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%e use high-temperature —series expansion to study the magnetic properties of d-

dimensional hypercubic Ising spin systems with a random distribution of exchange interac-
tion. Our series is valid for an arbitrary distribution of exchange. We examine the case of
a concentration of p ferromagnetic bonds and 1 —p antiferromagnetic bonds of equal mag-

nitude. %'e find regions of a spin-glass phase in the concentration-temperature phase dia-

gram sandwiched between regions of ferromagnetic and antiferromagnetic order.

INTRODUCTION

There has been a great deal of interest in the
properties of magnetic systems in the presence of
disorder. Well-studied examples of such systems
are spin glasses, in which the magnetic spins in-

teract via exchange interactions which are random
in strength and in sign. It is found that at low tem-

peratures such systems freeze into a ground state, in
which the spin density does not show any well-

defined long-range ordering. Two distinct types of
theoretical models have been proposed to describe
these systems. One model, due to Sherrington and
Kirkpatrick, consists of long-ranged interactions
occurring between every spin in the system, which
simulates the long-ranged Ruderman-Kittel-
Kasuya-Yosida (RKKY) interactions occurring in

systems such as CuMn spin-glasses. Another
model, more appropriate to Eu„Sr~ „S, is based on
the competition of ferromagnetic and antiferromag-
netic short-ranged interactions. In this latter
model, it is unclear what the low-temperature

phase diagram looks like. It is clear that such a sys-

tem will order ferromagnetically when the concen-

tration of antiferromagnetic bonds is sufficiently
small. However, as the fraction of antiferromagnet-
ic bonds is increased, does the low-temperature
phase change to a spin-glass or paramagnetic phase?

In one dimension, the situation is perfectly clear,
the system is either ferromagnetic or antiferromag-
netic at T=O when all the bonds are of one type.
For all other intermediate types of distributions, the
system exhibits a T=O phase transition to a spin-
glass phase. For higher dimensions, real-space re-
normalization schemes indicate that there is no

spin-glass phase, contrary to the results of Monte
Carlo calculations. For d greater or equal to four,
high-temperature —series expansions have been per-
formed for symmetric distributions of positive and
negative exchange interactions P(J)=P ( —J), and it
has been found that there exists a paramagnetic to
spin-glass phase transition. These studies have not
provided information about the phase diagram for
d g 4. We shall extend the high-tem-
perature —series expansions to apply to the case of
nonsymmetric distributions of exchange interac-
tions in order to ascertain the phase diagram over a
wider range of distributions.

It is with these aims in mind that we shall per-
form high-temperature —series expansion for ran-
dom Ising ferromagnets for d-dimensional hypercu-
bic lattices. In Sec. II we shall derive the free-
energy and magnetic susceptibility series. In Sec.
III we derive the susceptibility series corresponding
to the Edwards-Anderson order parameter. In Sec.
IV we shall analyze these series and present the re-
sults. Since in order to obtain phase diagrams we
have to use the high-temperature series down to
T=O, in which case there is no definite expansion
parameter, we shall check our predictions by exam-
ining the case corresponding to diluted ferromag-
nets. Estimates of the points where T, falls to zero
can then be compared to the well-known percola-
tion concentration. This can be used to give a test
of the reasonableness and reliability of our results.

HIGH- TEMPERATURE EXPANSION

The thermodynamic and static correlation func-
tions for a particular realization of a random sys-
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tern can be obtained from the free energy by taking
the appropriate derivatives with respect to the ther-
modynamic fields. However, the pertinent quanti-
ties to study are not those corresponding to a partic-
ular realization of a random system, but rather one
should study the distribution of the properties per-
taining to a whole ensemble of realizations of the
random system. We shall calculate the average
values of the thermodynamic functions from the
average free energy by taking the appropriate
derivatives. This is permissible since the derivative
is a linear operator and it commutes with the aver-
age over the random ensemble. The free energy is
defined in terms of the logarithm of the partition
function

PF =lnTr—(s )
exp( PH), —

where H is the Hamiltonian of the system.
We shall consider a set of Ising spins positioned

at the lattice sites of a d-dimensional hypercubic
lattice. The spins are assumed to interact via a
nearest-neighbor exchange interaction, in which the
exchange parameter J is distributed randomly. The
Hamiltonian H is given as the sum of the exchange
energy and a Zeeman energy due to a spatially vary-
ing magnetic field

H = —g JtJS;SJ—gH;S;, (2)

sly
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FIG. 1. Typical terms in the high-temperature expan-
sion of the partition function. {a}Typical zeroth-order
term in tanhPH; (b) typical second-order term in tanhPH;
(c) typical fourth-order term in tanhPH

where H; is the magnetic field at site i, and S; the
spin at site i can take on the values + 1 or —1. We
shall calculate the free energy by the primitive
method of series expansion, i.e., by expanding in
powers of tanhPJ&. We shall utilize the idempoten-
cy relations for S;, giving the identities

exp(PJ &SSJ )=coshPJ J (I+SSJtanhPJ 1 ),

exp(PH;S;) =coshPH;( I+S;tanhPH; ) .

On substituting these relations in the free energy we
obtain

PF= g 1n(co—shPJ 1 )+ g In(coshPH) +ln Tr g ( I+SSJtanhPJ 1)g (I+S tanhPH)
lJ l I $J l

The high-temperature —series expansion is obtained by expanding the multiple products in powers of tanhPJ J
and tanhPH;. In this manner we find

PF= —g —,In(1 t—anh PJ—J. ) g —,ln(—1 —tanh PH; )

+ln Tr 1+ gS;SjtanhPJ~+ g SSJSkSitanhPJJtanhPJkt+
I gJ ij &kl

X 1+QS tanhPH + g S S„tanhPH tanhPH„+
m&n

On performing the trace over the spins IS; I, we note that only the terms which contain even powers of the
spins at any site are nonvanishing. For each of these nonvanishing terms, the trace yields a common factor of
2, where N is the total number of spins in the system.

We shall classify the terms in powers of tanhPH. The terms of zeroth order can be put in correspondence
with a set of closed polygons on the d-dimensional hypercubic lattice, each side representing an exchange in-
teraction. Since each term in the expansion can only contain a particular bond one or zero times, the polygons
may not share a common side. Typical terms are depicted diagrammatically in Fig. 1(a). The terms of first
order in tanhPH are identically zero, as are all terms of odd order in tanhPH.
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The next nonzero terms involve tanhpH;tanhpHi, with i not equal to j. The external-field vertices (sites i
and j) have an odd number of bonds emanating from them. Therefore, each term corresponds to one closed
path connecting site i to j, and. a set of closed polygons. Terms of this nature are depicted diagrammatically
in Fig. 1(b).

The remaining terms that we shall consider are those of fourth order in tanhPH. These terms contain four
distinct vertices (i,j,k, l) A. n odd number of bonds emanate from each vertex. This results in two paths con-
necting the vertices in pairs, and a set of closed polygons shown in Fig. 1(c).

Since the partition function is expected to vary exponentially with N, the number of spins, and since the
number of diagrams consisting of n separated structures has a leading N dependence of N", we expect that on
taking the logarithm the effect of the separated structures will cancel, yielding a free energy that should con-
sist of linked clusters. For a rigorous proof of the linked-cluster theorem, the interested reader is referred to
the excellent review article by Domb. ' The linked-cluster expansion results in terms which may have multi-

ply repeated bonds or external-field vertices. On averaging over the distribution of exchange interactions, the
terms with multiply repeated bonds separate from the rest. The free energy can then be written as a function-
al of the distribution function P(J) for the exchange interactions

—pF I P(J) I
= N ln2+A I P(J) I + g Bij I P (J) ] tanhpH;tanhpHJ.

lJ

+ g CJkr I P(J)J tanhPH;tanhPHJ tanhPHk tanhPHI +
ijkl

The coefficient A tP(J) I is given as a series in powers of tanhPJ

A tP(J)I = g g A~",'~, ~ (tanhPJ') '(tanh PJ) ' (tanh"PJ) "
n m&, m„

(4)

in which g,".
i m;i =n. The coefficients A~"'~ ~ are given in Table I. They are broken down according

to the number of dimensions i which a particular term spans, according to

(n) i=1
~m m .. m1' 2" n 211

N d
+N gA'"

l =2
where

dI
i!(d —i)!

TABLE L The coefficients A'"" in the free-energy expansion [Eq. (5)].

l=2 l=3 i=4 i=5

m) ——4
1

mi ——6
2

m) ——8

7
m~ ——6, m2 ——1

—2

m2 ——4
—1/2

m) ——10
28

m~ ——8, m2 ——1

—12
m) =6, ttl2=2

0
m) —4, m, =3

4

m) ——6
16

m) ——8
186

m~ ——6, m2 ——1

—12

m) ——10
2304

Pl ) =8, 612=1
—288

Pl( =6, 7212=2
—48

m) ——4, m2 ——3
—24

m) ——8

648

m) ——10
23 072

m) ——8, m2 ——1

—768

m) ——10
47 616



27 HIGH-TEMPERATURE —SERIES EXPANSION FOR RANDOM. . . 535

TABLE II. The coefficients 8'"" in the free-energy expansion [Eq. (6)].

E =3 i=5 i=6
n=1

n =3

n=4

n=5

n=6

mj=1
1

mj=2
1

mj=3
1

mj ——4
1

mj ——5
1

mj ——3,
0

mj ——6
1

mj ——4,
0

mj=2,
0

m2=1

my=1

m2=2

mj=2
4

m j =3
16

mj ——4
48

m j =5
140

mj ——3, m2 ——1

—4
mj ——6

388
mj ——4, m2 ——1

—16
mj =2~ m2=2

mj ——3
24

mj ——4
216

mj ——5
1344

mj ——6
7296

mj=4, m2=1
—48

mj ——4
192

mj=5
3072

mj ——6
32 064

mj ——5

1920

mj ——6
23 040

mj=7
1

mj ——5,
0

mj=3,
0

mj ——1,
0

mj ——8
1

mj ——6,
0

mj ——4,
0

mj ——2,
0

m2 ——1

m2 ——1

my=3

mj ——7
1080

mj ——5, m2 ——1

mj 3~ m2
—16

m j = 1~ m2 =3
4

mj ——8

2948
mj ——6, m2 ——1

—272
m j =4, m2=2

—76
mj ——2, m2 ——3

—16

mj =7
37 416
m, =5, m, =1

—576
mj=» m2=2

—48

mj ——8

184 872
mj ——6, m2 ——1

—4416
m j =4~ m2=2

—576
m j =2, m2=3

—48

mj=7
279 360
mj ——5, mp ——1

—576

mj
750 720

m, =8 mj ——8

2 214 528 9 498 240
mj ——6, m2 ——1 mj ——6, m2 ——1

—11904 —7680
m j =4, m2=2

—576

mj=7
829440

m j=7
322 560

mj ——8 mj ——8
18 109440 15 805 440

The first term represents the direct interaction between the Nd pairs of spins. The second term represents the
indirect interactions, and as such, always involves dimensions greater than 1. Since A represents the free ener-

gy in the absence of a magnetic field, the series is not expected to exhibit drastic anomalies in the vicinity of
the critical temperature.

The next term in the expansion in powers of tanhpH is of second order. The coefficient B;J is the zero-field
spin-spin correlation function (S;Si). For the case of a uniform-applied magnetic field, H; =H for all i, the
coefficient is simply related to the zero-field ferromagnetic susceptibility. In this case the coefficient is in-

dependent of i and j, and the sum can be written as

B~'~ ~ (tanhpJ) '(tanhpJi) ' . (tanhpJ") ", (6)

15 j ply)p ~ ~ ~ p Nl

where the sum over the m; are restricted such that g, , im; =n. The coefficients B'"'~ ~ are given in

Table II. This series is expected to exhibit a sharp singularity, at the temperature at which the systems order
ferromagnetically. The critical exponent y is expected to be much larger than that of the specific-heat anoma-
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TABLE III. The coefficients C'"" in the free-energy expansion [Eq. (7)].

i=4

n =2

n =3

n=4

n=5

mi =2
—1

m~ ——0, m2
—1/2
m)=3

—2

m] =1 m2
—2

m) ——4
—3

m)=2, m2=1
4

m) =0, m2
—1/2

m) ——5
4

m~ ——3, m2
—6

m) =1~ m2
—2

m~ ——2
4

m) =3
—40

m)=1, m, =1
—8

m) ——4
—224

m)=2, m2=1
—76

m) =0~ my=2
—2

m) ——5
—1016
m) ——3, m2 ——1

—368
m~ ——1, mz ——2

—32

m] =3
—64

m) ——4
—1056
m~ ——2, m2 ——1

—120

m) ——5
—10608
m) =3, m2=1

—1680
m) ——1, m2 ——2

—96

m) ——4
—992

m) ——5
—26240

m~ ——3, m2 ——1

—1920

m) ——5
—18 640

n iijkl

ly a. This series will be used to search for the instability of the paramagnetic system to a ferromagnetically

ordered phase.
The corresponding transition from the paramagnetic to an antiferromagnetic phase, can be found from the

response function which relates the antiferromagnetic sublattice order parameter to a staggered magnetic field.

For a simple hypercubic lattice, this response function is simply related to the series g,"8,& (P(J) J by multi-

plying the nth-order term by ( —1) . In this manner we can establish the position of both the ferromagnetic

and antiferromagnetic instability.
The next term in the free energy is of fourth order in tanhPH. The coefficient CJki [,P(J) J is related to

four-spin correlation (S;SJSkS~ ). For a uniform magnetic field, the coefficients can be summed over yielding

d
g C,zkitP(J) j =N/4+N g g . C~",'~, (tanhPJ) '(tanhPJ ) ' (tanhPJ") ", (7)

where the coefficients C'"," are given in

Table III. In compiling Tables I—III, extensive use
was made of the paper by Fisher and Gaunt"
which contains the high-temperature —series expan-
sion for a system of Ising spins on a d-dimensional

hypercubic lattice with a uniform nearest-neighbor
exchange interaction. Therefore, it is quite natural
that our results reduce to those of Fisher and Gaunt
in the case of a single 5-function distribution of ex-

change interactions

P(J,J)=5(J,J J) . —

For a more general distribution of bonds P(J), the
above series allows us to calculate the average
values of the thermodynamic quantities in the

paramagnetic phase. A divergence of the series can
be related to thermodynamic instabilities of the sys-

tem. However, a phase transition need not be
directly related to the average thermodynamic
quantities of a random ensemble, but could be relat-
ed to the spread of the distributions of the quanti-
ties. One example of such a measure is the
Edwards-Anderson order parameter and its corre-
sponding susceptibility. In the next section we shall
derive the high-temperature —series expansion for
such measures.

THE EDWARDS-ANDERSON ORDER
PARAMETER AND SUSCEPTIBILITY

In the high-temperature paramagnetic phase the
thermal expectation value of (S;) at any site is
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zero. The spins are equally likely to be pointing up
or down. At low temperatures, the paramagnetic
state may be unstable to a magnetically ordered
state in which the symmetry of the Hamiltonian is
broken. For a regular ferromagnet or antiferromag-
net, this state corresponds to one in which the ex-
pectation value ($;) is nonzero. Each spin has a
definite direction associated with the ground state
into which the system has frozen. For regular mag-
netic systems the corresponding order parameter is

Mz ——g,. (S;)e ', which is nonvanishing for some

vector q. Edwards and Anderson' realized that for
some random systems M& will be zero for all values
of q but that (S;) could be finite. Edwards and
Anderson utilized this concept of a finite (S;) in
the ground state, to define an order parameter Q de-

fined by

Q= g(s, )'. (&)

This order parameter will be zero in the paramag-
netic state, and finite in the low-temperature
"frozen" phase. Corresponding to this order
parameter Q, one may define a response function
via the relationship

Q = g RpHJHk,
jk

where HJ is the magnetic field at site j. For a uni-
form magnetic field, we find

Q XEAH 2

For an idealized spin glass in which P(J) is sym-
metric, the configurational average over the distri-
bution of bonds results in

x'"=p'g g (s,s, )(s,s, )s,„/N,
jk i

P( —J)=P(J) (10)

since the configurational average is only nonzero if
j=k. This is the Edwards and Anderson suscepti-
bility, studied by Cherry and Domb ' ' and Fisch
and Harris. " We are interested in more general
distributions, and therefore shall study the more
general form

x "=p'y (s;SJ )(s;sk)/N .
ijk

We shall expand X in a power series in tanhPJ.
The configurational average separates out terms in-

volving repeated bonds. Therefore, we utilize the
form

X [P(J)J= g . D~"" ~ (tanhPJ) '(tanhPJ ) ' (tanhPJ")
Im; I,n

where, as before g, m;i =n. The coefficients
Dm""

m are tabulated in Table IV. In the next

section we shall analyze the series for 7 and the
ordinary magnetic susceptibility and obtain a phase
diagram corresponding to the random ferromagnet
with various kinds of disorder.

ASYMPTOTIC ANALYSIS OF COEFFICIENTS—
DETERMINATION OF THE CRITICAL

TEMPERATURE

X= QA„co", co=tanhPJ . (12)

Once a series expansion is available for the ordi-
nary susceptibility or Edwards-Anderson suscepti-
bility, we would like to know the transition tem-
perature suggested by it. There are several tech-
niques available for analyzing the high-temperature
series of the form

I

They all rely on the assumption that near the criti-
cal point co, the susceptibility has the form

X(~)=(~,—~) ". (13)

We can determine co, and I from Pade approxi-
mants of F(co). Thus we take

F(co ) = [L,M] =PL (co ) /QM (co )

po+p&+ ' ' ' +pl
q& +q&co+ ' ' ' +q~co

(14)

and the coefficients po, . . . ,pJ and q~, . . . , q~ are
chosen to fit the first L +M+1 terms in F(co) ex-
pansion. The roots of QM(to) provide the possible
values of ~, and the residues of the Fade approxi-

The value of ~, and y are best determined by Pade
approximant of d lnX(~ ) /dko, since

F(ro ) =d lnX(co )/de =+@/(~,—~ )
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TABLE IV. The coefficient D~"" in the Edwards-Anderson susceptibility [Eq. (11)].

n=1

n=5

m) ——I
4

m~ ——2
6

mz ——I
2

m) =3
8

m~ ——I, mz ——I
4

m) ——4
10

apl ~ =2, mz = I

4
m~ ——0, mz ——2

2

m) ——5
12

m, =3, m, =l
4

pl) =I, mz=2
4

m) ——6
14

m) =4, mz= I

4
pl ) =2, mz=2

4
Plz =3

2

m& ——3, m3 ——I
0

l =2

mt=2
24

m~ ——3
128

Pl ) = I, Pl z = I
16

m) ——4
504

Pl) =2, mz
88

m~ ——0, mz
8

fn) ——5

1976
3s fPl 2 I
336

m) =1, plz=2
64

m) ——6
5888

m) =4, plz= I
1192

m) =2, plz=2
240

mz=3
32

m) ——3, m3 ——I
—16

Pl) =3
192

m) ——4
2160

Pl ) =2, Pl z = I

144

m) ——5

16416
fPl ) =3, Pl z = I

1632
m, =I, mz —2

96
m) ——6
105 840
m) ——4, mz ——I

12 384
Pl ) =2, Plz =2

1248
mz=3

48

i=4

m) ——4
1920

m) ——5

36 864
Pl ) =3, Pl z = I

1536

m) ——6
452 352
m) ——4, mz ——I

29 568
Pl ) =2, Plz =2

1152

i=5

m) ——5

23 040

m) ——6
672000
m~ ——4, mz ——I

19200

i=6

mi ——6
332 560

mant provide the exponent y. The smallest real
value of co, with y ~0 is the required critical value
of Co~.
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q Concentration of Antiferromagnetic bonds

FIG. 2. Phase diagram of four-dimensional hypercu-
bic Ising spin system with random distribution of I —q
ferromagnetic bonds and q antiferromagnetic bonds.

Since we have only the first 7 to 8 terms in the
expansion for P and X, the accuracy of the esti-
mate is not expected to be very high. However, ex-
perience with Pade approximant show that 7 to 8

terms are adequate to estimate the critical tempera-
ture within a few percent.

In Figs. 2 —4, we present the results of the D log
Pade analysis for a distribution of ferromagnetic
and antiferromagnetic bonds

P (J)=p5(J—Jp)+q5(J+ Jp),
where p+q=1. When @=1,all the bonds are fer-
romagnetic and the D log Pade analysis yields the
critical temperature and critical exponents pertinent
to the paramagnetic-ferromagnetic phase transition.
Analysis of the series for the magnetic susceptibility
of d=4 yields a T, of T, /J=6. 664 compared to the
best estimate of T, /J=6. 672 given by Fisher and
Gaunt. " The estimate of the critical exponent y is
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FIG. 3. Phase diagram of five-dimensional hypercubic
Ising spin system with random distribution of 1 —q fer-
romagnetic bonds and q antiferromagnetic bonds.
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FIG. 4. Phase diagram of six-dimensional hypercubic
Ising spin system with random distribution of 1 —q fer-
romagnetic bonds and q antiferromagnetic bonds.

much more sensitive, we find I =1.108 compared
with the value given by Fisher and Gaunt
(@=1.094). As the concentration of antiferromag-
netic bonds q increases, the transition temperature
T, drops, in an almost linear manner. This linear
decrease persists until a value of q such that

(1—2q)(2d —1)-1 .

For this regime of concentrations T, drops rapidly
to zero, in logarithmic manner.

Analysis of the Edwards-Anderson susceptibility
X series yields a similar behavior for the region of
small q. For d=4, 5, and 6 the transition tempera-
tures coincide with those obtained from the series
for the magnetic susceptibility for q in the range
0 & q &0.3. As q is increased beyond this range, the
transition temperature taken from the Edwards-
Anderson susceptibility is higher than the tempera-
ture at which the paramagnetic-ferromagnetic insta-
bility would occur. We take this as being indicative
that a paramagnetic —spin-glass phase transition
occurs, which preempts a ferromagnetic phase tran-
sition. The high-temperature series cannot be used
to find further instabilities which occur in the low-

temperature ordered phase. Thus the dashed line

separating the ferromagnetic and spin-glass phase
has no real significance. For large d, we find that
our results continue on to those obtained, for the
symmetric case p =q, by Fisch and Harris. " For
the case where d =3, the series for Edwards-
Anderson susceptibility is poorly convergent, even

in the ferromagnetic case p = 1, and our estimate of
T, from this series is approximately 10% higher
than that obtained from the magnetic susceptibility.
We therefore cannot draw any concrete conclusions
about the existence or nonexistence of a spin-glass
phase for three-dimensional random magnets. This
result is consistent with the earlier results which in-
dicate that the lower critical-dimensional dimen-

sionality as determined from high-temperature
series is 4.' We notice that for large d the conver-
gence of the series becomes more regular, and esti-
mates of T, more precise. While we have no direct
way of determining higher critical dimensionality,
our results show that the critical exponents are y=2
at p = 1.0 and y = 1 at p =0.5 for d =6. Since these
are the mean-field values, it indicates that d=6 is
the upper critical dimensionality. '

CRITICAL TEMPERATURE IN THE LIMIT
OF LARGE d

For large d, one can express the nth-order terms
in powers of (2d —1) '. Following Fisher and
Gaunt, " we shall separate the coefficient a„of the
nth-order term in the susceptibility in terms of the
number of n-step self-avoiding walks c„and correc-
tion terms d„. Thus

a~ =c~ +d

where for large d, c„can be represented as a polyno-
mial

c„=2"n!
d

+2" '(n —1)!(n —2n + 1)
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+2" (n 2—)!(3n 2—0n +48n 55n +36) 21

d+2" (n —3)!(n —14n +79n 23—5n +412n 45—9n+ 330) 3f+ o ~ ~

and similarly

2' 3( 3)!( 4) ( tanh pJ ) „4( )l( )
( tanh pJ )

2 d 2 2(tanhPJ)', " . &tanhPJ)

—2" (n —4)!(n —12n +49n —74)
(tanh'f3J )
(tanhPJ)& n —4

—2" (n —4)!(n —6) „4 +

We shall expand a„ in powers of (2d —1) ', by utilizing the series

(r —1) (r —1)(3r —13r +17r —6)
2d —1 6(2d 1)2

(r —1)(r 9r +30r 4—5r2+29r ——6)
6(2d —1)3

On substituting in the expression for a„,we obtain

a„=2d (2d —1)" n —3

(2d —1)

(
( tanh'PJ )
(tanhPJ )

(2d —1)

n

2

On taking the logarithm of a, /2d

15n
11 10

(tanh pJ) (tanh pJ)
(tanhPJ) (tanhPJ )

(2d —1)

in(a„ /2d) = (n —1)ln(2d —1)—(n —3)/(2d —1) — (2n —13)+ (n —4) & tanh'PJ )
(tanhPJ)

(2d —1)

25n 217 (tanh f!J) (tanh PJ)
2 2 (tanhPJ) (tanhPJ)

(2d -1)

Since, as noted by Fisher and Gaunt, "this series only contains terms of order n and lower it is consistent with
an asymptotic form

a„=Cn~ 'co" as n'og,
where co is given by

co = (2d —1) 1 — —(2d —1) 2+1 3 (tanh pJ)
(2d —1)2 ( tanhPJ )2

r

4 (tanh PJ) (tanh PJ)2
(tanhPJ ) (tanhPJ)
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and y by its mean-field value 1. This is in accordance with expectations since the expansion is valid only for d
greater than the upper critical dimensionality d~. The critical temperature is given by the solution of the
equation

tanh
(tanhpJ) =ri) '=(2d —1) ' 1+(2d —1) +(2d —1) i 2+

(t~hPJ)'

(tanhiPJ) (tanhPJ )
(tanhPJ) (tanhPJ)

(15)

Although this series is probably only asymptotic, it does give remarkably good agreement with D log Pade

analysis. As pointed out by Fisher and Gaunt, " this series yields estimates for the critical temperature of a

regular, nondisordered ferromagnet to within 0.1% for d=3 and 0.3%%uo for d=4. The worst error occurs for
d=2, which is 5.6%. For the case of the random systems, one can see that as the disorder increases so does

the error in the critical temperature. (See Table V). However, one can still make estimates that agree with the

results of the D log Pade analysis to within 0.5% for d= 3 and to 2% for d=4, providing that (tanhpJ ) does

not have a value close to the percolation probability p„which is given by

p, =(2d —1) '[1+5(2d —1) /2+ —,(2d —1) +57(2d —1) 4+ ]

(to within 2%%uo), as found by Gaunt and Ruskin. '

As one can see, by inspection of the series for co, there should be small difference between the critical

temperature of the quenched random system and the annealed system, when the disorder is small. These
differences rapidly increase until the critical temperatures drop rapidly to zero near the percolation concentra-

tion. This behavior has been reported previously by Rappaport' for the case of bond dilution where

P (J)=p5(J—Jo)+ (1—p)&(J)

The behavior of T, is shown in Fig. 5. However, for a spin-glass disorder, in which there are ferromagnetic

and antiferromagnetic interactions, the difference between the quenched and annealed systems is much larger.
We shall now discuss the large d behavior of the Edwards-Anderson order parameter, in the case of a sym-

metric distribution of exchange interactions P(J)=P( —J). Again we shall separate out the coefficient into a
self-avoiding random walk part c„and correction terms b„. Thus

&n =&n —&n ~

where

b„=2" (n —2)! „2 6(n —3)

d
3 2 tanh J+2" (n —3)! 3

(6n 54n + 184—n —296)—3(n —4)
(tanh PJ)

d
+2" (n —4)! „4 (3n —53n +394n —1631n2+4004n —5304)

3( 12 +49,74)
ailh pJ ) +3( 5 )

( ailh p )
(tanh pJ) (tanh pJ)

On combining these terms we obtain the expression
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7 rt —3a„=2d (2d —1)" ' 1—
(2d —1)

tanh4 J
(24n —147)—3(n —4)

(tanh PJ)
(2d —1)

tanh' J
(49n /2 —695n/2+1719)+3(n —10) +3(n —5)

(tanh'pJ )' (tanh'pJ )'
(2d —1)

This is consistent with the form a„-n~ co" for large n. We can identify m by taking the logarithm of
a„/2d,

(24n —147)—3(n —4)
( tanhPJ')'

ln = (n —1)ln(2d —1)——a„7(n—3)
2d (2d —1)

which gives co as

(2d —1)

401n 2997 (tanhpJ ) (tanhpJ )
(tanhPJ ) (tanhPJ )
(2d —1)

co=(2d —1) 1— 7

(2d —1)

3(tanhPJ )
(tanhPJ')'

(2d —1)

3(tanh pJ) 3(tanh pJ)+ p p +
(tanh PJ) (tanhPJ )

(2d —1)

3(tanh PJ)
(tanh'PJ)'

(2d —1)

3(tanh PJ) 3(tanh /3J)225+
~ ~ +

(«nh'pJ &' (tanh'pJ &'

(2d —1)

(tanhPJ ) =(2d —1) ' 1+ &+
(2d —1)

and y=1. Thus the asymptotic, large d behavior of the Edwards-Anderson susceptibility yields a mean-field
transition, and a transition temperature given by

Comparison with the results of Fisch and Harris for
the distribution

&(J)= —,&(J —Jo)+ —,&(J+Jo)

yields agreement to within 2% between d=6 and

l2.0-

IO.O-

8.0-
Tc

J
6.0-

Transition Temperature of Diluted Magnets

TABLE V. The percolation point is defined as the
solution of Eq. (15) in which T=O and (tanh"PJ) =p, .
The "exact" results are obtained by various methods and
are taken from the article by Gaunt and Ruskin {Ref.
15).

2,0-

0 O.l 0,2 0,3 0.4 Q5 Q6 Q7 0.8 Q9 l.O

Concentration of missing bonds=(l-P)

Exact
Eq. {15)

d=2

0.5
0.498

0.246
0.230

d=4

O. 16O

0.153

FIG. 5 Phase diagram of four-, five-, and six-
dimensional hypercubic Ising spin system with random
distribution of 1 —p ferromagnetic bonds and p missing
bonds.
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d=5. However, at d=4, where Fisch and Harris"'"
find that the critical exponent y~ao, the above
series in 2d —I yields an estimate for (tanh PJ)
which is 50% lower, and the series does not appear
to be convergent.

SUMMARY

To summarize, we have shown that the high-
temperature —series expansion predicts instabilities
of the high-temperature paramagnetic phase to
low-temperature ordered phases. For dimensions
d &4 we find that as the concentration of antifer-
romagnetic bonds is increased the ferromagnetic
transition temperature decreases linearly. We find
that, by further increasing the concentration of anti-
ferromagnetic bonds, the low-temperature fer-
romagnetic instability is replaced by an instability
to a spin-glass phase. As the distribution of bonds
approaches the symmetric case P(J)=P( —J), the

transition temperature approaches that calculated
by Fisch and Harris. i' Unfortunately, for d=3,
we cannot draw any conclusions about the existence
of a spin-glass phase. This is consistent with the
picture of Fisch and Harris, "', who found that the
critical exponent for the Edwards-Anderson suscep-
tibility diverges as d approached 4, and the critical
value of tanhPJ became complex for d=4. Our re-

sults are in agreement with the idea that d =4 in the
lower critical dimensionality and d=6 is the upper
critical dimensionality.

In order to check the reliability of the high-

temperature —series expansions, as applied to ran-

dom systems, we have also examined the effect of
random bond dilution. This has provided estimates
of the percolation concentration which are in

reasonable agreement with the estimates given by
other authors, which suggests that it is reasonable
to use the high-temperature —series expansion to
predict a phase transition at T=O.
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