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The magnetic-resonance line shape in one-dimensionally modulated structurally incom-

mensurate systems has been evaluated for the case of a multisoliton lattice taking into ac-
count both phase and amplitude variations in space. Amplitude variations significantly af-
fect the NMR line shape outside the "plane-wave" regime. A comparison is made between

the temperature dependence of the average incommensurate wave vector and the soliton

density in the constant-amplitude approximation and in the case when amplitude variations
are taken into account.

I. INTRODUCTION

Structurally incommensurate (I) systems have
been, by now, extensively investigated by magnetic-
resonance techniques. ' Instead of a small number of
magnetic-resonance lines —arising from physically
nonequivalent sites in the unit cell of translationally
periodic crystals —one finds in I systems a quasicon-
tinuous frequency distribution which reflects the
spatial variation of the order parameter, i.e., of the
frozen-out incommensurate soft mode. The conden-
sation of the soft mode at the paraelectric
(P)—incommensurate (I) transition Tt results in a
superlattice, the periodicity of which is an irrational
fraction of the periodicity of the underlying lattice.
The translational invariance is lost in the direction
of the I modulation and the whole crystal is a unit
cell.

Magnetic-resonance studies have shown that in
most I systems in the high-temperature part of the I
phase the frozen-out incommensurate modulation
wave is pinned and can be 'described by a "plane
wave. " In the low-temperature part of the I phase
the magnetic-resonance frequency distribution can-
not be described anymore by this model. The spec-
tra show the existence of nearly commensurate re-
gions which are separated by static solitonlike
"discommensurations" where the phase of the
modulation wave changes rapidly. The density of
the phase solitons goes to zero at the incommensu-
rate (I)—commensurate (C) transition temperature
Tc'

No experimental evidence has been found so far
for the spatial variation of the amplitude of the or-

der parameter though it is clear that the energy
would decrease if the amplitude would be dimin-
ished at the position of the discommensuration.
It is the purpose of this paper to evaluate the effects
of the spatial variations of the amplitude of the or-
der parameter on the NMR line shape and the tem-
perature dependence of the soliton density. By com-
paring experimental data with theoretical predic-
tions one should be able to throw some light on am-
plitude variations occurring in addition to phase sol-
itons.

II. AMPLITUDE VARIATIONS IN SPACE

Let us treat the case of a one-dimensional incom-
mensurate modulation. We shall assume that the in-
commensurate soft mode belongs to a two-
dimensional irreducible representation and that a
Lifshitz invariant is allowed by symmetry. The
free-energy density g(x} can be written in the con-
tinuum limit in polar coordinates p=A(x)cosg(x},
q =A(x)sing(x) as

g(x)= —A + A+yA "c—os
2 4 2

—AA 'P'+ —(A 'P'+A ')
2

where P'=apnea», A'="tjAidx, aa(T oT&&), n is-
even, i.e., n =4,6,8, . . . , and all other coefficients
are assumed to be constants. The first two terms
represent the standard Landau expansion in a homo-
geneous crystal. The y term represents the anisotro-
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Bg d Bg
aA dx aA'= ' (2a)

py energy responsible for the lock-in transition at
lower tetnperatures and has n minima for 0 &P & 2n..

To simplify the analysis we have chosen the form
containing cos (nP/2) and not the usual form with
cos(nP). The difference, i.e., 2

yA", represents a
term of higher order. The A term represents the
Lifshitz invariant inducing the transition to the I
phase and the sc term represents the elastic energy
stabilizing the homogeneous phase.

The minimization of the free energy-
F=(1/L) J g(x)dx, 5F=O—leads to the Euler-

0
Lagrange equations

n
aA "=aA+PA +nyA" 'cos

2

—2AAQ'+@AD' (3a)

(~A P' AA—)=— A "sin(nP) .
2

(3b)

The above coupled nonlinear differential equa-
tions for the amplitude A and the phase P cannot be
solved analytically. The phase equation (3b) can be
solved exactly if the amplitude is constant in
space, A =AD. In the following we assume that the
amplitude variations around Ao are small, i.e,

Bg d Bg

ay dx ay
= ' (2b) A =Ap+ M (x), M (x ) «Ap (4a)

yielding and linearize Eq. (3a) with respect to M. We obtain

a+3PA p+n(n —1)yAp cos
2

—2AP'+a/' M

=QfAp+PA p+B|A p cos2 nP
2

—2AA pP'+ KA pP' (4b)

Close to the P-I transition the 'plane-wave" ap-
proximation is a good starting point and we find for
A =Ap=const the first integral of the phase equa-
tion (3b) as

l

Thus we get

a M "—gM = — Ap 'cos(nP),
2

where

(7a)

P'= q — A p cos(nqx),
2A

(5a)
$=2PAp . (7b)

where we used on the right-hand side (rhs) of Eq.
(3b) the approximation P =qx with

q=qo ——A/~ . (5b)

Ao ——
ao

T (6a)

where the P-I transition temperature TI is defined as

TI= To+A /(cacao) . (6b)

Though the anisotropy term is small, it is essential
for the appearance of amplitude variations. There-
fore, we neglect on the left-hand side (lhs) of Eq.
(4b) terms containing y, but retain them on the rhs.

The amplitude Ap is obtained from Eq. (4b) by the
requirement that the inhomogeneous term [i.e., the
right-hand side of Eq. (4b)] should vanish on the
average. When we insert expression (5a), we obtain
the well-known result

' 1/2

The space-varying part of the amplitude is now

obtained by inserting the plane-wave solution into
(7a) as

M (x)=A
~
cos(nqx ),

where

(8a)

An —1

(8b)
2(/+an q )

Expressions (5), (8a), and (8b) describe the space
variation of the amplitude and the phase in the
plane-wave limit. The amplitude variations depend
mainly on the anisotropy contribution and increase
with increasing TI —T.

In the low-temperature part of the I phase the
plane-wave approximation breaks down and we have
a multisoliton lattice. In the limit where the inter-
soliton spacing is large as compared to the soliton
width, we find from Eq. (3b) in the A =AD approxi-
mation the single-soliton solution as
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A (n —2)/2

2 v'2y~
(10)

The amplitude variation over the phase soliton-
separating regions with P = n I—n from regions with
P=n In is now—calculated for the case of a broad I
phase where Ty —T &&Ty —Tp from a simplified
form of Eq. (4b):

4 (yA" )' '
)}}{x}=—arctan exp x

n 2« n
'

x G [—N), + oo ] . (9)

The I-C transition temperature T, is obtained
from the condition for the marginal stability of the
single soliton at T=T, :

dA(x) =+M, (x jb),—
1

P(x}=gP,(x —jb),
J

(16a)

(16b)

where b denotes the intersoliton spacing and P,(x}
and dA, (x) are given by Eqs. (9) and (13).

i.e., the first derivative of the amplitude varies in
space approximately as the negative second deriva-
tive of the phase. This result is a relatively good ap-
proximation both in the plane wave and in the
narrow-soliton regions.

So far we have considered in the narrow-soliton
limit only single-soliton solutions. The discussion
can be easily extended to the multisoliton lattice case
by assuming that the single-soliton solutions $,(x)
and M, (x) are additive:

where g is again given by Eq. (7b) and
T

G(p( )}=nA (n+2)m' 2 nP
8 2

n+cos (12)

When we insert in G(P(x)} the known solution for
P(x},Eq. (10) can be solved by the Green's-function
method

+oo 1M(x) = Ap f—dxpG({()(xp))

III. TEMPERATURE DEPENDENCE
OF AMPLITUDE VARIATIONS

AND SOLITON DENSITY

In order to test the analytical approximations of
the preceding section, we calculated the temperature
dependence of the amplitude and phase
variations —and the soliton density —by solving nu-
merically the Euler-Lagrange equations (2a) and
(2b}. To simplify the calculation we introduce di-
mensionless variables for g (x), x, A, and q but retain
these notations for convenience. The free-energy
density g (x) expressed in new variables now reads

Xexp

' 1/2

x —xp

(13)

g(x)= —A + —A ++A "cos (nP) —A {()'
2 4 ]c

+ —(A 'P'+A '} (17)

M(x) 1
G(~(x)) 2g(„2)

Ap
(14)

At least at the center of the soliton G())() is positive
and L4(x) is negative. The amplitude of the order
parameter will thus decrease in the region where the
phase varies rapidly. This agrees with the numerical
analysis of the coupled amplitude-phase problem. '

Another point which should be mentioned is that

dA d2$= —C 2, C&0 (15)
dx

The above relation between the space variation of
the amplitude of the order parameter M (x) and the
phase P(x) is a nonlocal one. Expression (13)
reduces to a local relation in the case of a broad I
phase where V'«Ig is much smaller than the soliton
width. In this case the kernel of the integral (13}
can be approximated by a 5 function and we find +C3cos(3nqx),

A =Ap —A icos(nqx) —A2cos(2nqx) .
(18a)

(18b)
L

Simultaneously, the free energy F=(1IL)f g(x)dx
was minimized with respect to q to obtain the equili-
brium value of q. It should be noted that the wave
vector q obtained in this way is not the wave vector
which is usually given in the literature —e.g., for
Rb2ZnC14, q, =(1—5)a'/3 —but q=5/5p where 5p
is the value of 5 at Tq. The corresponding wave-
length is A, =6m/5a' =3a /q5p. Since n =6 for
Rb2ZnC14 the intersoliton distance b =A, /n

where r=(T Tp)I(Tt —Tp—). In this notation we
have q(Tq) =qp 1 and A(Tp) =——1 for y=0.

To solve the corresponding Euler-Lagrange equa-
tions we used the following ansatz in terms of
plane-wave harmonics:

P'=q+C) cos(nqx)+ Cocos(2nqx)
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=a/2q5p.
The calculations were done for n =6 with

y/~=0. 1, 0.025, 0.01, and 0.005. They were started
near Tl by using the approximations (5), (6), and (8)
for Ci, Ap, and A I as initial values for the iteration.
The calculated values for all coefficients were then
extrapolated to obtain the initial values for the next
lower temperatures. Simultaneously, the free energy
F of the modulated phase was compared with the
free energy F'= , rA—+—,A4 of the lock-in phase.
The procedure was stopped at the temperature
where F' became smaller than F. The fact that this
happens for all values of y/~ near q =0.6 indicates
that the corresponding temperature is in general, not
the lock-in temperature, but rather, the temperature
where the approximation (18a) and (18b) breaks
down.

The results are shown in Figs. 1 and 2. In Fig. 1

the value of the wave vector q and the soliton densi-
ty n, are plotted versus temperature for various
values of y/~. The soliton density n, is defined as

n, =q/(q+C&+C2+C3), (19)

1 Q

q+ Ci +C2+ C3 25p
(20)

The dotted curve of q ( T) for y/~ =0.1 is calculated

q, ns

1.0
0.9-
08-
0.7—
0.6-
05-
0.4—
0.3—
0.2-
0.1

ere+
~gage ~ ee

gq ~ ~q .- /q q
r/

r'n, 'n ln,
0.005 0.0'I 0.025 0.1

n= q/(q+c„+c~+c, )

r/ K

1.0

- 0.5

-20 -15 -10 To Ti

Temperature ( T, —Ta )

FIG. 1. Temperature dependence of the wave vector q
and the soliton density n, for y/re=0. 005, 0.01, 0.025, and
0.1 with A =A(x). The dotted curve above the solid line
q(T) for y/a=0. 1 is calculated for A =const with the
same coefficient y/~. The temperature scale on the hor-
izontal axis is expressed in Tz —To units.

i.e., as the ratio between the average space derivative
of the phase (P') and P'(x =0), i.e., in the middle
of a soliton. Here, not only the intersoliton spacing
but also the soliton width is taken into account in
defining the soliton density. This definition is
equivalent to the NMR definition which defines n,
as the ratio between the number of nuclei in the soli-
ton domain walls as compared to the total number
of nuclei. The soliton width is thus given by

C,.

a, / a,

0.1

0 01

0 001
-6

Temperature ( T( -Ta)

Ta

FIG. 2. Temperature dependence of the coefficients
C~, C2, C3, AI/Ao, and A2/Ao of Eqs. (18a) and (18b).
The temperature scale on the horizontal axis is expressed
in Tq —To units.

with A(x)=const. The temperature where F" be-
comes smaller than F is in this case nearly the same
as for A =A (x). The state with A =const always has
a higher free energy than the state with A =A (x).
Since the A=const curve is thus, for all values of
y/~, above the curve where amplitude fluctuations
are allowed, it is plausible that an extrapolation for a
continuous lock-in transition would lead to a too
low T, for A=const.

It should also be mentioned that according to Ref.
4 the lock-in transition is expected to be slightly
discontinuous for

TI T
&25 .

I p

The step in q at T, should then increase with in-
creasing y/~. This was observed in our model cal-
culations only for values of y/sc&0. 5, whereas the
discontinuity was too small to be discernible for
y/z & 0.5.

Another important fact to be stressed is that the
temperature dependencies of the soliton density n,
and the incommensurate wave vector q are qualita-
tively different. This is true both for A =A(x) and
for the A =const approximation. Near Tl, q is near-
ly constant but drops steeply as T, is approached.
The soliton density n„on the other hand, decreases
rather smoothly with decreasing temperatures
throughout most of the incommensurate phase.
Close to T, it vanishes in the same way as q. The
difference is due to the fact that near TI the soliton
width w, decreases with decreasing temperature fas-
ter than the inverse intersoliton spacing 1/b.

In Fig. 2 the temperature dependence of CI, C2,
C3, Ai/Ap, and A2/Ap is plotted in a logarithmic
scale for y/re=0. 1. One can see that there is a rela-
tion between Ci and A I/Ap which can be obtained
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from Eqs. (5) and (8),

A)/Ap=C)/n (n =6) .

It can be seen from Fig. 2 that a similar relation ex-
ists between C2 and A2/AO:

Az/Ap Cz/2n (n =6)

By substituting A~ and Az in our ansatz Eq. (18b),
with these relations and taking the first derivative
with respect to x for both Eqs. (18a) and (18b), we
obtain

A v v v v v

A '(x) = —P "(x)/A p, (21)

which is equivalent to Eq. {15). This relation is il-
lustrated in Fig. 3 where the phase P and the ampli-
tude A are plotted versus x for y/x=0. 43. The cor-
responding spatial variation of the two-component
order parameter p,q is shown below. The atomic
displacements u (x}are linear combinations of p and

q and can be expressed as

p =A cos(t}

x

u (x) ec A (x)cos[P(x)+Pp] . (22)

Here pp is a phase shift which can be different for
each kind of atom in the system and which cannot
be predicted by the continuum Landau theory as it
follows from the discrete crystal structure.

FIG. 3. Spatial variation of the phase P and the ampli-
tude A as well as of the corresponding two-component or-
der parameter p, q. All atomic displacements u (x) in the
crystal are linear combinations ofp and q.

IV. NMR LINE SHAPE AND AMPLITUDE
FLUCTUATIONS

Let us now evaluate the NMR line shape for the
case of a pinned modulation wave in the continuum
limit. The NMR, nuclear quadrupole resonance
(NQR), or EPR frequency reflect' the spatial varia-
tion of the incommensurate order parameter

const const

~

dvldx
~ ~

(dv/du)(du/dx)
~

(24a)

The inhomogeneous resonance line shape F(v) is
determined by the convolution of the frequency dis-
tribution'

u =A(x}cosy(x),

so that

v=v(u(x)) .

{23a)

(23b)

with the line-shape function L{v v, } of a—single
line corresponding to a given site

F(v)= fL(v v, )f(v, )dv-, . (24b)

Here y(x}=Pp+P(x},where Pp and P(x) were intro-
duced in Eqs. (1) and (22).

Using expression (24a} we get the frequency dis-
tribution as

f(v)= const
A

~
sing(dp/dx )+—cosy(dA /dx )(1/A )

~
(dv/du )

(24c)

1

V=VO+Q]Q+ 2 02Q + ' ' (25a)

If the wavelength of the modulation wave is large as
compared to the size of the region from where the
dominant contribution to the frequency v comes,
v= v(u (x)) can be expanded in powers of the order
parameter.

In this case we find

I

and with the help of expression (23a)

v =vp+a, A(x)co~(x)

+ —,azA (x)cos q&(x)+ . (25b)

The factor cosy takes on nearly continuously all
values between + 1 and —1 as x runs over all lat-
tice sites which are equivalent in the high-tem-
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dA 1+cos(p( vi +v2cosp+ ' ' )
dx A

Here we introduced
2vi ——a iAo v2 ——a2A o

(26)

(27)

I

perature phase.
The singularities in the line shape are determined

by the zeros of the derivative

dv . . . d=—simp(vi+v2cosy+ - . )dx dx

The term dA /dx in Eqs. (24c) and (26)—
reflecting the space variations of A—has not yet
been taken into account in comparing experimental
magnetic-resonance data with theoretical models. '

In the "plane-wave" limit when dgldx =qp,
d Pldx =0, this term is indeed negligible. In other
cases it may, however, significantly affect the reso-
nance line shape.

In the plane-wave-regime case we find for a&&0,
a2 ——a3 ——0,

V—Vp A)
32

Vi Ap

V—Vp1+6
V&V&

f(v) = const

~
sing)[1 —K

~ cos(n((})]+n (A ~ /A p)cos(psin(nP)
~

where P=qpx and K~ ——[ya/(2A }]A p . For n =6, for instance, we thus get for Pp ——0,
2 1/2 ' '4 '2

V—Vp v —vo 6f(v) =const 1— +
V) 32

(28)

—Ki 32

6
V—Vp

Vi

'4
V—Vo V—Vp—48 +18 (29)

1/2dq, , n(q —0p)=const 5 +cos
dx 2

(30)

The frequency distribution still has the charac-
teristic square-root-type edge singularities' at
v= vp+ vi, as obtained in the plane-wave limit for
A =const, but the shape of the distribution is
changed. The magnitude of the change depends on
A i and Ki and is small in this case.

In the multisoliton lattice case' we find in the
A =Ap approximation dP/dx from the sine-Gordon
equation as

1 dA 1 dG
Apdx gdx

yielding

dAs ~A'Apl

Ap dx ga.

(33)

I

sintp=0, so that tp is an integer multiple of m.
Close to T„where the solitons are far apart, we

can evaluate the amplitude variation over an isolated
phase soliton centered at x =0 from expression (14)
as

~/2
K[1/(1+5 )' ]

(31)

where Pp stands for the initial phase of the modula-
tion wave and 5 is related to the soliton density (i.e.,
the fraction of nuclei in the incommensurate domain
walls) as

where

(n +2}m 1 tanh(lx)
X

4 cosh(lx) cosh(lx)
'

(34}

Here K is the complete elliptic integral of the first
kind. Expression (31) is in fact identical with Eq.
(18). The value of n, is 1 in the plane-wave limit
where 5 &&1 and approaches zero when 6 «1. Ex-
pression (30) yields, together with expression (24c)
for A=const, up to n new commensurate lines for
6~0 in addition to the incommensurate edge singu-
larities. The new lines appear ' for 5«1 when
cos n (qr —4}p)/2=0, i.e., when

y=(2m+1)n/n+Pp, m =0, 1,2, . . . , n —1

(32)
whereas the edge singularities will appear when

l=n(yAp /2a)'~ =w, '. (35)

is the inverse soliton width.
For a multisoliton lattice we get in this approxi-

mation, where the intersoliton spacing b is large as
compared to the soliton width w„

1 dA 1 dA,
(x jb ), —

Ap dX ~ Ap dX
(36)

with dA, /dx standing for the derivative of the
single-soliton solution as given by Eq. (34). In the
same approximation we have from (9a)
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P'(x) =g((),'(x j—b), (37)

with

2l
n cosh(lx)

(38)

+p =0

F1.0
4p = 30'

ns=09

ns*0.8

being the derivative of the single-soliton solution
(9a). Putting expressions (37), (38), (36), and (34)
into expression (24c) we get the frequency distribu-
tion function in the "narrow" soliton limit as
T~T~.

The results of a numerical evaluation of the
magnetic-resonance line shape F(v) in the presence
of amplitude variations A =A(x} are presented in
Fig. 4 for n =6 and Pc——0,90', and for soliton densi-

ties n, =1, 0.9, 0.8, 0.7, 0.6, 0.5, and 0.4. Here we
assumed that a &0, a2 ——a3 ——0. The line shapes
f(v) have been convoluted with a Lorentzian the
width of which was 2.5% of 2v~. The gradual ap-
pearance of the commensurate lines for n, &0.9—
occurring in addition to the "iricommensurate" edge
singularities at v=+v&—is clearly seen. For a gen-
eral Pc we have six commensurate lines and two in-
commensurate edge singularities. At least two of
the commensurate lines occur so close to the two
edge singularities that they cannot be separated from
them in view of the finite Lorentzian linewidth (Fig.
5}. The intensities at v=+vi should be thus con-
tinuous at T, . For special values of Pc (i.e.,
Pc——30',0' in the case n =6},some of the commensu-
rate iines merge so that, e.g., for the ())o

——0, two of
the commensurate lines occur at the center, and four
coincide with the edge singularities.

In Fig. 6 the theoretical magnetic-resonance line
shapes for A =A(x) and A =const are compared for
n, =0.6, pc=0,30', and n =6. Amplitude variations
clearly affect the relative positions of both the edge
singularities and the commensurate lines. For
Pc——0, amplitude variations produce a merging of
the edge singularities and commensurate lines so
that we have three peaks in F(v) instead of the five

ns*p7

(t) = 30'

(t) = 25'

e= 20'

e=l5' 4

ns 0.5
4=10'

ns 0-4

FIG. 4. Magnetic-resonance line shape for a linear
dependence of v~ on u(x) for various soliton densities n, .
The curves for tlo

——0 correspond to the frequency density

f(v) obtained from p(x), the ones with $0 30' to f(v——)

obtained from q(x). The spectral densities f(v) are con-
voluted with a Lorentzian of the width 0.05v~.

C =0'

FIG. 5. Magnetic-resonance spectra for various initial
phases $0 for the case n, =04in Fig. 4. .
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nss06

4p-tj

ep =3O

A=A(x) As const

expected in the A=const approximation. In addi-
tion, the commensurate lines are significantly nar-
rowed as expected from the p =p(x) curve in Fig. 3.
The effect is just the opposite for go=30'. Here
both the edge singularities and commensurate lines
broaden under the infiuence of amplitude variations.
This effect can again be seen from the q=q(x)

FIG. 6. Comparison between the NQR spectra for

A =A(x) and A=const in the case of a soliton density

n, =0.6 for t(o ——0, 30'.

curve in Fig. 3.
One may thus conclude that amplitude

variations —occurring in addition to phase
solitons —significantly affect the NMR line shape
for soliton densities n, which are smaller than 0.7.
These effects are absent close to TI where we are in

the "plane-wave" regime. Amplitude variations are
particularly important in the "narrow" soliton range
close to T, . For go=0, for instance, with decreasing
soliton density the "incommensurate" singularities
move away from the edges toward the center and
simultaneously become weaker. At the edges of the
spectrum we can have now commensurate lines.

The intensity of the incommensurate background is

as well reduced. The effects, of course, again de-

pend on tl)o. Amplitude variations must be thus tak-

en into account when one tries to determine quanti-

tatively the temperature variation of the solition

density very close to T, . Though a detailed compar-
ison of the above theory with experimental data is
reserved for a planned subsequent paper it should be
nevertheless mentioned that the temperature depen-
dence of the incommensurate wave vector in

Rb2ZnC14 and the observed Rb magnetic-resonance
line shapes in Rb2ZnBr4 closely resemble those
predicted by the above model for n =6.
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