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A heuristic model is developed to explore the combined effects of exchange and g-value

anisotropy in the conduction-electron spin resonance in polyvalent metals where it may be
appropriate to consider the electrons in different Brillouin zones to be partially decoupled
from one another. Within the framework of this model the resonance should show struc-
ture at low temperature, and the conventional analysis of resonance data, using the theory
of Platzman and Wolff to obtain the exchange parameter Bo, can be substantially in error if
the effects of g-value anisotropy are not properly accounted for. Some features of existing
data for aluminum are discussed in the context of this model, and it is noted that spin-
resonance results may be able to remove the current ambiguity in the sign of the pseudopo-
tential matrix element V~~~ used in calculations of the band structure of aluminum.

I. INTRODUCTION

The role of g-value anisotropy, the dependence of
the conduction-electron g value upon position on the
Fermi surface, in determining the experimentally
measured spectrum of conduction-electron spin reso-
nance (CESR) in metals has not been extensively ex-
plored. Typically, the momentum scattering time
for electrons is sufficiently short that this g-value
anisotropy is motionally averaged and contributes
principally only to the width of the observed reso-
nance. ' In very pure materials at low temperature,
however, the scattering time may become sufficient-
ly long to require a more detailed examination of the
effects of g-value anisotropy. Also, if there is signi-
ficant exchange interaction among the conduction
electrons the combined effects of exchange and
motional averaging of the g-value anisotropy must
be considered.

Freedman and Fredkin2 (FF) have given a most
useful discussion of the general problem of the ef-
fects of g-value anisotropy in the presence of ex-
change. Two of their principal results are expres-
sions for the linewidth and g-value shift as a func-
tion of the momentum scattering time valid
throughout the range from narrowing by exchange,
at low temperature, to narrowing by momentum
scattering at high temperature. They also note, in
agreement with Kaplan and Glasser, that the effect
of exchange, with isotropic g, in giving a complex

diffusion constant for magnetization can be simulat-
ed by the presence of g-value anisotropy without ex-
change. Walker and later Montgomery have also
explored the consequences of the combined effects
of g-value anisotropy and exchange using specific
models for the g-value anisotropy.

The explicit results of FF in the presence of both
g-value anisotropy and exchange, used extensively in
the interpretation of CESR results in aluminum,
rely on the assumption that the rms spread in g
values over the Fermi surface is small compared to
the exchange parameter, i.e., ((5g/g) )'
Results of 5g(k) calculations by Beuneu show that
the simple explicit results of FF must be used with
caution. The g-value shifts, averaged over Landau
orbits, show an rms g-value variation
((5g/g)')'~ -0.033, uncomfortably close to the
lower estimate of Bp of 0.06 measui'ed by Dunifer
et al. Further, the rms g-value variation, using
point values rather than orbital averages, is 0.23, in-
dicating the need for substantial care in choosing ap-
propriate 5g's to use in the FF formalism. Some im-
portant consequences of this g-value distribution
have been pursued further in another publication
concerned with the regime in which motional nar-
rowing by scattering, not exchange narrowing, deter-
mines the width of the resonance.

There is an additional feature of Beuneu's results,
illustrated in Fig. 1, which suggests the use of the
model discussed in detail later in this paper to probe
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zones could still be effective in narrowing the indivi-

dual zone g-value distributions illustrated in Fig. 1.
This idea suggests a heuristic model for exploring
the combined effects of g-value anisotropy and ex-
change, namely a model of two groups of spins, each
with a characteristic g value, linewidth, and dif-
fusivity, which are coupled by exchange and by in-
terzone scattering. This is an idea already discussed
briefly by Stesmans and Witters» with regard to
CESR results in zinc and magnesium. This model
will unlikely portray accurately the observed
behavior of aluminum; it mill highlight a number of
important features which may be evidenced in the
CESR of polyvalent metals. The formal equations
describing this model are presented in Sec. II, and
some experimental implications are discussed in Sec.
III.

II. THEORETICAL FRAMEWORK

-0.2 -0.1 0 0. 1 0.2 hg
A. Model formulation

FIG. 1. Histogram of density of orbitally averaged g-
value shifts, 5g, for (a) the second zone and (b) the third
zone in aluminum, from Ref. 7.

the consequences of g-value anisotropy. Figures 1(a)
and 1(b) give, in histogram form, the distribution
functions of the orbitally averaged g values for elec-
trons on the pieces of the Fermi surface in the
second and third zones, respectively. The second-
zone electrons have a narrow distribution of g values
with a mean shift of —0.023, while those of the
third zone have a mean shift of +0.078 and about
3X the spread.

It should be noted that the results of Beuneu are
based on the Ashcroft model' for the aluminum
band structure and the pseudopotential matrix ele-
ment V»i has been assumed positive. In fact, there
remains ambiguity in the sign of V»& since it enters
the band-theory calculation only as V»i. Because
the dominant g-value shifts in aluminum result from
coupling across the V»i gaps, they are reversed in
sign if the sign of Vi» is reversed. Thus the possi-
bility should be kept in mind that the sign of the

g —2 axis of Fig. 1 could be reversed, and that the
second-zone electrons could well have the positive
g-value shift rather than the third-zone electrons. In
principle, the CESR experiment is capable of remov-
ing this ambiguity in the sign of V& ~ &.

In aluminum, with high enough purity and at suf-
ficiently low temperatures, there will ultimately be
neither impurities, nor phonons of adequate wave
vector, to scatter electrons between the second and
third zones, though scattering over the individual

A model is desired which is both solvable and
which reflects some of the important physics in-
herent in metallic systems with a wide spread in g
values over the Fermi surface, systems for which the
specific predictions of the Freedman-Fredkin theory
may not be valid. The structure of the g-value dis-
tribution indicated in Fig. 1, with the g-value shifts
in the second zone narrowly centered at —0.023 and
the broader distribution for the third zone centered
at a shift of + 0.078, suggest a phenomenological
model treating two groups of spins. A straightfor-
ward generalization of the development of Platzman
and Wolff' (PW) is possible with the simplifica-
tions outlined below. These simplifications are of
course open to criticism, but the result does allow
relatively simple solutions, and hence the model pro-
vides useful illustration of the kinds of physical
behavior to be expected.

Two groups, i =1,2, of electrons are defined each
described by a 2X2 density matrix p;(p, r, t). The
trace of p; gives the probability of finding an elec-
tron in the momentum state p at position r, the
difference in diagonal components gives the contri-
bution of that state to the magnetization in the
direction of spin quantization, and the off-diagonal
components give the associated transverse magneti-
zation. Generalizing the development of PW, cou-
pled transport equations for the densities are written
to describe the effect of a driving field

(xH„+yH„)exp(ik r —itot)

in the presence of a uniform steady magnetic field
zHO. The steady-state equations are linearized in the
circularly polarized driving field amplitude
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H~ =—H„+iH~, and the resonant components of the
response amplitudes of the density matrices

e;(p, r, t) are denoted by p+(p).
Related response amplitudes a; and b; are defined

by the convenient ansatz

—an'
p,+(p)=(a;+v b;)

representing the leading two terms in an expansion,
analogous to PW equation (58.17), of p;+(p) in a set
of functions defined over the Fermi surface. The
term ( —Bno/BE), with n the Fermi distribution
function, reflects the fact that the density matrix
p+(p) is significantly perturbed only near the Fermi
surface.

The amplitude a; is essentially the resonant mag-
netization density m;+ associated with electron
group i, since

and i =1 with the third zone. Ambiguity in the sign
of the crystal-field matrix element V»& implies an
ambiguity in the sign of the calculated e;

(ii) phenomenological spin-resonance widths 1/T;
(no distinction will be made between longitudinal
and transverse relaxation times);

(iii) momentum scattering times r,' assumed iso-
tropic;

(iv) spherical Fermi surfaces with Fermi velocities

v; and cyclotron resonance frequencies co„,'

(v) exchange coupling parameters Bs correspond-
ing to the Bo defined in PW (Ref. 12), Eq. (52.33);
higher-order B's are assumed zero. The B;;, as well
as the B;J introduced shortly, are directly related to
the spin-dependent electron-electron interaction en-

ergy in the Landau Fermi-liquid theory. The spin-
dependent interaction energy of an electron of
momentum p in group i with an electron of moment
p' in group j may be denoted

d3
m,+=y, eii in'=~ijaii '~)i' (5a)

=y;N;(eFi)ai .

dE Bn

~

'f E(p)
~

BE
P

(2)

0ij =0ji ~ (5b)

if the exchange is assumed independent of p and
p'—one of many simplifications used in this paper.
The uncoupled transport equations are more con-
veniently written in terms of the Landau parameters
B;;,defined by

N;(eq;) is the single spin densi-ty of states at the Fer-
mi energy e~ for group i, y; is the gyromagnetic ra-
tio for the ith group, and units have been defined to
give Pi=1. In a similar fashion, the vector ampli-
tude b; gives the magnetization current density

d3i; =r;f, vp+(p)=yiNi(ep;)b;/3, (3)

where the result for a spherical Fermi surface
(v ) =v~/3 for a =x,y,z has been used.

The coupled transport equations for the ampli-
tudes a; (magnetization) and b; (magnetization
currents) involve the following properties of the two
electron groups:

(i) resonant frequencies, in absence of exchange,
equal to y;Ho with Ho the static applied field. Note
that this y is defined to be consistent with the usual
convention in magnetic resonance, but differs by a
factor of 2 from the PW development. It is con-
venient to introduce parameters ra=(yiy2)'~ ande:(y2 y, )—/(y2+—y, ) in terms of which

yi ——yo[(1 —e) /(1+ e)]'~',

ra=ra[(1+e)/(1 —e)]'" .
(4)

The results of Beuneu correspond to @=+0.025 if
i =2 is associated with the second-zone electrons,

Bii =Ni (eFi )(i (6)

withi =j;
(vi) magnetic susceptibilities in absence of ex-

change Xo used frequently as an expression of the
single-spin density of states via

N(eF )=Xp /y . (7)

1 1
NJ(eFq) = Ni(ep;) .

+ij ~ji
(8)

It is convenient to introduce a parameter a to
describe the relative densities of states at the Fermi

The two groups of electrons are coupled by mutu-
al exchange and by intergroup scattering. The cross
exchange parameters B,J, i &j, were defined already
in the preceding paragraph as an obvious extension
of the intragroup B's. Intergroup scattering, as-
sumed independent of spin and momentum, is
described by two parameters w,j, with ~,J

'
being the

probability per unit time that any particular electron
in group j be scattered to the i group in the absence
of restriction by the Pauli exclusion principle. The
detailed balance condition, reflecting the fact that
cross-scattering lifetimes will be shorter for elec-
trons in the group with the lower density of states,
receives quantitative expression in the relation
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surface of the two groups, through the definition

a N1{&F1} &p1 &p2

1 —a N2(eF2) Y1 Y2
(9)

1 1 —ai—(p1 —Q1)+—+ b, + co, 1Xb1
T1 Tx

+iku1[{1+aBp}a,+(1—a)Bpa2] =0, (14b)

The cross-scattering rates are then expressed in
terms of a and a single parameter T„by the relations

=Q1, 721 ——(1—a)r„—1 —1 —1 —1 (10)

which will automatically satisfy the reciprocity rela-
tion equation (8). In the model, this intergroup
scattering also relaxes the momentum as well as es-
tablishing communication between the spin dynam-
ics of the two groups, and as a consequence it is con-
venient to introduce a modified momentum relaxa-
tion time for each group,

1 1 1 —a—+
T1 T1 Tx

1 1 a—=—+-
Z

(1 la)

(1 lb}

B11=B21=aBo~

B12=B22 =(1—a}Bp
(12)

Finally, in the spirit of this same model, the partial
susceptibilities, in absence of exchange, are con-
veniently written [see PW equation {53.26)] as

a
Xp; —— 1

y;mp/4m (13)

with m the electron mass and p the Fermi momen-
tum in the free-electron model.

The transport equations, generalizations of PW
equations (58.23) and (59.29), for the amplitudes a;
(magnetization) and b; (magnetization current) are

1+aBo 1 —a—i [co—Q, (1+aBp)]+ + ai
T1 T

Bo(1—a) 1 —a
iBpQ1(1 —a)+ a2

T1 Tx

+ik.bi/3 =i01yiH1, (14a)

In the spirit of an almost-free-electron model for
aluminum, in which the second- and third-zone sur-
faces are simply different pieces of a single free-
electron spherical Fermi surface, it is plausible to as-
sume the exchange interaction between any pair of
electrons to be independent of whether they are in
the same or different zones. In this approximation,

f11——f22 ——f12, the B's may be expressed in terms of a
single Bp by

The co„are vectors of magnitude equal to the cy-
clotron resonance frequency and direction parallel to

In these equations Q1 and Q2 are the single-
electron resonance frequencies in the applied field
plus exchange field of the other electrons [with the
use of Eqs. (4) and (12)]:

1+B22 (l 2/Yl }B12
n, =y,ao (1+B,1)(1+B22 }—B12B21

1/2
2e(1 a)Bp—

1 —e
1 —e

YpP p
1

1+Bp

Q2 is obtained from Eq. (15a) with

1~2, a~1—a, e~—e.

(1Sa)

(15b)

The prediction of experimental transmission-
electron spin resonance {TESR) results requires the
solution of Eqs. (14) with suitable boundary condi-
tions on the amplitudes a;, b;. In absence of
surface-induced spin relaxation, the conventional
boundary condition for a single species of mobile
spina is simply n j =0 at a surface with outward
normal n. For the two-spin model, in the absence of
surface relaxation, the same condition is appropriate
for the total magnetization current, but not individ-
ually for the currents j 1 and j 2. An additianal
condition must be imposed which defines the extent
to which the surface contributes to intergroup
scattering, a process which will leave the normal
components of the total magnetization current effec-
tively zero, but which may allow the outward flow
of magnetization in one electron group to be bal-
anced by an inward flow in the other. Such scatter-
ing leads to quite complicated additional boundary
conditions on the amplitudes a;, b; except in the spe-
cial case of the static magnetic field oriented perpen-
dicular to the surface. This special case is useful to
develop in order to illustrate the passible conse-
quences of spin-independent surface scattering.

The surface scattering is modeled as a "specular"
fraction (1—P) which takes v into v —2n(n. v) in
the same group, and a "diffuse" fraction P which

and two additional equations being obtained from
Eqs. (14a} and {14b) with the following transforma-
tions:

1~~2

and
a~~1 —a .
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a
Jp (x:

1
v;cosO a;+b;v;cos8 d cos8

(a;u;l2+b;U; l3) .
J

(16a}

Similarly the inward moving electrons give a spin-
density flux

scatters randomly in direction and to final states in
both groups 1 and 2 with relative weights a and
1 —a. Assuming the deviation from equilibrium at
the surface to have the siinple form of Eq. (1), the
spin-density flux at the surface associated with out-
ward moving electrons in group i is proportional to

the poles of the susceptibility indicate the resonance
frequencies and widths of the system response to a
spatially uniform driving field, and give as well a
general idea, with qualifications concerning
surface-induced relaxation, of the TESR response in
the "thin limit" in which the spin-diffusion length
-(UFrT)' or spin-wave wavelength

~

k
~

' is
large compared with the sample thickness. In the
k =0 limit Eq. (14a) and its transformation for the
magnetization decouple from Eq. (14b} and its
transformation for the magnetization currents to
give a relatively simple secular equation, quadratic
in frequency, the roots of which are the poles of the
k =0 susceptibility. The dependence of the real and
imaginary parts of these poles upon the cross relaxa-
tion time ~„ is discussed in Sec. III.

Jl; ~
1

(a;v;l2 b;v; l3—) . (16b)
C. Dispersion relation k (co)

Setting the reflected flux (inward flux) equal to ap-
propriate reflected amplitudes of the outward flux,
e.g.,

JI i =Joi l {1 P)+0&]—+Jo213rz,

JI2 J01P(1 ir)+J02[(1 13)+13(1——a)]
(17)

gives the boundary conditions for the amplitudes a;
and b;. Assuming for simplicity that v~ ——v2 ——vz,
these become

abi+(1 —a)b2 ——0,
3

+(bp bi )vp ———,P(—a2 —a i )l(2 —P) .

(18a)

(18b)

The plus (minus} sign is appropriate if the out-
ward normal to the surface is in the positive {nega-
tive) z direction; the b; are the z components of the

b;, the x and y components being zero for a
geometry with the static field perpendicular to the
surface. The boundary conditions (for P&0}become
much more complicated if the static field is not per-
pendicular to the surface. For the perpendicular
geometry discussed here, Eq. (18a) is the direct gen-
eralization of the usual result n j =0, while Eq.
(18b) describes the intergroup scattering resulting
from the diffuse fraction P. Note that for P=O
these equations imply bi ——b2 ——0, i.e., the normal
magnetization currents for both groups are individu-
ally zero; if P&0 magnetization may be carried to-
ward the surface by one group and returned into the
bulk by the other, and the surface scattering effec-
tively couples the two groups in a manner similar to
the terms in ~„'.

B. Poles of g(k, u) as k ~ 0

The simplest result to obtain is the susceptibility
in the k =0 limit. The real and imaginary parts of

For k&0, spin diffusion or spin-wave propaga-
tion becomes important, and the exact solution of
Eqs. (14) with the applied field perpendicular to a
foil sample subject to the boundary conditions (18),
though straightforward in principle, is tedious and
would be useful only in making comparisons with
specific experimental results. (The situation for the
parallel field geometry is more complicated because
of the greater complexity of the boundary conditions
for this situation. ) As a consequence of the two
groups of electrons in the model there are two solu-
tions of the homogeneous part of Eqs. {14) corre-
sponding to spiv diffusion or spin-wave propagation
in two distinct modes. The general solution requires
the determination of four mode amplitudes corre-
sponding to the propagation of both modes in both
the positive and negative directions across the sam-
ple. The diffuse boundary conditions (18},or their
generalization for the parallel geometry, are impor-
tant in giving mixing at the surfaces of the eigen-
modes of the bulk material. Under the assumption
of specular reflection (P=O) at the surfaces, the
solutions are relatively straightforward for arbitrary
orientation, because of the absence of mode-mode

coupling at the surface, but do in general require nu-

rnerica1 analysis.
More instructive than attempting exact solutions

is to examine the behavior of the model near the

high-temperature limit, in the regions in which the
cross-scattering rate 1/~„ is still large compared
with the difference in frequencies associated with
the g-value splitting. In this case one of the poles of
the susceptibility has a relatively small imaginary
part determined by a weighted mean of 1/'1] and
1/T2, while the other pole has an imaginary part the
order of 1/w„. For the thick-sample problem, the
transmission is dominated by a single mode, since
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the propagating mode corresponding to the suscepti-
bility pole with the large imaginary part is very
heavily attenuated. It is reasonable then to solve
Eqs. (14) in the limit of small r„ to obtain the
dispersion relation k(co) for the dominant spin-
diffusion model and to use this k{co) in the standard
formulas for TESR signal shapes.

The following equation [Eq. (19)] gives the disper-
sion relation, in a complete but not very useful form,
to first order in the ratio of the TESR linewidth to
the cross-scattering rate. Also terms higher than
first order in the fractional g-value splitting e, the
exchange splitting Bp, and their product eBp have
been deleted.

k = 1

(1+Bp)D,
1+B—l CO+

Te

r2
D2 —D(

'r a(—1 —a ) —co ( 1 —Bp )X D,

D2 —Di 2i Di D2

D, D, T2 T
4roP—oE

1+Bp Di D2
+

D, T2 T)
1 Di D2

+4iypff pe
e 2 1

Several new symbols require definition and comment: First,

co—:co —y~p [1+@(1—2a)]

(19)

(20)

is the deviation, in first order in e, of the applied frequency co from the weighted average, [ayi+(1 a)yi]H—o,
of the resonant frequencies, in absence of exchange, of the two individual groups; second,

1/T, —:(a/Ti )+(1 a)/T2— (21)

is the corresponding weighted average of the individual linewidths; third, the D& and D2 are anisotropic dif-
fusion constants given by

U. [ i(io 0—;)+(—1/r;)] +co„cos 6
Ds ——— (22)

[ i(co 0—;)+(—1/r;)][[—i(co—Qi)+(1/r;)] +co„]

with 6 the angle between the applied static field Hp and the direction of the spin-wave or spin-diffusion wave
vector k. Note that in the limit of short relaxation times D; ~ u; ~;/3; D, is a weighted diffusion constant,

D, —:aD i +{1 a)D2 . — {23}

The leading term of Eq. (19) is equivalent to the dispersion implied by PW equations (58.32) and (58.33) if co

in Eq. (22} is replaced by the co, of PW, a substitution made in their development which is appropriate for co

near the TESR resonance. The correction terms, to first order in ~„,give the first effects of the decoupling of
the two groups of spins as ~„ is increased, or temperature is decreased.

Equation (19}may be forced into the form

1—ltd +
T

(24)

by using the definitions

D =(1+Bp)D, 1 —a(1 —a)~„

r

D2 —D) 2 Di D2
4i e(youp)+

e e 2 1

+ ico(1 —Bp)

r

D2 —Di

D,

(25)
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rp =ro+4a(1 —a)T (1+Bp)(ypHp)e —:rp——QHp,
1 1

T2 Tf
(26)

1+Bp —a(1—a)r„(1+Bc)
e 2

(27)

This form is convenient for comparison with data
analyzed on the basis of the PW result of the form
of Eq. (24). The discussion of the next section re-
veals how the correction terms may contribute both
to a g-value shift and a change in phase of the dif-
fusion constant deduced from the TESR data. Note
that these correction terms all depend, in one way or
another, upon the difference between the properties
y;, T;, or D;, of the two groups of electrons. Note
that Eq. (27), because the expansions have been car-
ried only to first order in e, does not include the
most important term linear in ~„, a term quadraticI E.

III. PREDICTIONS OF THE MODEL

A. Poles of the uniform susceptibility

In order to illustrate the complexities of the ESR
response implied by this model, and hence the com-
plexities which may be expected in the interpretation
of TESR data in aluminum and presumably in other
polyvalent metals as well, the trajectory of the poles
of the uniform susceptibility X(k =0,cp) with vary-
ing temperature are plotted in Fig. 2. The secular
equation derived from Eqs. (14) with k =0 is solved
for a complex co and the imaginary part of co plotted

~o
o0.03-

0.02—

+0

00 I-

-0.~-0.02 06

0- I

+0.02
I

+O.OI -0.0 I

I

-0.02
(v-x)/v = Sg/g

-0.03

FIG. 2. Pole trajectories of P(k =0,~) with the interzone relaxation rate 1/~„as parameter. The point from which the
various trajectories spread out is the high-temperature limit yoHOE'T ((1;the arrowheads are the low-temperature limits.
The plotted trajectories are for the parameter values a =0.25, e= —0.025 &OHOT~ =62.5 &OHOT2=250. The labels on the
individual trajectories give the Bo values. These curves may also be used to determine the trajectories for a=+0.025 by
reversing the signs on the Bp labels and reversing the signs on the 5g/g =(y —y„)/y axis. The inset shows trajectories
in the FF model for Bo +0.1 and ((5g/g ) ) '——~ given by the labels on the curves; the scales are the same as in the main
figure, but the origin is displaced.
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(I+Bo)((&g /g )') (yoHO)r
(yoHo2') '=

1+X'
(29)

X= [Bo /( 1 +Bp )]( yoHO )7 (30)

for B&&
——+0.1 and several values of ((5g/g) )'

In Eq. (29) only the contribution of the narrowed g-
value distribution is written. The results of Beuneu
give ((5g/g) )'~ =0.033, comparable with the
value of 0.022 used in the results presented here.

Several features in Fig. 2 are worthy of note, and
emphasize the need for care in the interpretation of
TESR data for systems with exchange and g-value
anisotropy of comparable magnitude:

(1}The two-spin model with no exchange can give
a motional narrowing transition which simulates the
FF transition; compare the main Fig. 2, with Bp ——0,
with the inset with ((5g/g) )'~ -0.032 and sup-
pose the horizontal axis of the main figure reversed
to correspond to e)0.

(2) Similar g-value shift versus temperature curves
may be simulated by a wide range of curves generat-
ed with different values of the parameter pair Bp,e.

against the real part as ~„ is varied to represent the
effect of changing temperature. Other parameters
are defined as a=0.25, e= —0.025, yoHOT2 ——250,
yoHoTi ——62.5, and Bo is assigned the values label-
ing the various curves. The vertical and horizontal
scales give the linewidth and line shift in units of
yoHO or, if thought of as field rather than frequen-
cy, in units of the resonance field Hp. The line
shifts are measured with respect to the high-
temperature, motionally narrowed limit

=
yp[ ( +'yi + ( 1 —+ ) ) 2]

The shared point on these curves is the high-
temperature limit, each curve showing the variation
of the pole position as the temperature is lowered
(the r's made longer} to a low-temperature limiting
value represented by the arrowhead. In addition to
the set of trajectories which fan out from the high-
temperature limit, there is a second set whose ima-
ginary parts go to 1/~„at high temperatures but
which come to observable values at low tempera-
tures. For Bp ——0, the low-temperature limits are, of
course, the individual 1/T; and y; values in ap-
propriate units for each of the two groups; for
Bp ))e the two roots become the collective mode
and the exchange-shifted single-particle modes of
FF. The inset gives the trajectories in the FF
model,

Bo((&g /g )') (yoH0 )'r'
( —y„)/y„= (28)

1+X

For example, e= —0.025, Bp ——+0.07 is roughly
simulated by E=+0.025, Bo +——0.02. (Again re-
call, for @=0.025, to reverse the sign of the 5g/g
axis, and to reverse the signs of the Bo labels. )

(3) The two-spin model, with unequal relaxation
times T;, can show a nonmonotonic variation of res-
onance position with temperature, in contrast to the
simple motional narrowing model and the FF model
in both of which the g-value shift is monotonic. In
the example of Fig. 2 this behavior is revealed for
Bo and e of opposite sign and roughly

~

Bp
~

&
~

e
~

.
(4} The two-spin model, obviously, reveals the

possibility of observing a two-line structure related
to the g-value anisotropy in the case of weak ex-
change in the low-temperature limit. Note that in
this case the weak exchange may shift the reso-
nances substantially from the positions determined
by the y s in the absence of exchange; compare, for
example, the low-temperature limits for the nar-
rower pole (i.e., smaller imaginary part) in Fig. 2 for
Bp ——+0.02 with the limit for Bp ——0. This same
shift has brought the broader (i= 1) pole from off
scale to the left of the figure, for Bp=0 onto the
graph for Bp =+0.02.

With the information on 5g( k ) provided by
Beuneu, and the observations above suggested by the
two-spin model, it is amusing (though not very pro-
ductive it turns out) to speculate about the interpre-
tation of the high-frequency TESR data of Dunifer
et al. ' Dunifer's data, as well as many other re-
sults, " do show a nonmonotonic variation of g
with temperature, suggestive of point (3) above, and
it is tempting to conclude that Bp and e have oppo-
site sign. It would be difficult, however, to rule out
all of the other possibilities outlined by Beuneu for
the increasing g at higher temperatures and the con-
clusion must remain tentative. It does suggest that
the crystal-field matrix element V»&, whose sign is
dominant in determining the sign of e, may turn out
to be negative rather than positive as is generally as-
sumed.

Considerations (1} and (2} suggest ambiguities in
the procedures for deducing Bp values from the
TESR data for aluminum; certainly the magnitude
and conceivably the sign of Bp as determined from
an FF analysis of results on thin samples could be in
error, and there might even be a possibility of ap-
proximating the low-temperature shifts with g-value
anisotropy without exchange. This suggests the
need for reexamination, in the framework of this
model, of the interpretation of higher-temperature
data on thicker samples which have served as the
basis of Bp determinations for aluminum.

In a speculative frame of mind one could imagine
an interpretation of the spin-wave spectrum of Fig.
5 of Ref. 8 as being due to a pair of resonance
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modes, one from each of two decoupled groups of
spins with the broader and weaker resonance having
a larger g value (lower resonance field). The split-
ting suggested by the data would be ddt/I -0.025,
about half of that calculated by Beuneu but close
enough to be interesting. Although the results of
Ref. 14 confirm the spin-wave interpretation, the
suggestion illustrates the potential ambiguity. This
ambiguity is most straightforwardly removed by
comparing results in the parallel and perpendicular
field geometries, since the spin-wave structure will

appear on opposite sides of the main line for the two
geometries, while structure induced by g-value an-

isotropy will be insensitive to sample orientation.
In view of these qualitative remarks we ask, is it

worthwhile ta pursue the development of the model
in order to attempt quantitative fits to Dunifer's re-
sults? The answer is probably no. The most re-
markable feature of the data is the unexplained de-

crease in linewidth with sample thickness, discussed

by them at some length. The remarks above shed no
light on this behavior, though a brief relevant com-
ment will appear in the next section. Without even
a qualitative understanding of the linewidth varia-
tion with thickness, any attempt at a quantitative
understanding of the line shifts seems pointless.
The linewidth variation is further obscured by the
onset of phonon broadening for T &35 K, prevent-

ing linewidth versus g-value shift comparisons in the
interesting regime in which the g value is increasing

with increasing temperature. Finally, the two-spin
model both is so inadequate in some regards, e.g.,
the phenomenological inclusion of the T;

' which
themselves are likely to be "Freedman-Fredkin
widths, " and contains so many adjustable parame-
ters, that any quantitative agreement would be of
doubtful significance.

B. Response at finite wave vector

As noted in Sec. II, the solution of Eq. (14) for
any except "specular, "P=O, boundary conditions is
expected to be very tedious, and indeed for the
parallel field geometry the appropriate boundary
conditions are unclear. An important feature to
note, however, is that the surface scattering, if P&0,
mixes the two groups of electrons 1 and 2. For a
thin sample this mixing plays the same role as r„
and can be incorporated by an adjusted value for v.„.
The thick case is different, however. The normal
modes of propagation involve a mixture of the elec-
tron groups 1 and 2 with coefficients determined by
the various model parameters including the bulk
scattering ~„. Typically, one of the two modes is
strongly attenuated with distance into the sample,
and the other dominates the TESR signal. The sur-

face scattering now scatters electrons from the
weakly attenuated mode to the strongly attenuated
mode and consequently has the effect of a surface
spin relaxation for the better propagating mode.
Surface scattering between the modes, even though
not involving a spin flip, has the effect of a surface
spin relaxation. In the FF language, the collective
spin mode is damped at the surface by surface
scattering between it and the single-particle modes.
The effectiveness of this surface relaxation depends,
through the mode admixture coefficients, in a com-
plicated way upon the model parameters. It is possi-
ble that the increase in width with decreasing sam-

ple thickness observed by Dunifer and Pattison is
related to this intermode surface scattering; no at-
tempt has been made to pursue this idea quantita-
tively.

An alternative to studying the low-temperature,
(E,BO)yoHor ) 1, behavior of this model is to look
at the first-order corrections in leaving the high-
temperature, (E,BO)yoH07 ((1,regime. The results
in this regime depend less upon specific details of
the model and are more useful in addressing ques-
tions such as the reliability of Bo determinations
from TESR data.

The expression of Eq. (19), and consequently of
Eqs. (25)—(27), may be simplified considerably if
one is interested only in the rough magnitudes of the
first-order corrections in ~„. Suppose in the regime
of interest, temperatures below the observed
linewidth minimum, that the linewidths T; of the
two groups are determined by motional or exchange
narrowing of the g-value anisotropy within each of
the individual zones. The results of Beuneu suggest
taking Ti '/Ti ' —(5g ) (third zone)l(5g ) (sec-
ond zone) -9, or for the purposes of this discussion,
simply 1/T»&1/Tq. The results of Ref. 15 imply
scattering rates for third-zone electrons roughly
10X faster than for second-zone electrons, and
hence that in the regime co,v &g 1, the electron trans-
port is dominated by the second-zone electrons,
Dq »Di. Further, because the cyclotron resonance
frequency for the third-zone electrons is the order of
10' higher than the second zone, the condition
Dz »Di is also appropriate in the regime co,~&&1
for the parallel field geometry. With these approxi-
mations, 1/T»&1/Tz and Dq »D~, Eqs.
(25)—(27) become

D*=(1+Bo)(1—a)

2
&& D~ 1 —ar„4i eyoHO a(1 —a)T)T,

iso(1 —Bp)+
(1—a)
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co' =co —4(1—a)(1+Bp)(ypHp)er„
e

1+Bp 1 —a ~x1—
Te a Te

(32)

(33)

Note again that the dominant (FF) correction to
1/T*, of order e (yoH p) r„[s eeEq. (29)], does not
appear in this result, which is carried to only first
order in e.

Analysis of CESR data is conveniently performed
by fitting experimental line shapes to the PW theory
which uses the dispersion relation Eq. (24), with D'
given by PW equation (58.33), T' by the T& of PW,
and co by the co —co, of PW. The implications of
the two-spin model are then summarized by com-
paring the D', co*, and T' given above with the cor-
responding PW results.

The most important implication of this model is
for the complex diffusion constant D', and in par-
ticular for the exchange parameter deduced from the
temperature dependence of D" Equati. on (31}gives
three correction terms as the cross-scattering rate

becomes weak. The last, involving co, is zero on
resonance and represents a correction to the line
shape predicted by the PW theory, but a correction

I

2+ 2 2
1 +COe 272

(34)

the term in ae being analogous to the result of
Kaplan and Glasser. In this result terms of higher
than first order in Bp and e have been neglected as
well as terms in eBo Comb. ining Eqs. (34) and (31)
gives for the two-spin model

which becomes important only in the wings of the
line. Since this analysis, the hydrodynamic limit, is
suspect' in any case in the wings of the line, this
term is ignored. The second term is principally a
small and experimentally unobservable correction to
the real part of the diffusion constant. The first
term, however, influences significantly the ratio of
the real to imaginary parts of the diffusion constant
and must be considered further. To examine its in-
fluence Eq. (22} for Di is first evaluated, in the liinit

(ypHp)1 Bp « 1, and the ratio of imaginary to real

parts is calculated to be

R2
—=ImD2/ReD2 ——(yoHp )r2(Bp —2aE)

2
X 1—

1+coe272cos 6

R'=ImD'/ReD' =(ypHp) 4ear„+—(Bp 2ae)72— 2 2

1 +c 2~2cos 5 1 +Nc 2%2
2 2 2 + 2 2 {35)

+ 2

1+coqH
(36)

The expression in the large parentheses of each of
these equations describes the dependence of the ratio
R upon the magnetic field orientation relative to the
plane of the sample and is + 1 for the perpendicular
field configuration and (1—co,r )/( ]+co,r ) for the
parallel field.

There are three important consequences of these
results. Suppose the data taken in a perpendicular
field geometry are analyzed using the PW model
and Eq. (36) is used to deduce an "experimental"
value of Bp which will be denoted B&. Comparison
of Eqs. (35) and {36)shows that the two-spin model
would imply a value for Bp,

Bp —Bj +2ae( 1 +2v„/~2 ) ~ (37)

For a single spin species, the corresponding PW re-

sult is simply

2
Rpw =(yoHo)rBo 1—

1+co%'cos 6

Noting that a=
4 is appropriate for aluminum,

and recalling Eq. (lib), the correction may be ex-
pressed as

IBp —Bi~ & —, ~~~=O.O2, (3g)

Bp=B~(+2am 1—2(rz /t2)(co, id'+ 1)

coqp72 —1
(39)

In the large-co, ~ limit, the effect of the incipient spin
wave is to give the opposite sign to Rpw for parallel
and perpendicular fields while the major effect of
the g-value splitting is orientation independent.
Equations (37) and (39) combine to give the result

a sizable correction in view of the measured value
of 0.05 (Bp (0.2. Here e is taken from Beuneu to
be +0.025.

In principle, the consequences of the two-spin
groups and g-value anisotropy can be separated from
the exchange effects, within the framework of this
model, by comparing the data taken in parallel and
perpendicular orientations, since for parallel field
the result analogous to Eq. (37}is
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2 a
&x c 2m

B))—Bg ——Sac-
ro' pre —1

(40a)

and, in the limit co,~&&1,

I B(( —Bi
I

=ga
I

&
I
rx«z & Sa'

I
~ I, (40b}

with the inequality based on Eq. (11b). The model

predicts then, using a =
4 and a=+0.025, a

discrepancy of at least 0.012 in the value of Bp
determined from a PW analysis of data taken with
field perpendicular and parallel when in the limit

co,r &&1. The sign of the discrepancy gives the sign
of e and hence, via the g-value calculation, the sign
of the matrix element Vi~~.

A second important consequence of the model
concerns the magnitude of the diffusion constant
D . In the analysis of TESR data, a principal ambi-

guity in determining Bp is the determination of 'T

since [see Eq. (36)] it is the product Bar which is ef-

fectively accessible to measurement. In the PW
model, with co, and vF assumed known, ~ may be
determined either from the behavior with tempera-
ture of the diffusion constant for the field parallel to
the sample, which reaches a maximum at co,~=1
and has the behavior expressed by Eq. (22) as a
function of co,~, or from the magnitude of the dif-
fusion constant for a perpendicular field,
D=vFr(1+Bp) j3.

In a system, such as aluminum, with a complex
Fermi surface the situation is of course not so sim-

ple; in the two-spin model the magnitude of the ap-
parent diffusion constant and its co,~ dependence
must be worked out from the most intractable set of
Eqs. (22), (23) and (25). If one can argue that the
electron transport is dominated by a single group of
electrons, then the equations again become tractable.
In aluminum it is the second-zone electrons that
contribute principally to the spin diffusion, " both
for small co,r and large co,r; hence the temperature
dependence of the signal in the parallel geometry is
determined by cd i'Ti. However, Eq. (23} implies
D, =(1—a)Dq, a reduced diffusivity, because only a
limited fraction of the electrons contribute to the
transport. For a= 4, appropriate to aluminum, the
correction to the simple result vF~/3 for the dif-
fusion constant is only a factor of ~, but could be
much more dramatic in a situation in which the
transport is dominated by the group with the lower
susceptibility. (The extreme example is of course
the case of the analogous problem of the coupled
system of conduction electrons and local moments
in which one species, often the one dominating the
susceptibility, is completely immobile. ) A consistent
determination of Bp from both the argument involv-

ing co,~ and the relation D-vF~/3 requires clear
recognition of relative contributions of the electron

groups to the transport. A final consequence is that
Eq. (32) predicts a g-value shift with increasing r„,
hence decreasing temperature, which is, of course,
the term giving the leading correction to the high-

temperature, fully narrowed result and which de-

scribes the horizontal component of the beginning of
the trajectories illustrated in Fig. 2.

IV. CONCLUSIONS

The conduction spin resonance of polyvalent met-

als, for which there are several disjoint pieces of the
Fermi surface, may show new features not predicted
by existing descriptions of the effects of g-value an-

isotropy and exchange. A model is explored which
treats the spin dynamics of two groups of electrons,
with different g values, which are coupled by both
momentum scattering and exchange. The theory of
PW is generalized to describe this situation and
some of the consequences are discussed.

In absence of exchange the model predicts g-value
shifts with reduced temperature resulting from the
decoupling of the two groups of spins, shifts which
are similar in behavior, but different in mechanism,
from those predicted by FF. In the limit of low
temperature, the resonance may show structure as a
consequence of the g-value splitting.

In the presence of exchange the model suggests a
substantial correction to the predicted g-value shift
of the FF theory as the dispersion in g values be-
comes comparable to the Landau parameter Bp.
The sign of this correction depends upon the relative
sign of Bp and parameters describing the asymmetry
of the g-value distribution.

At temperatures above those at which spin waves
are clearly resolvable, the exchange parameter Bp in-
duces marked asymmetry in the line shapes of
TESR lines for thick samples. Similar asymmetry
may be produced by g-value anisotropy in the ab-
sence of exchange. A separation of the two effects
may be achieved by comparison of results obtained
in both the field-parallel and field-perpendicular
geometries, and such an analysis is required to ob-
tain an accurate measure of Bp in the presence of
substantial g-value anisotropy.

The presence of two electron groups introduces a
further ambiguity in the interpretation of data in-
tended to yield experimental values of Bp, in partic-
ular the ~ deduced from the temperature variation of
the electron diffusion for the field-parallel geometry,
through co,~, may be different from that deduced
from the specific magnitude of the diffusion con-
stant in perpendicular geometry, Dz ——vF~/3, if a
single group model is adopted. A reliable value of r
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is required for the determination of 80. The model
gives a rough procedure for correcting for this ambi-
guity.

In many metals spin relaxation at the surfaces is
unimportant relative to bulk relaxation except in
very thin samples. In the two-spin model it is noted
that, in the experimental regime of "thick" samples,
surface scattering from one electron group to the
other without spin flip can simulate surface spin re-
laxation since it transfers excitation from a weakly
attenuated mode which dominates the TESR signal
into a heavily damped mode.

With specific reference to aluminum it is noted
that the sign of the g-value splitting parameter, e in
the model presented here, is determined by the sign
of the pseudopotential matrix element V& & &. In prin-
ciple, the TESR results give information about this
sign. First, the experimental g-value variation with
temperature is importantly influenced by the relative
sign of 80 and e; unfortunately this variation may

be masked by other physical effects noted by
Beuneu. Second, there are predicted variations in
line shapes resulting from the interference of the ef-
fects due to a g-value splitting with exchange effects.
Such variations should be observable in the co,~& 1

regime by comparison of results with the applied
field parallel and perpendicular to the sample. Fi-
nally, the model should not be taken as a realistic
representation of the physics in a real metal, but
simply as a means to explore possible complications
in real systems in which the g-value anisotropy is
sufficiently large to make suspect an FF analysis.
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