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The electron-spin-echo decay function was determined for the conducting phase of
[(CiH10)2] T X~ in the temperature range 183—300 K. The decay function exhibited an
exp[ —(71)*/?] dependence, characteristic of one-dimensional spin diffusion. The ratio
5%10<D| /D, <5X 10 for the inner-stack—to—out-of-stack diffusion rates was deter-
mined from the characteristic time ¢y, at which the electron-spin-echo decay function
changed to the “conventional” exp(—2y'7) form. The deduced value 2 10"* < D|; <2Xx 10"
rad/s is consistent with the bulk dc conductivity and with recently determined nuclear spin-
lattice relaxation rates. The overall assumption of highly mobile electronic spins was con-

firmed by an Overhauser-type experiment.

I. INTRODUCTION

During the last few years the discovery of highly
conducting hydrocarbon radical cation salts'~* has
stimulated several investigations concerning the
basic principles of this new class of conductors.
Apart from conductivity measurements,® optical
reflectance studies®> and electron-spin-resonance
(ESR) experiments>® gave conclusive evidence of a
low-dimensional electronic conductor. In particular
in a recent paper the influence of the mobile elec-
tronic spins on relaxation of the proton spins in the
cations and of the fluorine spins in the anions were
studied by pulse nuclear-magnetic-resonance (NMR)
methods in some detail.® In the temperature range
above the phase transition in [(fluoranthenyl),]* X~
(X =PFg,AsFg) at 183(3) K, the temperature depen-
dence of the proton relaxation time T, was dom-
inated by mobile spins, being interpreted in the
model of a Fermi gas. By a Schumacher-
Slichter—type experiment’ the electronic spin densi-
ty was determined and the deduced Fermi energy
was in good agreement with the value determined
from optical experiments.>->

Taking the model of a one-dimensional conductor
as rather well established, the particular spin
dynamics of one-dimensional spin diffusion should
be detectable from the ESR line shape. As is well
known,!%~!2 the long persistence of the spin correla-
tion functions (S(#)Sf(0)) ~z=!/2 results in a
characteristic exp[ —(y¢)*/?] time dependence of the
relaxation function. The resulting absorption line
shape is distinctly non-Lorentzian, and therefore
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careful line-shape analysis could be used to provide
evidence for a dominantly one-dimensional spin-
diffusion mechanism. However, such line-shape
analysis can be cumbersome, especially because devi-
ations sometimes got noticeable only far in the
wings of the absorption signal.!®!3

In case of the fluoranthenyl radical cation salts
(Fa,)* X~ (X =PFg,AsFg), however, because of the
rather long electronic relaxation time T,,’ the relax-
ation function can be probed directly quite con-
veniently via an electron-spin-echo (ESE) experi-
ment.

In this paper we report the first ESE results on
mixed single crystals (Fa,)*[(PFg),(SbFs),_,]1~
(x =~0.5) as a function of the temperature. As is
shown below, the echo-decay function closely fol-
lows the postulated exp[ —(y¢)*/?] dependence for
temperatures above the phase transition at 183 K,
characteristic for a highly one-dimensional conduc-
tor. Independently, the high mobility of the elec-
tronic spins, consistent with a metallic conduction
mechanism,'* was proven with an Overhauser exper-
iment for the proton spins on the aromatic sub-
units. !

II. EXPERIMENT

X-band ESE experiments were performed with a
home-built spectrometer, consisting of a slotted-tube
resonator,'® a Hewlett-Packard 8672a microwave
synthesizer, and a Hughes 1277H traveling-wave
tube (TWT) amplifier. Microwave pulses of ~5 W
and ¢, >50 ns could be applied to the cavity. The
signal was decoupled from the excitation line by a

5366 ©1983 The American Physical Society



27 ELECTRON-SPIN-ECHO EXPERIMENTS ON THE ONE- . .. 5367

three-port circulator. It was first amplified by a
low-noise TWT amplifier (WJ 424 STD) and subse-
quently homodyne-detected with a double balanced
mixer (RHG Electronics Lab DM 8-12 AB). With
an additional amplification (dc—5 MHz) by 20 dB,
the signal could be optimized on a scope and/or
recorded with a Tektronix 7612 D fast digitizer
linked to a microprocessor data-accumulation sys-
tem. Spurious signals caused by cavity ringing or
due to pin-diode transients were subtracted off reso-
nance, thus leading to undistorted free-induction-
decay (FID) or echo signals. The dead time of the
spectrometer was <200 ns.

With the maximum microwave power used, a %ﬁ
pulse time ¢,,, =90 ns was obtained, corresponding
to Bj=1 G in the rotating frame. Hahn echoes
were measured using a %ﬂ-f—ﬂ ulse sequence,
whereas T';, was measured by a 7-7-5 7 sequence.

The cavity was inserted in a He cryostat and the
temperature was measured with a calibrated Ge
resistor (Lake Shore Cryogenics DRC-70). The tem-
perature could be varied between 140 and 300 K by
filling the radiation shield of the cryostat with
liquid N,.

Overhauser experiments were performed using a
cylindrical cavity with a coaxial NMR coil. The
proton NMR signal was determined by using a
high-power pulse spectrometer. The apparatus,
which is otherwise used for optical-nuclear-
polarization (ONP) experiments, is described in de-
tail elsewhere.!’

The (Fa,)*X ~ radical cation salts were obtained
by anodic oxydation? in an electrochemical cell of
three compartments separated from each other by
glass filters. 1 g fluoranthene, 1 g (C4Hg); NPFg,
and 1 g (C4Hg), NSbF¢ were dissolved in 100 ml
CH,Cl, and saturated with dry nitrogen. The crys-
tals were grown at —25°C using a constant current
of 50 pA and a potential of about 2.5 V.

III. THEORY

Following the derivation of ESR line shapes in
nearly one-dimensional systems given by Hennessy
et al.,'° the decay of the transverse magnetization
may be approximated by

é(t)=C exp[ —(y1)*/?] . (1)

Here it was assumed that the spin correlation func-
tion (S7(¢)S7(0)) obeys a one-dimensional diffusion
equation, resulting in
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for t— . The line shape of the absorption line

f(w) at frequency o is related to ¢(¢) by its Fourier
transform. Three-dimensional exchange, in con-
trast, leads to an exponential dependence of ¢(2), re-
sulting in a Lorentzian line-shape function. In a
conventional cw absorption experiment, deviations
between Lorentzian and one-dimensional line shapes
are most pronounced in the wings. A careful
analysis of interchain hopping rates which destroy
the one-dimensional character of the diffusion pro-
cess therefore requires a line-shape analysis with
values (Ho—H)/AHUZ >10.

In contrast, the direct measurement of ¢(¢) by a
FID would display the critical 3/> dependence most
clearly at short times. However, systems studied so
far were characterized by rather broad (AH,/, >0.5
G) lines, impeding the necessary short-time record-
ing because of spectrometer dead-time problems. In
addition, time-independent contributions to the ESR
linewidth (viz., crystal imperfections) could easily
mask the time dependence of ¢(z) due to the dif-
fusion process.

A Hahn spin-echo experiment, however, discrim-
inates against static contributions to ¢(¢), and pro-
vided the spectrometer dead time t;<y~!, the
echo-decay function ¢'°((#) can give conclusive evi-
dence for low-dimensional diffusion and possibly in-
terchain diffusion. Although the elimination of
static inhomogeneities to the echo-decay function is
obvious, the correlation of the echo-decay function
#'“(t) with the homogeneous line shape is less evi-
dent. In a recent publication'® the conditions for a
direct proportionality between ¢'“(t) and the
Fourier transform of the line-shape function f(w)
have been restated in terms of a correlation-function
analysis. If the system under investigation consists
of a two-level system being coupled to a bath, and
assuming that the transition dipole matrix can be
factorized into a constant overall dipole strength
and an N-by-N unitary matrix (N denoting the num-
ber of bath states), the echo-decay function ¢'*(t) is
proportional to a four-i correlation function,

#'927) ~ (fi( —T)R0)A(7)(0)) . (3)

Here [ denotes one component of the transition di-
pole operator and 7 is the %ﬂ-ﬂ pulse distance. For
times long compared to the correlation time of both
operators, the four-fi correlation function can be
factorized into the product of two & functions,

(B(—7)EOO)E(T)E0)) =(A(—7)E(0) ) {A(r)E(0)) ,
4)
thus implying that

© 2
¢(e)(21-)~If_wdwexp(—iarr)f(w) . (5)
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In this model the echo-decay function ¢'*(¢) is con-
nected to the line-shape function f(w) in the way

usually assumed, and by using

J” doexp(—ionflw)~¢(r), ©)
we find

3927~ | $(1)|2. ¥)

Anticipating a transverse magnetization decay func-
tion ¢(#) ~exp[ —(y1)*/?], we finally have

8'9(27) ~exp[ —2(y7)*7?] . (8)

Defining 7,,, by the pulse delay leading to an echo
decay to the value 1/e, the decay parameter ¥ is ob-
tained as

—-|=22/3

Y Ti/e + 9)

Introducing an intrachain diffusion rate D|| and
an interchain rate D, with D|| >>D,, a characteristic
time ¢, can be derived, defining the time region
T<1ty with

¢'9(27) ~exp[ —2(y7)3/?]

and 7>ty with the slower “conventional” time de-
cay ¢'“(27)~exp(—2y’7). The characteristic time
to is defined by'°

1/3

t0=(§)2/3 ’2:’—21) (D)4, (10

with the diffusion coefficient D given by
D=n'"Dc? (11)
and c¢ denoting the intrachain distance. This leads to
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to being completely defined by the intrachain and
interchain diffusion rates.

The decay parameter ¥, which can be obtained ex-
perimentally from an ESE experiment, can be relat-

ed to electron-nuclear and electron-electron dipole-
dipole interactions using a memory-function ap-
proach as shown by Holczer et al.'> Defining the
halfwidth at half maximum (HWHM) by Aw, the
following relations are obtained:

y=Aw , (13)
Ao=5(a’+3d*+nR*)w.D))~* . (14)

Here a cutoff frequency w, is introduced which lim-
its the divergence of the w~!/? dependence of the
spectral-density function as measured, for instance,
by nuclear-spin-lattice relaxation rates. Isotropic
and anisotropic dipolar electron-nuclear interactions
are denoted by a and d, respectively, and n is the
spin concentration per site, and the quantity
V'nR /v, can be considered as an effective electronic
spin-dipolar field originating from spins on neigh-
boring chains.

In the derivation of Eq. (14) several simplifying
assumptions were made, being justifiable for trans-
polyacetylene. In particular, because of the rather
low spin concentration per site, only interchain cou-
plings have been taken into account. In addition
spacial averages had been performed to account for
the polycrystalline nature of the samples. Both as-
sumptions are applicable also for (Fa,)*X ™ (vide
infra).

With the use of the spacial average expression for

R, one gets
2y |
\/§cb,2, ’

where the summation runs over the neighboring
chains, c is the intersite distance in the chain, and b,
denotes the interchain distance.

The product (0 D) )1/2 can be evaluated from Eq.
(14) by inserting experimental values for Aw and n,
and by using average hyperfine (hf) couplings for
the aromatic unit. Moreover, a range for D), can be
derived by using w. > Aw and o, <w,, where w, is
the lowest Larmor frequency for which a (w)~!/2
dependence could be detected. This leads to

9
2_
R*= 0v5 > (15)

p

(@2 + 3>+ nR(Aw) %0, < D) < 5 (a*+ $d*+nRPXAw) ™3 . (16)

In the derivation of Eq. (14) it was assumed that
electronic spin-lattice relaxation does not contribute
significantly to the ESR line shape, or, in our case,
to the ESE decay function ¢'°'(¢). For the system
investigated here, this is only approximately true,
however, because we found y~!~0.5—0.3T,,. The
order-of-magnitude approximations obtained for D,

by applying Eq. (14), however, are not affected.

In an independent way D|| can be obtained from
the analysis of the proton spin-lattice relaxation rate
T1! as a function of the nuclear Zeeman frequency
w,. If T3, is shown to follow a (w,)~'/? depen-
dence, characteristic for one-dimensional electron
spin diffusion, D| can be obtained from the slope of
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)~!/2 by using!*

Tl_,,’ vs (@,
-1 kBTXm

tn = 217'N(gp3 )2(2D“ )1/2

X[ 5d@,) "2 +(a+ $d2)(@,) 71 .

a7

Here X, is the molar Pauli spin susceptibility, g is
the electron g factor, up is the Bohr magneton, N is
Avogadro’s number, and kz is Boltzmann’s con-
stant. Isotropic and anisotropic parts of the dipolar
electron-nuclear hf interaction are again denoted by
a and d, respectively.

IV. RESULTS AND DISCUSSION

ESE decay functions were measured over the tem-
perature range of 140—300 K thus covering the
highly conducting regime (I) and the semiconductor
range (II) below the phase transition at 183 K. An
electron-spin echo is displayed in Fig. 1, showing the
characteristic relations of FID decay time, spec-
trometer dead time, and signal-to-noise ratio. Typi-
cal decay functions from (I) and (II) are depicted in
Figs. 2 and 3. In order to show the characteristic
behavior of ¢‘°/(27) in (I), the function was plotted
using a 7 and 7’2 scale. The signal obeys an
exp[ —2(y7)3/%] dependence up to times 27 <20 us.
The absence of experimental artifacts which might

2

w2 SR

impose a deviation from a simple exponential decay
exp(—2y'7) was verified by lowering the sample
temperature below the transition temperature of 183
K and recording ESE decays under identical experi-
mental conditions. The observed echo decay then
closely follows an exp(—2y'r) dependence (see Fig.
3). The metallic-phase decay functions were also
least-squares-fitted, leading to exponents n =1.5(1)
when varying the temperature between 183 and 300
K. The decay parameter ¥~ Aw is conveniently ob-
tained from the 1/e values of ¢'®(z). Figure 4
shows the temperature dependence of y within the
metallic range. In the same temperature range no
significant variation of ¢, was detected.

For an estimate of D\, from Eq. (16), values for a,
d, and V'nR must be adopted. In a recent experi-
ment® Hoptner et al. determined the spin concentra-
tion per fluoranthene molecule as n=1.2X10"2 at
T=285 K. Although this value was determined for
(Fay)*PFg~, we take the value as representative also
for the (Fay)*[(PFy),(SbF);_,]~ crystals. Using
the crystallographic data b,=9.7 A and ¢c=3.3 A,
one obtains V'’n R=2X 10® rad/s. This value can be
interpreted as an average dipolar field of VaR/
Ye=11.5G.

The isotropic electron-nuclear hf couplings have
been determined for the fluoranthene anion radical
only. Taking these values as representative for the
cation also, a second moment {a2?)!/2~1.6x10?
rad/s is obtained.

The observed positive Overhauser enhancement of

T T

0 2 4

T T

8 10 tps)

FIG. 1. Accumulated ESE signal (500 shots) of [(fluoranthenyl),]*X ~ using B{"=1 G.
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FIG. 2. ESE decay function ¢'(27) plotted vs (a) 7 and (b) 7°/2, respectively. The characteristic time ¢, (see text) is ob-
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tained from 73/2=30 us*/?, at which ¢'(27) changes to a simple exponential.
W
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FIG. 3. ESE decay function ¢'®(27) measured below
the phase transition, exhibiting a purely exponential de-
cay. Same sample and otherwise identical conditions were
used as those leading to Fig. 2.

the proton NMR signal by a factor ¥ >50,'> when
applying a saturating microwave field at the elec-
tronic Larmor frequency, proves the predominance
of coupled electron-nuclear transitions via ISz
terms as compared to (I+S+)-type transitions. Be-
cause both types of transitions are activated via the
same spectral-density function I'(w, ), modulation of
the isotropic hyperfine interaction (hfi) by the
mobile electronic spins must be more effective for
the coupled relaxation transitions than the modula-
tion of the anisotropic hfi, thus allowing the con-
clusion a®>d? For the evaluation of the nuclear-
spin-lattice relaxation rates, however, a predomi-
nance of the anisotropic parts of the hfi is expected
for the following reasons. In aromatic C—H frag-
ments, d is not much smaller than ¢ and a relation
of d2~0.3—0.5a? can safely be assumed. Owing to
the diffusive !/ dependence of the power
spectral-density function, the contribution of the d-
dependent term is selectively enhanced [see Eq.
(17)]. Although the exact ratio I'(w, )/T(®,) is not
known yet, it is probably large enough to allow for
the neglect of the a-dependent terms. [A limiting
value T, )/T(®,)=(Y./v,)"”* would emerge only
if D, <<w,, and also if the presumably frequency-
independent contributions of the electrons at the
Fermi surface would vanish.]

With the use of y=(2)"2/34 us)~' and w,(min)
=22X2mXx 10° rad/s~!, Eq. (16) leads to
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FIG. 4. ESE decay parameter ¥ as function of the ab-
solute temperature in the “metallic” phase.

2x 10 <D <2x10%, (18)

in units of rad/s. From (18) and (12) an upper limit
for D, can be deduced when taking ¢, =20 us,

D, <4x107, (19)

in units of rad/s. The values in (18) are extremely
sensitive to the particular choice of a/7, and
VnR/y, because these fluctuating fields enter bi-
quadratically. The relation a <V'nR is confirmed,
however, by the observed temperature dependence of
v. The spin concentration n is expected to rise
linearly with temperature because kpT <<Ep, the
Fermi level.® If VnR>>a, a linear increase of ¥
with temperature would be predicted from Eq. (14).
Although such a linear increase is not observed over
the whole temperature range, the positive slope
nevertheless indicates VR >a.

The deduced range for D is conﬁrmed by
analyzing the proton spin-lattice rates T'7,' obtained
recently for (Fa,)*PF¢~.% For the two frequencies
o, used (w,/2m=22 and 44 MHz), the rates T,
follow the (w,)~!/?> dependence in the “metallic”
range. With the use of the reported Pauli suscepti-
bility X,, =1.55X10~° cm?/mole (Fa) (Ref. 8) and
the slope S of the (w,)~!/? dependence S =3 X 10*/
rad'/2s=3/%, D;;=2x 10" rad/s is obtained, when
using an average anisotropic proton hyperfine cou-
pling (hfc) d/y,=1.5 G. This value is estimated
from the fluoranthene negative-ion values by taking
d(n)=0.7a(n) and

ﬁ-l

1 N
ng(n).

Such a definition clearly underestimates the relax-
ation rates for the strongly coupled protons
[a(3,4)/y.=5.2 G; a(l, 6)/‘;/,—3 9 G]. meg to
the quadratic dependence of T,,, on d, it is possible
that proton spin relaxation predominantly occurs via
these protons, a common spin temperature being es-
tablished via nuclear spin diffusion. Assuming no
bottleneck by proton spin diffusion at the observed
low values of Tl,, , a more realistic choice of the
relevant electron-nuclear coupling d/y,~3.5 G
leads to a value Dj;=7X 10" rad/s, consistent with
the upper limit of D\, deduced from the #'°(2) de-
cay.

In the deduction of D| from the observed ESE
decay parameter y it was assumed, that T';, process-
es do not contribute significantly to the decay func-
tion. When using the conventional 180°-7-90° pulse
sequence, we did not observe a simple exponential
longitudinal saturation recovery function. We attri-
bute this fact to the nonvanishing inhomogeneous
linewidth of our sample (Aw;~6X10® rad/s) as
compared to the field strength in the rotating frame
expressed in rad/s. We therefore performed a spin-
lock experiment in order to obtain a lower limit for
T,, by recording T;p, the longitudinal
magnetization-decay constant in the rotating frame.
In such an experiment the magnetization is first ro-
tated by 90° parallel to the y” axis in the rotating
frame, and than locked by a rf phase shift of 90°
along the B; field for an adjustable time 6. The
magnetization decay is observed by recording the
ESE amplitude, which is obtained by refocusing the
remaining magnetization after the end of the spin-
lock pulse with another 180° pulse, being delayed by
7' with respect to the end of the spin-lock pulse. Ex-
perimental artifacts are excluded by recording the
ESE of the spin-locked magnetization with and
without the first 90° pulse.

The decay functions obtained followed an ex-
ponential decay over an intensity range of 30:1 (see
Fig. 5). The decay constant at room temperature
was T,(290 K)=11.5(5) us, increasing to 20(1) us
close to the phase transition temperature, thus giv-
ing a lower limit to T;,. At low temperatures the
contributions of longitudinal relaxation to the ob-
served magnetization-decay function ¢'¢X(¢) are
negligible. The mechanism leading to the compara-
tively short T, however, is currently not under-
stood. A careful measurement of the temperature
dependence of T, exhibited a T, T=cT +c¢’ depen-
dence in contrast to the simple Korringa-type
behavior reported by Sachs et al.”

If the spin diffusion also reflects the charge dif-
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FIG. 5. ESE amplitude ¢'® as a function of the spin-
locking time 6 for B[*=1.0 G. Data were taken at room
temperature.

fusion, an estimate of the mean free path / and the
intrinsic one-dimensional conductivity can be ob-
tained. With the use of'*

1=2m#X,, N~ (gug)~2D)c (20)
and
—np2 2
0'||—2€ l/ﬂ'ﬁb“ ’ (21)

values of 107%<I/<10c and 5<o)<5%10°
Q 'em™! are  obtained  when  using
2><1013gD” <2.0%10'® rad/s. This value has to
be compared with the bulk one-dimensional conduc-
tivity at room temperature of o,=10'—10%
Q~'em~! which gives a lower limit to the intrinsic
conductivity o). Considering the lack of adjustable
parameters, the agreement between o, and 0)| can be
taken as evidence for similar spin- and charge-
transport properties in the (Fay)* X ~ single crystals.
Under this assumption the anisotropy of the con-
ductivity can be deduced from a”/al:D”cz/D 1b;‘:
leading to 6X10°<0) /0, <6X10". This value is
even larger than the highest values reported yet for
K,[Pt(CN),4Brg 3)-3.2H,0 (Ref. 19) and (CH),.1*

V. CONCLUSION

The interpretation of the echo-decay function
#'*A(t) using the model of one-dimensional spin dif-
fusion leads to an intrachain diffusion rate in the
range of 2 10'°—2 10'® rad/s. When interpreting
D) in terms of a free-electron model, a scattering
time 7, of the conducting electrons can be estimated
from the relation D =v#7,c ~2 Relating the Fermi
velocity vr to the reduced susceptibility!® by
vp=c(m#i2X)~!, the upper-limit value for D leads
to 7,=6X 1071 s, close to the values observed for
TTF-TCNQ [7,(300 K)=3.1X10"" s (Ref. 20)]
and for the cation radical salt [(perylenyl),]*X~
([((CooHaltX ™} [r,=44X10"" s (Ref. 5)].
Since the upper-limit value also is in better agree-
ment with the results from the dc-conductivity ex-
periments, we suggest that the actual value of D) is
close to the upper limit given above.

The deduced mean free path of at most a few lat-
tice constants renders the motion of the ¢ ~0 com-
ponents diffusive along the chain, consistent with
the basic assumption of our interpretation, that the
q=0 excitations of the charge-density wave dom-
inate the ¢ =2k excitations in their relaxation ef-
fects. Although probably the motion of electrons at
the Fermi surface gives rise to a frequency-
independent spectral-density function I'y (o), the

relative magnitude of I’y (@) and To(w) is strongly

model dependent and yet unknown for (Fa,)* X —.20

The ratio 5% IOGSD”/Dl < 5% 108 for the intra-
and interstack diffusion rates which emerges from
the characteristic time #5~20 us is consistent with
the picture of a highly anisotropic electric conductor
based on the several order-of-magnitude difference
between the 7-electron transfer integrals parallel and
perpendicular to the aromatic stacks.

The estimated diffusion anisotropy is even larger
than the value reported for trans-polyacetylene
[trans-CH),]'* This increase of “one dimensionali-
ty,” however, is not surprising when considering the
crystal structure of both samples. Owing to the
large distances between the aromatic stacks, the
transverse 7 overlap integral ¢, is significantly de-
creased, whereas the parallel stack value ¢, is
presumably only lower by a factor of 8, as deduced
from the conduction-band width [Wi(trans-
polyacetylene) =8—10 eV (Ref. 21); W((Fa)*X ™)
> 1.2 eV (Ref. 22)]. Final confirmation of the de-
duced small value D, <4X 107 rad/s is expected
from nuclear-spin-lattice relaxation experiments at
low frequencies, which are currently under progress.

Note added in proof. According to W. H.
Redstetter et al. [J. Org. Chem. 47, 4873 (1982)],
fluoranthene is a highly potent mutagen for human
lymphoblasts, comparable in its potency to
benzo(a)pyrene.
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