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The “recursion method” is applied to the dynamics of disordered lattices, and is used ex-
plicitly to calculate properties of isotopically disordered zinc. The specific heat and atomic
motion are calculated for the special case of an isotopically pure lattice and compared to
previous experimental and theoretical results. Then Mossbauer-effect calculations for the
high-resolution ©’Zn isotope are presented, including evaluations of the Mdssbauer line shift
with temperature, the anisotropic recoil-free fraction, and the Goldanskii-Karyagin effect.
In addition, the effect of zero-point motion on the Mdssbauer line position and linewidth in

isotopically disordered zinc is discussed.

I. INTRODUCTION

Several effects of lattice motion on hyperfine in-
teractions have been predicted for both optical and
nuclear transitions.!—> The effects of such motion
in disordered systems are of particular interest for
the Mossbauer effect. This is because Mdssbauer
nuclei are frequently either chemically or isotopical-
ly different from the nuclei of the host lattice. In
the limit of low concentration, this is an impurity
problem, while for concentrations of Mdssbauer nu-
clei on the order of unity this becomes the much
more difficult problem of a disordered lattice. An
extensive review of analytical approaches to both
problems has been given by Maradudin et al.%’
These calculations have in general involved one or
more of the following restrictions: (1) one-
dimensional lattices; (2) interactions involving
nearest neighbors only; (3) purely isotopic impurities
(no change in force constants); (4) cubic symmetry;
(5) isolated impurities (with the remainder of the lat-
tice a pure monatomic solid); (6) use of the Debye
approximation. Nevertheless, the analytical calcula-
tions are important, not only for revealing the physi-
cal basis of certain lattice-dynamical effects, but also
because of the formidable problems confronting
more realistic approaches. The worst of these prob-
lems is the enormous number of degrees of freedom
that must be treated in the absence of simplifying
symmetries. The recursion method of Haydock®
and Nex’ is valuable for calculations involving dis-
order or complicated crystal structures (or both).
One of its major virtues is the fact that basis states
for describing the dynamical motion are chosen in
such a way as to reduce the effect of boundary con-
ditions on the solution. Another is its computation-
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al efficiency, allowing calculations on systems hav-
ing thousands of degrees of freedom with modest
computing facilities.

We have applied the recursion method to lattice-
dynamical problems relevant to the Mdssbauer ef-
fect, taking a special interest in the isotope $7Zn.
This system has the narrowest fractional linewidth
of the known Mossbauer resonances, and presents a
case in which the contributions of disorder should
be, as we shall see, quite observable. In particular,
we find that the second-order Doppler shift due to
zero-point motion leads to line shifts and line
broadening at T =0.1"1> We show these effects to
be small enough to be masked in most instances by
chemical isomer shifts. However, if both source and
absorber are zinc metal (with perhaps different iso-
topic compositions), then the linewidth and position
should show substantial effects from isotopic disor-
der. Currently available calculations are constrained
with the conditions listed above, most of which do
not apply to metallic zinc (or, in fact, to many other
cases of practical interest). Therefore, we have ap-
plied the recursion method to a simulation of the
zinc lattice, based on parameters derived from
acoustical and neutron-scattering measurements.
All of the properties commonly measured in
Mossbauer spectroscopic analysis are easily calculat-
ed, and the range of applicability of our method ex-
tends well beyond the present problem. In particu-
lar, the calculations may be applied to any crystal
structure, with arbitrary basis and isotopic composi-
tion, at arbitrary temperature, and may be applied
with equal ease to isotopic (mass-defect) disorder
and to force-constant disorder.

Sections II and III of this paper discuss the recur-
sion method and its application to the Mossbauer ef-
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fect. Section IV describes the ’Zn M&ssbauer sys-
tem and a lattice-dynamical model for metallic zinc.
We present results of our calculation in Sec. V. Pre-
dictions are made for a number of quantities that
have yet to be measured in zinc, such as the
temperature-dependent recoil-free fraction, the
temperature-dependent line shift, and the effects of
isotopic disorder on line position and linewidth. In
the Appendix we compare the predictions of the re-
cursion method for the zero-point velocity of an iso-
lated impurity with several earlier analytical calcula-
tions.

II. THE RECURSION METHOD

The solution of lattice-dynamical problems in the
harmonic approximation involves the truncation of
a Taylor expansion of the potential energy U at
quadratic terms, and discarding linear terms on the
basis of lattice stability:

U=Uo+7 3 SulDPuf
a,Bi,j

Here u is the displacement from equilibrium of
atom a along the coordinate direction i=(x,y,z),
and

U

pP= " :
Y Qufouf (4] =0

The equation for the motion of atom a along direc-
tion i is

m"ii,-a= = z

au,

The harmonic solutions to this system of equations

are found by introducing complex amplitudes v/
with

=Re(vfe'”),
so that

mohf= ED;‘}ﬂv f

The resulting eigenvalue problem may be made more
symmetrical with respect to the masses m* by intro-
ducing

a)l/zvgz

xf=(m 7,
F:-j-ﬂ:(m“mﬁ)‘ngﬂ.

The eigenvalue problem then takes on a simpler

form:

2 PxP=wx{ .

For a lattice of N atoms, the 3N eigenvector solu-
tions may be represented by subscripting them each
with their associated value of w, as (x;*),, and we
shall take these solutions to be orthonormal:

E(xia)w(xia)a=8mu .
a,l
It is difficult to carry out the indicated operations

for a disordered lattice of reasonable dimensions be-
cause the diagonalization of a large matrix is re-
quired. However, the recursion method®’ makes
possible the efficient numerical evaluation of certain
quantities. In this method, one chooses a set of mu-
tually orthogonal basis vectors according to a recur-
sive algorithm, which begins with the choice of a
normalized starting vector s{. The recursion
method then allows the computation of sums of the
form

s,,[f] Zf(wz) zs,"(x,

for functions f subject only to modest restrictions.’
In this paper we choose starting vectors which in-
volve the motion of a single atom ¥ along a single
direction k,

5" =88
and we therefore evaluate sums of the form

Sl f1=2f ()P -

In the next section we show how the lattice depen-
dent quantities used in the Mossbauer analysis may
be expressed in this way.

I1I. MOSSBAUER EFFECT

The Mossbauer effect is most easily described for
a quantum lattice. In terms of the atomic displace-
ments u* and the conjugate momenta p/*=m°u;" the
harmonic Hamiltonian is
(p? ﬂ
H =

i 2m® i B

We introduce the usual annihilation operator for

each phonon frequency w:

12
ul+i

172

a
@ a
pi
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ay= z(xia)a)

1
2m%fiw
In terms of these operators the Hamiltonian is

F=tho(ala,+7) .

@
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The quantities of interest in discussing the
Mossbauer effect are the thermally averaged expec-
tation values of the squared displacements and ve-
locities of the emitting (or absorbing) Mdossbauer nu-
clei. Inverting the expression for the annihilation
operators, we find the thermal average of the mean-
square displacement to be given by

N = E(x, .

— 1

(My+73),

where 71, is the mean number of phonons of fre-
quency o present at temperature 7+

i, =(ePo_1)"1,
with B=(k,,T)-1
fiw

((4j )2» 2(::“’)2 lm“

Both of these thermally averaged quantities assume

the form of sums which may be computed using the
recursive method discussed earlier,

Similarly

(Ao+7) -

((wfPN=S;q

i 1
—aw-(n,,,+3)] ,

— 1

QPN =Siq | T2 (7, ++)

For the purpose of checking our calculation, it is
also desirable to express the heat capacity in a simi-
lar form. The two preceding expressions allow the
calculation of

E=3 Sl iy +5)]

i,a

which leads to a molar specific heat:

ESm[(ﬁﬁw oy +1)] .

The lattice-dependent quantities most relevant to
the Mossbauer effect are the second-order Doppler
shift and the recoil-free fraction. The former
predicts the Doppler dependent thermal line shifts,
including the zero-temperature line shift owing to
zero-point motion. The latter is important in the
determination of integrated line intensity, and its
variation with direction leads to the Goldanskii-
Karyagin effect.

Provided that anharmonic effects are negligi-
ble,'*15 the recoil-free fraction for emission in direc-
tion / by atom a is

fra=exp[—4m* () /],
where A is the y-ray wavelength. Similarly, the

second-order Doppler shift is given by

Ay =—2M

2
vV i 2c

’

where v is the y-ray frequency.

IV. METALLIC ZINC

The method will be demonstrated by its applica-
tion to the resonance of ®’Zn Mossbauer nuclei in
metallic zinc. This resonance is the narrowest of the
known Mossbauer resonances and is the one most
likely to show clearly the effects of zero-point
motion.'®'7  Moreover, the zinc-metal lattice is
highly anisotropic and should exhibit a large
Goldanskii-Karyagin effect.!®1!

The Zn Mdssbaver level at 93.3 keV
(A. 0.13 A) is usually reached through the decay of
a 9Ga parent with a half-life of 78.3 h This spln-
excited state then decays to the spm- ground state

of ®Zn with a half-life of 9.1 us, leading to a natur-
al resonant Q of about 2 10" (Fig. 1). This corre-
sponds to a natural linewidth of 0.16 um /s although
the observed linewidths will be at least twice this
value due to the combined effects of source and ab-
sorber. Because of the relatively high recoil energy,
the recoil-free fraction is generally less than 2%,
and the resonance has been observed only at tem-
peratures below 50 K. In natural form, ©'Zn is only
present with 4% abundance, but samples enriched to
about 90% are available.

Zinc meta] has a hexagonal lattice structure with
ap=2.6648 A and c,=4.9467 A® The ratio
co/ao=1.86 is rather different than the value for a
close-packed hexagonal lattice, 1.63. Several at-
tempts have been made to model the observed acous-

67Zn

I=v2  m=t1p2
93 KeV

Mdssbauer
Transition

25x10%ev
- Quadrupole
1=5/2 \O~um=+3/2  Splitting

\
) |
Nm=*1/2
FIG. 1. Energy levels of ¥Zn which are relevant to
Mossbauer experiments. The total nuclear spin is I, and
the projection of this spin along the c axis is m.
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tic properties and phonon dispersion relation (from
neutron scattering).! ~2® Theories which do not ac-
count for force constants between each atom and an
adequate number of neighbors, or for a sufficiently
general form of interaction, have generally had lim-
ited success. The modified axially symmetric
(MAS) model of DeWames et al.?”»?® has perhaps
been the most successful, and also fits conveniently
within the structure of our calculation. The model
derived from a simpler axially symmetric model?
which characterized the bond between each pair a,8
of atoms by a restoring force C;(a,B) for bond
stretching, and a restoring force Cz(a,) for bond
bending. In terms of these constants, the potential
at site a is given by

Vo=~3(Cila,B[A% (& —i")]
B

+Cpla,BIA®PX (W — T,

where 7% is a unit vector pointing from a to B.

This potential may be used to derive the dynamical
matrix

DZP=(1-8F)(—K*PnPnf—5,C5P)

+ saﬁE(KaYniaYany+ 8” Cg‘y)
14

with K®#=C# _CgP. The MAS model differs in
that two bending constants, Cp,, and Cp,, are used.
The second is used only in the term §;Cp when
i =3. No rigorous justification for this substitution
is given but it leads to a more accurate description
of the observed phonon dispersion relation. The
values of K, Cg,,, and Cg, for the first six nearest-
neighbor shells (38 neighbors) have been determined
on the basis of neutron scattering data.?’

We have used this model along with randomly
distributed masses in the desired isotopic propor-
tions to create simulated lattices for calculations of
Mossbauer effect quantities. Typically, these lat-
tices had 8 X8X5 unit cells, giving almost 2000 de-
grees of freedom. Previous calculations of the specif-
ic heat’’ and the density of states?® for the MAS
model?” were used to check our calculation. These
results are included in the next section.

V. RESULTS

Density of states. The eigenfrequency sums
Sidf1=2f(@)x]]
(0]
that we evaluate in this paper clearly focus upon the

local environment of the Mdssbauer nucleus because
the function f(w?) is weighted for each mode fre-

" quency by the motional amplitude of the nucleus in

that mode. An important example is the so-called
“local density of states,”

nf(v)=38(v—w/2m)(xf) .
@

In the special case of a uniform lattice, the local
density of states (when averaged over i=ux,y,z) is
equal to the usual full phonon density of states. (In
a disordered system, on the other hand, the local
density of states varies from site to site.) A graph of
the local density of states we compute for a pure
zinc lattice is given in Fig. 2(a). We have used the
smoothing prescription of Ref. 9. This function
may be compared with the full density of states for
the MAS model?’ of zinc, Fig. 2(b),2® and to the full
density of states for another zinc model, Fig. 2(c).*
The densities of states in Figs. 2(b) and 2(c) were
both computed using k-space sampling techniques.
Our calculation would agree in detail with Fig. 2(b)
if it were possible to carry it out to much higher pre-
cision, since both analyses are based on the MAS
model.’

Specific heat. The originators of the MAS model
verified that it made accurate predictions for the
specific heat.” Thus a calculation of this quantity
within the framework of the recursion method can
serve as a test, both for the accuracy of the method
and for the correctness of our implementation of the

(a)

DENSITY OF STATES (arb. units)

1 ! 1 1 1
(o] 1 2 3 4 5 6 7

FREQUENCY (10'2 Hz)

-

FIG. 2. Phonon densities of states for metallic zinc. (a)
Recursion method applied to the MAS model (this paper).
(b) Root-sampling method for the MAS model (Ref. 28).
() Root-sampling method applied to an earlier model
(Ref. 30).
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MAS model. The computed specific heat as a func-
tion of temperature is shown in Fig. 3, and it is
compared there with experimental data.’!~** The
agreement is quite satisfactory.

Mean-square displacement. Figure 4 shows the
calculated mean-square displacement of zinc atoms
as a function of temperature. For zinc, (z?) is dif-
ferent than (x2)=(y2?) so these are drawn
separately. Values given by Barron and Munn?* are
in agreement with these results but are not indepen-
dent. Their values of (x2), (y?) were also deter-
mined by applying the MAS model, albeit with dif-
ferent numerical techniques appropriate to ideal lat-
tices. They then chose (z2) for consistency with
thermodynamic data. Also plotted in Fig. 4 are two
low-temperature experimental determinations of
mean-square displacements®>3¢ derived mainly from
x-ray data. A discussion of other determinations of
these displacements and their interpretation is pro-
vided in Refs. 37 and 38. Related measurements of
the mean-square nuclear displacements of 3’Fe im-
purities in zinc, performed via the Mdssbauer effect,
have been reported®>*® and are in general agreement
with our calculation.

The calculated mean-square displacements can be
used also to determine the recoil-free fraction f as a
function of temperature, and of direction with
respect to the crystal ¢ axis. For a harmonic hexag-
onal lattice, f is fully characterized by its values f,
and f, for emission along or perpendicular to the ¢
axis. In an arbitrary direction 7, f is given by

f=exp[ —((A-%)?) /A%]
=fx(f2/fx )cos20 ’

where 0 is the angle between 7 and the ¢ axis. At
T =0, and for a natural ®’Zn lattice, f, =1.1Xx 1072
and f,=3.3X10"* The recoil-free fraction is

[

SPECIFIC HEAT (cal /mole K)

| 1
(¢} 20 40 60 80 100 120 140
TEMPERATURE (K)

0o I | 1 I 1

FIG. 3. Specific heat of zinc, calculated from the recur-
sion method (solid line). Experimental specific heat from
Ref. 32 (circles).

(x2) (y?)

MEAN-SQUARED DISPLACEMENT (10> nm?2)

1 I 1 | 1 1 I 1 1
0 20 40 60 80 100

TEMPERATURE (K)

FIG. 4. Mean-squared atomic displacement in zinc, cal-
culated from the recursion method (solid lines). (z?) is
the displacement along the ¢ axis. The mean-squared dis-
placement deduced from x-ray experiments is shown by
circles (Ref. 36) and squares (Ref. 35).

therefore highly suppressed for emission along the ¢
axis, a fact first noted by Pound and Rebka.'? The
results may be used to evaluate the Goldanskii-
Karyagin effect for zinc metal powder as a function
of temperature. The $7Zn ground state, as indicated
in Fig. 1, has spin%, and is split into three sublevels
by the electric field gradient internal to the zinc-
metall lattice. The first nuclear excited state has
spin and remains unsplit. The emission spectrum
thereby splits into three components of equal in-
tegrated intensity, each radiated with a different an-
gular pattern with respect to the ¢ axis.*! The radia-
tion pattern of recoil-free photons is modified fur-
ther by the anisotropy of the recoil-free fraction,
yielding the angular emission patterns shown in
Fig. 5. The i%—»i% and the i-%—»i'-;- lines are
more strongly localized along the ¢ axis and are re-
du?ed ins integrated intensity with respect to the
++—*7 line as a result of the anisotropic f value.
When averaged over solid angle, we obtain relative
line intensities shown in Fig. 6 for (i%,i;,i%).
These relative intensities would be 1:1:1 at all tem-
peratures in the absence of anisotropy in the mean-
square displacements. Experimental measure-
ments*? at 4.2 K, where we predict relative intensi-
ties of (1.00):(0.87):(0.65), give values of (1.00):(0.89
+0.18):(0.79+0.23). Further data are clearly needed
to provide a definitive test. We also calculate that
the line intensities are 55%, 48%, and 36%, respec-
tively, of what they would be if radiation in the xy
plane only were used (in an experiment with an
oriented single crystal).
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*1/2>%5/2

LINE INTENSITY (arb units)

O 10 20 30 40 50 60 70 80 90
8 (degrees)

FIG. 5. Predicted intensity for the three components of
the Mdssbauer line, as a function of the angle 6 between
the emission direction and the ¢ axis. The curves are la-
beled by the change in the magnetic quantum number m.

Mean-square velocity. Our numerical methods
also allow the calculation of the mean-square atomic
velocity (v?) as a function of temperature. Figure 7
shows the resulting prediction for the second-order
Doppler contribution to the temperature shift of the
Zn(®’Ga) Mossbauer spectrum. Experimental data
for this quantity are not yet available.

A more difficult calculation is the determination
of the effects of isotopic disorder on the Mdssbauer
line properties. We treat two examples here: (1)
The difference in the second-order Doppler shift
from zero-point motion due to differences in isoto-
pic composition of source and absorber; (2) broaden-
ing of the Mossbauer lines due to site-to-site varia-
tions in zero-point motion in an isotopically disor-
dered lattice. We believe the recursion-method cal-
culation is the first to give reliable results for these
two effects, which we treat in turn below.

12 T T T T T

*1/2+%£5/.
o 5/2

08 +1/2++3/2

084122+ 1/2

04

RELATIVE INTENSITY

02|

0 | 1 L 1 1
[o] 20 40 60

TEMPERATURE (K)

FIG. 6. Temperature dependence of the intensities of
the three components of the Mdssbauer line, for a powder
sample of metallic zinc. The intensities have been nor-
malized to that of the m = ;t%——»m = j:% line at T=0.
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FIG. 7. Predicted shift in the position of the $’Zn
Mossbauer line, for a metallic zinc host, owing to the
second-order Doppler effect.

Line shifts. Even in the T—0 limit, a contribu-
tion of the second-order Doppler term to the line po-
sition remains due to zero-point motion. Using the
Debye approximation, this shift may be estimated to
be roughly Av/v=—1.5x10"" or about 300
natural linewidths. Consequently, it has been con-
sidered as a possible contribution to observed isomer
shifts.'” On the other hand, one cannot measure the
absolute shift, only its variation from one lattice to
another. The calculations discussed in the Appendix
all suggest that this variation is far smaller than the
shift itself. Although corrections have been made in
some cases for the shift!”*® its presence has not been
confirmed experimentally. The principal obstacle to
doing so is the fact that chemically inequivalent
sources and absorbers also exhibit line shifts due, for
example, to differing electrostatic contact interac-
tions between the electrons and the nucleus. These
are evidently larger in most cases than the zero-
point shift.!”*

One possible solution is to use a source and ab-
sorber which are chemically identical and differ only
in isotopic composition.**¢ For example, we con-
sider here the shift which would be observed be-
tween a source lattice of natural zinc and a commer-
cially available*’ zinc absorber enriched to about
90% in %Zn. The zero-point shift in this case is ex-
pected to be quite small, but relatively uninfluenced
by chemical shifts. Our recursion-method calcula-
tion predicts a relative line shift for this source-
absorber combination of 0.0266(10) um/s. This is
17% of the natural linewidth (8% of the observable
width), and so should be readily measureable. An
experimental test is underway in our laboratory.
Data of this type are available for ZnO, but ap-
parently without sufficient precision in the isomer
shift. The two available measurements*®*® differ in
both sign and magnitude. We have not attempted a
recursion-method calculation for ZnO, a substance
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for which the additional complication of long-range
interactions will have to be considered. In the Ap-
pendix, we compare our recursion-method results
for the zero-point shift with the predictions of
several analytical calculations. These analytical
methods are not applicable to the full isotopic alloy
problem, so the comparison is done for the case of
an isolated ®’Zn impurity in a host lattice with zinc
force constants, but with variable atomic mass. All
of the calculations agree on the sign and general size
of the shift, for this somewhat artificial case.

Line broadening. In a lattice with disorder, such
as an isotopic mixture, the various lattice sites are
not equivalent and one can expect a distribution of
mean-square velocities. The variation in resulting
Doppler shifts will lead to line broadening even for
an otherwise perfect crystal at zero temperature, as
was first pointed out by Snyder and Wick.* Our
recursion-method simulations of natural and en-
riched zinc give explicit predictions for this
broadening effect, which would be absent in pure
67Zn. We predict an excess linewidth of 0.0094(8)
um/s for natural zinc, and an excess linewidth of
0.0027(2) pm/s for zinc enriched to 90% 'Zn. An
experiment would observe the combined effects of
source and absorber, but the increase over natural
linewidth is only 6% for a natural source and ab-
sorber. This effect is important, however, because it
places foreseeable limits on the resolution that may
be achieved for isotopically mixed systems. The or-
der of magnitude of this limit is | Av/v|=10"1°
and, since practical M0Ossbauer y-ray energies are
<100 keV, suggests a limiting linewidth of several
hundred hertz (the excess linewidth is 700 Hz in
natural zinc). Similar limits are expected from elec-
tromagnetic interactions within the solid, such as
the dipole-dipole interactions. Attempts have been
made to observe the Mdssbauer effect with long-
lived isomeric states of Ag'’ and Ag!® (with 44.3
and 39.6 s half-life, respectively).’**~>? Our calcula-
tion suggests that the site-to-site variations of zero-
point motion in natural silver will broaden the line
to about 10° times its natural width, rendering the
resonance unobservable.

VI. CONCLUSION

This paper presents a method for determining the
dynamical properties of atoms in three-dimensional
lattices of arbitrary crystal structure. The method
can treat disorder in either the masses or the force
constants, the sole restriction being the availability
of an adequate harmonic model for the system. The
case of zinc metal, a highly anisotropic hexagonal
crystal, has been investigated and results are provid-
ed for the temperature dependence of the second-

order Doppler induced isomer shift, the recoil-free
fraction, and the Goldanskii-Karyagin effect. We
have predicted a measureable line shift between a
natural zinc source and an enriched zinc absorber,
owing to differences in zero-point motion. The
achievable Mdssbauer energy resolution in isotopi-
cally mixed systems is seen to be limited by isotopic
disorder. Existing data on the motion of *’Fe in
zinc and on the isomer shift of ¥’Zn atoms in a
copper lattice (with respect to a zinc-metal absorber)
should also provide interesting tests for our calcula-
tional method. In these cases, both the masses and
the force constants are modified at the sites of the
Mossbauer nuclei.
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APPENDIX

In this Appendix we evaluate the results of several
analytical approaches to the problem of impurity-
zero-point velocity, in order to compare them with
our numerical calculations. We stress that these
analytical methods are restricted to the isolated im-
purity problem, unlike our recursion calculation.
Further information on these methods may be found
in the reviews of Maradudin et al.57 In each case,
we have evaluated the mean-square zero-point velo-
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FIG. 8. Predictions of various models for the mean-
square velocity of a ¥Zn impurity, as a function of the
host-lattice atomic mass. See the Appendix for details.
(a) Recursion method applied to the MAS model (our cal-
culation). (b) Perturbative result of Lipkin, and result of
Maradudin et al. The two results, which are both based
on the Debye model, are indistinguishable on the scale of
this graph. (c) One-dimensional lattice calculation.
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city for an impurity of mass M’ in a perfect lattice
of atoms with mass M, using force constants ap-
propriate to metallic zinc. Most of the models
predict line shifts proportional to the Debye tem-
perature ®p. As we have noted, metallic zinc is
particularly poorly described by the Debye approxi-
mation. Various methods of measuring ®, have led
to values varying by more than 100 K.*” For com-
putational purposes we have used ®p=220 K,
which is perhaps the most favorable value for agree-

ment with our more realistic calculations.
The results are presented in Fig. 8 for the case in
which the impurity is Zn and the mass M of the
J

fiwcoth(#iw /2kT)

host-lattice atoms varies. Except for the case in
which the host is another isotope of zinc, these re-
sults do not pertain to actual experiments.
Nevertheless, this provides an effective way to com-
pare the various methods.

One-dimensional lattices. The greatest amount of
progress with lattice impurity dynamics has been
achieved in calculations for monatomic and diatom-
ic one-dimensional lattices.”> The lattice is usually
assumed to be bound by nearest-neighbor harmonic
interactions. For the monatomic case, we are able to
write the mean-squared velocity of an isolated im-
purity for the mode of frequency w as >

(v?),=

1
NM l 1+€’an¥(,/2)—(e/N)[1+tan($,/2)]

where N is the number of atoms in the chain, e=(M —M')/M, and ¢,, is defined implicitly by

tan(N¢,/2)=etan(¢,/2) .

The net impurity velocity may be evaluated by approximating the resulting sum over w as an integral which
can be evaluated analytically. In the low-temperature limit, the expression becomes>

fop |1 Le] 1= ,
™ 1_62_(1_62)3/2“‘“ e] for0<e?<1
(v?)=
o | el @-n2| 1
tanh~! _ £ 2 1,
™ | (@—1p72 """ €] a_ or €2 >

where w; =(4y/M)'/? is the maximum frequency in the acoustic spectrum of the unperturbed lattice, and ¥ is
the nearest-neighbor force constant. To these results must be added the contribution from a localized
mode®®—*% if 0 <e < 1. In this case, the highest mode in the acoustic band separates off from the others and
makes a separate resonance above the highest frequency in the spectrum, w;. The solution makes a contribu-

tion to (v?) of

fiw
A(u2)=—1—wi ecoth

L 1
2kT (1—52)1/2

In the Debye model for three-dimensional lattices,
the highest lattice frequency is w; =k®p /#. For
comparison with three-dimensional models, we have
used this value for w;, and in addition we have mul-
tiplied the mean-square velocity by three to account
for the extra degrees of freedom in three dimensions.

Three dimensions. While one-dimensional calcu-
lations give some insight into the isolated impurity
problem, they do not represent realistic models of
the usual lattice-dynamical problem. Their value
lies in the fact that the equivalent three-dimensional
problem becomes intractable when applied to sys-
tems of any complexity.

Lipkin has applied perturbation theory to arrive
at a result for lattices of abritrary dimensionality.”
By examining the effect on the motion of one atom
by the simultaneous change in the masses of all oth-

(1—€?)~372,

-
er atoms in the lattice (without changing the force
constants), he calculates the first-order shift in
zero-point velocity in terms of the spectrum of the
unperturbed lattice. If his result is evaluated for a
Debye spectrum, we find

9 kO, 172
8 M

M,

(v}) = i

(140.01%¢) .

Note that the term in square brackets is independent
of € because ®p o« M ~!/2, The only barrier to using
this calculation to obtain an accurate estimate of the
zero-point shift in zinc, is the necessity of approxi-
mating a host lattice of varying isotopic composition
by a uniform host of varying mass.

Maradudin et al. have given a nonperturbative
calculation for three dimensions (restricted, howev-
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er, to isotopic impurities in a monatomic cubic lat-
tice).>> Following from the very general result that

2 2 d
(v )—M, de[AF(G,T)],
where AF(e,T) is the change in the free energy of
the crystal at temperature T owing to the introduc-
tion of the impurity, it is possible to evaluate the
mean-squared impurity velocity. In the low-
temperature limit, the result becomes

aw_ 3for = 2f2G(f)+ 3G (f)
WH="7 Js [(1—ef2G (NP .

b

1 P(x)dx
)= fO f2+x2 ’
P(x)=0w,glorx),

and g(w) is the normalized frequency spectrum of
the unperturbed host. Provided that the density of

states can be found by other means, the integrals in-
dicated can be evaluated numerically. Zinc, of
course, is not cubic so this calculation is not directly
applicable. As an approximation we have used these
formulas and a Debye spectrum to calculate the re-
sults shown in Fig. 8. It is interesting to note that
the zero-point shift estimated in this way is indistin-
guishable from that predicted by Lipkin’s perturba-
tion theory for a Debye model.

The results in this Appendix represent only a
fraction of the progress achieved with such calcula-
tions. Other results for three-dimensional lattices
dealing particularly with localized modes at the im-
purity, were derived by Dawber and Elliott® using
the Green’s-function techniques of LifSic.’® These
calculations were for isotopic impurities in a Debye
lattice. Results for more highly disordered three-
dimensional lattices have been found by Weiss and
Maradudin,®' and applied to two-component simple
cubic lattices with nearest-neighbor interactions.
Further extensions of the techniques above are re-
viewed by Maradudin et al.”
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