the triplet
potential.

Let us now consider the restriction to order e'5
and e O'. Within the framework of the distorted-
wave approximation, higher orders would show up
in deviations of the field dependence of the ampli-
tudes from the factor 1+a/5. A calculation for
B =10 and 15 tesla shows the amplitudes to be pro-
portional to the aforementioned factor but for
corrections on the 10 3 level.

Deviations from the HTL are of much more im-
portance. Without the HTL approximation the ef-
fective cross sections for the bb~b and ah~a
transitions are no longer equal. Since the nuclear
polarization in the stabilization experiment reaches
almost 100%, however, we are only interested in the
relaxation constant G~~,~. Translational energies
at the temperature considered are to be referred to
the bb internal energy level. As a consequence, re-
laxation rates are considerably higher without the
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HTL at the lower temperatures, due to the facilitat-
ed penetration of the centrifugal barrier in the ab
channel. While at a collision energy corresponding
to 0.2 K the effective cross section rises from
4.57X1Q to 5.75X10 cm, the increase at
0.05 K is from 4.59ylp to ]0.88)(10 cm'.
Instead of tending to a constant, the low-energy
bb~ab effective cross section goes to infinity as
1/V E. In Sec. V we pay attention to the compar-
ison with experiment, after having discussed the
factor-of-2 discrepancies in the theoretical relaxation
formulas in the next section.

III. RELAXATION RATES FROM
TWO-PARTICLE DISTORTED-WAVE

AMPLITUDES

To resolve the factor-of-2 discrepancies between

existing derivations of the relaxation rate, it is of
importance to define as explicitly as possible the
quantities occurring in the derivation, with special

I

emphasis on identical-particle aspects, the treatment

of which is probably responsible for the discrepan-

cies. We start with a derivation on the basis of the
T-matrix elements for two-particle collisions in the
H gas.

For the differential cross section of H-H scatter-

ing, our starting point is the expression
'2

o, ,(k, , k, )= „ i T;, (k, , k, )
i

(1)

associated with the transition from relative wave

vector k, and two-electron —two-proton spin state s
(for instance s =bb) to a final combination k, and
s' (for instance, ab, the order of a and b being mean-

ingful in relation to the direction of the wave vec-
1

tor). The reduced mass is denoted by p~= —,mH.

In the distorted-wave approximation, upon which
we now base our derivation, the T-matrix element is

given by

T;,(k, , k, )=(X,' '(r, k, }yg ~

IV
~
(1—P]i)(1 Pgg)yg+—'(r, k, )y, ) (2)

Here, P» is a permutation operator of electrons 1

and 2, while P&~ permutes protons A and B. Before
explaining further the notation of Eq. (2},it is useful
to point to some aspects of its derivation from a
wave-packet description as given, for instance, by
Austern. ' In this derivation one takes into account
an ensemble of normalized relative motion precol-
lision wave packets, each of which consists of four
parts in the two-electron —two-proton configuration
space, nonoverlapping for t~ —ce and mutually re-

lated by particle permutation. Each of these four
gives rise to a scattered wave. Each scattered wave

contributes four incoherent terms to the signal in an
H detector, which is insensitive to the particle labels
of the H-atom constituents. The factor of 4 arising
from the corresponding incoherent summation over
particle compositions is compensated by the normal-
ization factor of the initial antisymmetrized wave
function in Eq. (2). Each of the spin states s and s',
together with the corresponding momenta, can be
combined with four possible particle compositions
of the colliding H atoms. In the product X,g, such
a particle labeling is arbitrarily selected. The same
particle labeling is then chosen for the bra state.
Even if s (or s'}=bb, the particle composition
1A +2B is not identical to 2B+1A, once the direc-
tion of the wave vector is specified (cf. the

I

I

aforementioned corresponding remark for the spin
states). The functions g stand for spin states, while

the functions X are distorted waves containing
asymptotically plane waves exp(t k r } in addition to
outgoing (ingoing) waves if the'superscript is

(—). Finally, W is the total interatomic spin-spin
interaction for the primary particle composition
selected, in addition to Pp Vp(r)+(Pi —1)Vi(r).
Here, Pp (Pi) is a projection operator upon singlet

(triplet) spin states, while Vp ( Vi ) is the singlet (trip-
let) potential.

On the basis of the results of the preceding section
with respect to exchange, we need to take into ac-
count only the P»Pzz permutation term. For the
spin transitions of interest, it is easily seen that only
the even-l part of the distorted waves contributes in

Eq. (2). Furthermore, the part PpVp+(PI —1)Vi
contributes in order e or higher order only and is
therefore neglected. For the spin-spin interactions
we introduce the Shizgal approximation. Their ma-
trix elements are approximated to order e'5 and
e 5', implying that the selection rule

6(Ms+Mr ) =+1 is valid for the total spin projec-
tion along the magnetic field.

To avoid confusion about factors of 2 we give the
final result for the T-matrix element:

T;,(k, , k, )=+ g g i' 'Y& (k, )Y&' (k, )e 'e 'r&&( —1) (2l'+1)' (21+1)'
k, ks I I m

l'2 l I'

000 m'
2 l

+1 m
2v 6 y,,p~(1+e/b)
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in conventional notation, gI and g~ being triplet phase shifts for initial and final channels and rI I being the ra-
dial integral

ri i = ui (k;,r)r ui(k„r)dr
p

in which the partial distorted waves u are normalized at infinity as sine functions. Equation (3) is valid for all

relevant combinations s's, the upper signs being valid when s' contains one b state less than s and the lower

signs when s' contains one b state more. In the HTL we have k, =k, =k.
Before substituting Eq. (3) in Eq. (1), let us first consider the relaxation process in a volume V of dilute H&

gas. The change in the number Nb of b atoms in a time interval dt due to the bb ~ah transition with all possi-
ble final relative velocity directions (so that ba should not be considered in addition to ab) is given by

t fu+~~~ '~(v)e~~'ss(vgv (5)

where the integration runs over all initial relative velocities v and cr'" is the 4m.-integrated cross section for a
single v:

o.'~, ss(v)= f&k;o,s, ss(k, , &, ) . (6)

The factor of —, is included in Eq. (5} to avoid double-counting of the bb pairs and P(v )d v is the probability

that an arbitrarily selected atomic pair has relative velocity in the volume element d v near v.
Equation (5) also follows more formally from the Wang-Chang-Uhlenbeck quantum-mechanical Boltzmann

equation' for the one-particle distribution function,
I

~
fi(p r)=Err f f f&PirIP

~Pilfer'(P

r)~q, (Pi r) fp(P & &)p, (P ir)l
p k

1 1 Pm rMm

(7)

by integrating over p and substituting a Maxwell-
Boltzmann distribution for each of the f functions
in the collision term. Here the normalization of the
differential cross section is as defined in Eqs. (1) and

(2). Subscripts p in Eq. (7} stand for a or b. One
should take care of the different conventions' for 0,
which differ by a factor of 2. In the terminology of
de Groot et al. ' the Wang-Chang-Uhlenbeck equa-
tion is conventionally formulated with a "classi-
cal" differential cross section, giving this equation
the same appearance as the classical Boltzmann
equation. The latter differential cross section is
equal to half the differential cross section as defined

by Austern. '

From Eq. (5) we find the following for the rate of
change. of the b atom density:

dnb 2= —G~nb
dt bb ~b

with the volume relaxation rate constant G„being
given by

G„=—,fvp(v)0'rdv (9)

the effective cross section o' being defined as the
total cross section (6}averaged over all directions of
v. Subscripts of cr' can be omitted in the HTL, ef-

X g ~

r (r'(21+1)(2I'+1)

I'21
X 0 0 0 (1+e/5) (10)

Note that this value for o' is a factor of 2 smaller
than that given by Eq. (9) in Ref. 2.

With a11 other relevant spin transitions added to
Eq. (8) we have the usual equations

dna =G„(as+ri, )(iis —ii, ),
dt

dnb =—G„(nb+n, )(nb —n, )

Subtracting these equations we find the relaxation
rate

1/Ti ——2nG„, n =n, +nb (12)

which after substitution of Eqs. (9) and (10) turns

I

fective cross sections for all relevant spin transitions
being equal:

2

o' (U)=(384m/5) p,,pp A 4k 4p~
pp
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out to be a factor of 2 smaller than the value of Ref.
2 after correction by the authors. It shows the
same discrepancy with the plane-wave Born approx-
imation (PWBA} value of Ref. 6.

IV. SECOND-QUANTIZATION
DERIVATION

e =4k /2mH, e =e, orch

The perturbing spin-spin part is correspondingly
1

Hi ———, g (hi) x„„cAtc„c„
K,A,p, v

(13)

(14)

hi standing for the interaction among a pair of
atoms. Formally, a system with this Hamiltonian is
known to be equivalent to a fictitious spin- —, gas
(obeying Bose statistics) in an external homogeneous
magnetic field. In the following we shall use terms

I

As a further support for the foregoing result, we
use a starting point based on Kubo and Tomita's ap-
proach" to spin relaxation. It was also briefly men-
tioned in Ref. 8. For convenience we consider a gas
of a and b atoms, interacting only through the weak
spin-spin noncentral interactions. Omitting the cen-
tral interactions will not have consequences for our
discussion of factor-of-2 discrepancies. As we shall
see, we are led to the same equations (12) and (9),
with 0' replaced by the plane-wave Born value.

A derivation along these lines has the advantage
that it is based on the second-quantization formal-
ism so that identical-particle aspects are dealt with
in a more straightforward way. We discuss the sur-
face relaxation (d =2) along with the three-
dimensional case (d =3). We consider a system of
N atoms in a "volume" L" with corresponding
periodic boundary conditions for the single-particle
wave functions P&L

"~ exp(ik r), P„being a one-
atom internal wave function (p, =a or b), and leav-
ing out a wave function for the motion perpendicu-
lar to the surface for the case of adsorbed atoms.
The Hamiltonian of the system consists in the first
place of an unperturbed part Ho, which is a sum of
a (free) translational part Hp' with single-particle
eigenvalues ea, and an internal part Ho"' with
single-particle eigenvalues e . In second-quantized
form

Hp Hp+H'p"' ——g——(e +«o)c~

like spin temperature, etc., on the basis of this analo-

The eigenstates of the unperturbed Hamiltonian
are

~
Ni, Nt, N3, . . . ), N being the number of

atoms in state a (=k p ). We now describe the
translational subsystem by a canonical ensemble
with a certain temperature (P= 1 /ktt T) and the spin
subsystem by one with a spin temperature
(P, =1/ktt T, ). The density operator is thus in con-
ventional notation given by

p(t) =Z ' exp[ [PHp—'+P, (t)Hp"']]

In the spirit of the high-temperature limit we
neglect the heat capacity of the spin system relative
to that of the translational system and consider the
relaxation of P, to P, taking the latter to be con-
stant. The spin temperature corresponds directly to
the a and b occupations; thus we are able to derive a
relaxation time.

According to first-order time-dependent perturba-
tion theory, the change in the average total spin en-

ergy in a time interval r large compared to a typical
collision time but small relative to the time between
collisions is

~(g'&= —,gg(g' -e', )
1

&&
I

&N
I » IN & I

'f(y ~N'&)

XZ 'exp[ [13Ett+P,(t—)$'N] I

(16)

A short-hand notation N is used for a sequence
[N ] of occupation numbers, EN gN e and——
8'tt gN «, w——hile

f(y, co) =sin ( —,toy)/( —,to)
(17}

~N'N (EN'++N') (EN+ +N)

We now approximate b, (S') to first order in

P, —P assuming the deviation from equilibrium to
be small. The zero-order term vanishes for large ~,
owing to the symmetry of the H~ factor in N' and N
and the 5-function character off. We thus have

((&) —(@') ), (Ig)t oa

in which

g [I/Z(P, =P)]exp[ P(Ett+8'N)]y —'f(y coze}
~
(hi)~tt ys+(hi)ztisy

T1 NA'
[+p][&g] ~

X Nag(N~+ 1 )(Np+ 1 ) e

This equation is derived by (i) expressing P, —P in terms of ( Ã ) —( g') „to lowest order in «t, —«„(ii) noting
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(21)

that at most four N' numbers can differ from the corresponding N values for a nonvanishing contribution, and

calling their subscripts aPy5; for fixed {N{ a sequence {N'J is defined by giving the two pairs (aP) and (y5);
equalities among these labels lead to negligible contributions for low densities, and (iii) noting that for fixed

{NI and (aP)(y5) only four al pv combinations in the expression (14) for Hi contribute.

The coefficient in Eq. (18) may be interpreted as the longitudinal spin-relaxation time Ti, because ()g') de-

pends linearly on the total spin projection along the external magnetic field. We now consider the summations

over occupation numbers in Eq. (19}to be uncorrelated. This enables us to factorize the numerator and the

denominator, and to leave out all factors which do not correspond to the labels a, P, y or 5.
The subsequent steps are (1) letting a and P, as well as y and 5, run independently over single-particle states

and adding a factor of —, for compensation, (2) writing out the sum over two-particle matrix elements by intro-

ducing relative and center-of-mass coordinates, thus obtaining

(hi)~pg+(hi)~par L5——g, x T„q q q (k', k), (20)

where K and K' are the initial and final center-of-mass wave vectors, respectively, k and k' are the corre-

sponding relative wave vectors, and T stands for the T-matrix element in the plane-wave Born approximation

if L is sufficiently large:

T»», (k', k) =(exp(ik ' ri2)P„(1)P& (2)
~
hi(12)(1+Pi2) { exp(ik r&2)$„(1)P„(2))

1 and 2 now standing for a pair of H atoms, (3} approximating (N~+1) and (N~+1) for low densities by 1,

while

R k' irPkr 'f(r, e~w )=2M5
2@m 2pm

(22)

in the high-temperature limit, (4) replacing summations over wave vectors by integrations and noting that for
K'=K

dkpdkydkg ——dKdk dk'

The result is

(23)

1 n Pm

Ti 8+ 2M
IJ)~Pp PyPg

f fdu'dv u P(v)
~ T„„»(k', k)

~

(24)

G, = , fdv uP(v—)A; (26)

in accordance with Eq. (9) of our previous paper, '

standing for the effective "cross length" in two
dimensions and P(v) for a two-dimensional proba-
bility.

V. CONCLUSION

From the coupled-channel work described in Sec.
II, we conclude that a number of approximations
usually introduced for calculating atomic-hydrogen
relaxation rates are sufficiently reliable. From the

Taking into account that the absolute values of the
eight T-matrix elements for aa ~ah, aa ~ha,
ab~aa, ba~aa, bb~ab, bb~ba, ab~bb, and
ba ~bb are equal, we finally find, for d =3,

G„=2 dvvP v o' (25)

in accordance with the result of the preceding sec-
tion, and for d =2

I

results of Secs. III and IV we conclude that our cal-
culated volume rate is a factor of 2 smaller than the
results obtained by other groups. Our value is in
better agreement with experiment. This is illustrat-

ed in Fig. 1, where we compare with the experimen-
tal data of Sprik et al. for He at 8=8 T, assum-

ing that no surface relaxation contributes in this
case. Note that, contrary to the HTL curve which is
proportional to ~T at low temperatures, the G„
value without HTL goes to a nonvanishing constant,
leading to some improvement of the agreement with
the lowest temperature data points. Figure 1 also
shows the best fit from Ref. 4 based on the v T
behavior. Clearly, the difference between the
theoretical results with and without HTL is signifi-
cant, suggesting that a fit to experimental data
should preferably take into account deviations from
the ~T behavior at low temperatures.

In Fig. 2 we present a comparison with the experi-
mental data of Cline et al. We left out data points
at 0.24 and 0.22 K, which the analysis of Ref. 4



27 CALCULATION OF NUCLEAR-SPIN-RELAXATION RATE FOR. . . 5431

10

without H T L

with HTL

best fit Ref.4

without HTL

—--—with HTL

I tli
fT)

E
EJ

P4 5C)

C3

1—

/

0
I

0.1
I

0,2
I

03
T(K)

I

0.4
I

0.5

FIG. 2. Comparison with the experimental data of
Cline et al. (Ref. 3) for a He-coated cell. Theoretical
curves are based on the calculations of the present paper
with and without high-temperature limit.
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shows to contain a contribution from surface relaxa-
tion. Again we conclude that an increase of the
theoretical values by a factor of 2 would deteriorate
the agreement with the experiments. ' We point,
however, to a recent unpublished result by Yurke
et al. ,

' which yields a bulk relaxation rate about 4
times our theoretical one. We note that without the
HTL the field dependence of G„differs slightly
from that obtained in the HTL, due to the influence
of 8 on E'b —E' . At Elks ——0.08 K, for instance,
changing the field from 8 to 11 T leads to a devia-
tion of G„ from the (l+e/5) field dependence by
about 7%.

Also, for the surface relaxation our 1/T~ expres-
sion is a factor of 2 smaller than that found by other

T(K)

FIG. 1. Comparison with the experimental data of
Sprik et al. (Ref. 4) for a 'He-coated cell. Theoretical
curves include results with and without high-temperature
limit. The dotted curve is the Amsterdam best fit based
on the V T behavior.

groups. In this case this enlarges the disagreement
with experiment' ': For the surface relaxation a
major discrepancy with experiment exists, the exper-
imental relaxation being faster than predicted by a
factor of order 50. Some of this discrepancy (say,

up to a factor of 2) could arise froin uncertainties in

the analysis of the experimental data. However, a
satisfactory explanation for the large remaining

discrepancy has not yet been presented. A discus-
sion of this is outside the scope of this paper. In a
planned publication we shall give an extensive
treatment of the surface relaxation problem, intro-
ducing various improvements of our previous calcu-
lation, ' such as dropping the high-temperature lim-
it and including a truly three-dimensional approach
to the H-H surface collision.
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