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Systematics of the positive muon Knight shift in simple metals
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The Knight shift of the positive muon in simple metals is calculated self-consistently in-

cluding both the contact spin-density term and the diamagnetic shielding. The lattice poten-

tial is described in the spherical-solid model. A systematic behavior as a function of r, and

the valency of the host metal is found in good agreement with the experimental results. The

effects of the lattice relaxation and the muon zero-point motion are estimated. The Knight

shifts for muons trapped at lattice vacancies are predicted.

I. INTRODUCTION

The precession frequency of positive muons has
been measured practically in all nontransition met-
als. ' Most of the theoretical work has been based
on the jellium approximation where the metal is
described by a homogeneous electron gas. The
experimental Knight shifts, however, do not show
the simple dependence only on the electron-density
parameter r, predicted by the jellium model.
Molecular-cluster calculations have given a
better agreement with the experimental results in
some single cases, but no systematic study has been
made. Also the band-structure techniques have not
been applied to simple metals, although they provide
good results in magnetic materials. ' "

The jellium model gives a good description for the
positron annihilation in simple metals, ' indicating
that the total charge density at the impurity site is
well described. Also, when applied to the nuclear
Knight shifts in simple metals' ' the jellium model
gives good agreement with experimental results.
The discrepancy of the experimental muon Knight
shift from the jellium results shows that the spin

density, as opposed to the charge density, is very

sensitive to the actual lattice potential. This can be
included in the jellium model with the use of pertur-
bation theory or by applying the spherical-solid
model. ' ' In an earlier paper' we applied the
spherical-solid model for calculating the muon

Knight shift, electric field gradient, and energetics
of muon in Al, Na, and Cu. In this paper we do a
more comprehensive calculation of muon Knight
shifts in simple metals. The results show that the
lattice pseudopotentials affect drastically the Knight
shift, and the inclusion of them in the spherical ap-
proximation brings the jellium results close to the
experimental ones. It is shown that for a given

valency of the host the muon Knight shift is nearly
a smooth function of r, and shows a systematic

behavior, which is in good agreement with the ex-
perimental results.

Owing to the very light mass, the amplitude of
the muon zero-point motion is an appreciable
amount of the lattice constant, and thus the muon
scans a region where the effective lattice potential
varies markedly. In the ferromagnetic materials this
has a large effect (even more than 50%) on the mea-

sured hyperfine field. ' ' In simple metals where

the lattice potential is nonmagnetic the effect of the
zero-point motion turns out to be much smaller

( & 10%). Similarly, the estimated effect of the lat-

tice relaxation around the muon is smaller.

II. THEORETICAL MODEL

In the jellium model the electronic structure of an

impurity is calculated by embedding the impurity
nucleus into a homogeneous (polarized) electron gas
and calculating the screening self-consistently. In
the spherical-solid model the compensating positive
background charge of the jellium model is replaced

by the unscreened pseudopotentials spherically aver-

aged around the impurity site. The resulting
spherical-solid potential V„(r) approaches the exact
lattice pseudopotential in the immediate vicinity of
the impurity, whereas it becomes a constant far
away from the impurity. ' The screening of this po-
tential and the impurity nucleus is calculated self-

consistently using the density functional Kohn-
Sham method (for computational details see Refs.
16 and 20 and references therein).

For spherical symmetry the Knight shift (the ra-
tio between the hyperfine field and the external
magnetic field) consists of two terms,

E=E,+Ed,
where E, comes from the contact interaction, and

Ed from the diamagnetic shielding. The contact
term can be written as
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where n'(r&) and n'(r&) are the spin-up and spin-
down densities at the muon site, p~ the Bohr mag-
neton, and H,„, the external magnetic field. Far
away from the impurity where the potential is con-
stant, H,„, produces a constant polarization no —no
for the homogeneous electron gas. With the help of
the spin susceptibility of the homogeneous electron
gas X„one can write

8m.
EC, = Xp, (r„),

3
(3)

The lattice potential affects the Knight shift in
two ways: (i) It makes the electron and spin densi-
ties of the host metal inhomogeneous, and (ii) it

I

where p, (r ) is the spin-density enhancement defined
as

p, (r)=[n'(r) n'(—r)]/(no —no) .

changes the spin susceptibility from the homogene-
ous electron-gas value. In the spherical-solid model
both these effects are approximately included
around the impurity. The spherical-solid potential
(without the impurity) not only produces an inho-
mogeneous spin density around the impurity, but
also changes locally the total spin density so that

dr p, r —1 0.

This nonzero induced moment is an indication of a
local change in the spin susceptibility due to the
spherical-solid potential. Thus in the above formu-
lation all the lattice effects are included in p, (r).
The susceptibility in Eq. (3) is for a homogeneous
(interacting) electron gas' and the use of, e.g. , an
experimental spin susceptibility would not be con-
sistent.

The second contribution to the Knight shift is the
diamagnetic shielding. For the jellium model
Zaremba and Zobin have derived a formula (in a.u. )

1 oo 2kF
rC„= , f —dr4nrbn(r)+ f dr p l(&+1)—(2l+1)[R«(r)—j~'(k F)r],

where c is the velocity of light, b,n(r) the induced
electron density around the muon, R&k (r) the radial

F
wave function at the Fermi energy, and j~(kFr) the
sphericaj Bessel function. This formula is directly
applicable also for the spherical-solid model.

The effect of the muon zero-point motion can be
estimated by calculating the Knight shift adiabati-
cally at different lattice sites and taking an average
over the muon distribution,

E,„=f dr J (r)P&(r),

where P&(r) is the probability that the muon is at
point r. K(r) is the Knight shift calculated by
embedding the muon at point r and taking the
spherical average of the lattice potential around that
point.

In the spherical-solid model the host metal is
described by the electron-density parameter r„
valency Z, lattice structure, and the pseudopotential.
For the pseudopotential we used the simple Ashcroft
empty-core potential ' with commonly used core ra-
dii [from Ref. 21 except for Cu, Be, Cd, Ca,
Sr, and Ba (Ref. 24)].

III. RESULTS AND DISCUSSION

A. Knight shift at an interstitial muon

The muon was first assumed to be a fixed point
charge at the center of the interstitial site. The

I

Knight shift including both contact and diamagnetic
contributions was calculated in the jellium model
and in the spherical-solid model for both tetrahedral
and octahedral interstitial sites. fcc lattice structure
was taken for hcp metals. The results for mono-
and divalent metals are shown in Figs. 1 and 2,
respectively. The jellium model, even with the di-
amagnetic contribution, gives too large values for all
simple metals. The spherical-solid model systemati-
cally improves the results and gives generally a very
good agreement with the experimental results, also
shown in the figures. The only exceptions are Li
and Be where the theory predicts much too large
Knight shifts. In these metals the measured spin
susceptibility differs very much from the electron-
gas value, and thus it is not surprising that the
spherical-solid model based on a simple local pseu-
dopotential cannot describe correctly the complicat-
ed magnetic properties of Li and Be.

In alkali metals the difference between different
lattice sites is very small, but it becomes larger in di-
valent metals where the pseudopotential is stronger,
Also, the difference between the octahedral and
tetrahedral sites is larger in the fcc structures than
in the open bcc structures. For Al (Z=3) the
spherical-solid model gives for the octahedral site 85
ppm, whereas the experimental result is 80+4 ppm.
For Pb (Z=4) the theory gives 230 ppm, whereas
the experimental result is only 105 ppm.

The sensitivity of the Knight shift on the pseudo-
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FIG. 1. Muon Knight shift in monovalent metals. The black dots are the experimental results from Ref. 3. The open
circles and triangles are the calculated Knight shifts for the octahedral and tetrahedral interstitial sites, respectively. The
solid line shows the jellium result, and the dashed line is the jellium result without the diamagnetic shielding.

V„(0)=—Z2/3 3Z C

3r, 2r,

where a, is the relevant Madelung constant, ' dif-
ferent for different sites, and the zero level is chosen
so that V»(oo) =0. The difference in V„(0)between
different interstitial sites comes only through the
first term, which is totally independent of the pseu-
dopotential, indicating that the spherical-solid po-
tential is never weak, and it has a large effect on the
Knight shift in all simple metals.

potential parameter r, is illustrated in Fig. 3. Both
in Cu and in Mg the increase of the core radius de-
creases the Knight shift fairly rapidly. However, a
large increase in r, (-0.5 a.u. ) in both metals is
needed for bringing the theoretical results in perfect
agreement with the experimental ones. One might
expect that a larger core radius means a weaker
pseudopotential, and the effect of the spherical-solid
potential would be smaller. However, the spherical-
solid potential V„(r}results by replacing the electro-
static potential due to the homogeneous positive
background of the jellium by unscreened pseudopo-
tentials. The value at the center of the interstitial
site is

Owing to the full self-consistency the present cal-
culation includes both the core and Fermi-surface
contributions to the contact hyperfine field. Figure
4 shows the contact electron density at the muon in
the tetrahedral site in Cs as a function of the elec-
tron wave vector. The results are shown for the
paramagnetic jellium model and for the spherical-
solid model with a polarization

(no —no)t(no+no)=0. 1 .

The spin enhancement p, (r) is proportional to the
external magnetic field up to much higher polariza-
tions. In Fig. 4 the bound states are shown as 5
peaks, the height of which gives the corresponding
electron density. There are three contributions to
the contact spin density: (i} the positive Fermi-
surface contribution coming from the repopulation
of the one-electron states [this gives the conventional
approximation p, (0}-(

~
QF(0)

~
}],(ii} the negative

core contribution from the bound states, and (iii) a
positive contribution coming from the changes in
the wave functions of the conduction band below the
Fermi level. In the case of Cs all these contributions
are of the same order, showing the importance of
self-consistency in the calculation. In the spherical-
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FIG. 2. Muon Knight shift in divalent metals. The black dots are the experimental results from Ref. 3. The open cir-
cles and triangles are the calculated Knight shifts for the octahedral and tetrahedral interstitial sites, respectively. The
solid line shows the jellium result.

solid model the conduction-electron contribution to
the contact electron density is smaller than in the
jellium model, whereas the negative core contribu-
tion is larger. This explains the large difference in
the Knight shift of these two models, although the

100—

total electron density at the muon is almost the
same.

The diamagnetic shielding calculated from Eq. (6)
contributes to the Knight shift in the jellium model
from —15 to 20 ppm as seen from Fig. 1, where the
results with and without the diamagnetic shielding
are plotted. In the spherical-solid model the di-
amagnetic contribution is slightly smaller for di-
valent metals varying from —10 to —15 ppm,
whereas for monovalent alkali metals it is essentially
the same as in the jellium model.

B. Lattice relaxation around the moun
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FIG. 3. Dependence of the muon Knight shift on the
pseudopotential parameter r, in Cu and Mg.

An experimental estimate of the lattice relaxa-
tion around an interstitial muon has been made only
in Cu where the outward shift of the nearest-
neighbor distance in the octahedral site is estimated
to be 5%. Keeping the other atomic positions fixed,
the 5% relaxation in the nearest-neighbor distance
increases the Knight shift of the spherical-solid
model by about 10% for Cu, which does not im-

prove the result compared to the experimental
Knight shift. For divalent Mg the effect of the lat-
tice relaxation is as small; the Knight shift increases
linearly with the nearest-neighbor distance, and 1%
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FIG. 4. Partial-wave decomposition of the electron density at the tetrahedral muon site in Cs. The left-hand side shows
the bound-state contribution and the right-hand side the conduction-electron contribution to the total electron density. The
solid and dashed lines are results of the spherical-solid model for spin-up and spin-down electrons, respectively
[(n 0 —n 0)/(n 0+n o) =0.1]. The dotted-dashed line is the spin-up (or spin-down) electron density for the nonpolarized jel-
lium model.

dilatation corresponds to a 1-ppm increase in E. A
theoretical estimate for the lattice relaxation around
the muon has been made in the case of Al, where
the result is 2.4%%uo, and it is expected that it is of the
same order also for other simple metals. Thus, in
general, the effect of the lattice relaxation on the
muon Knight shift in simple metals is small, only a
few ppm.

C. Effect of the muon zero-point motion

The small difference in the muon Knight shift at
different lattice sites in alkali metals suggests that
also the effect of the muon zero-point motion in
these monovalent bcc metals is very small. The ef-
fect of the muon zero-point motion was studied in
the case of divalent Mg. Figure 5 shows the adia-
batic Knight shift at the muon site when it is dis-
placed from the center of the octahedral site. Dis-
placement to all directions increases the Knight
shift. If the muon is assumed to have a Gaussian
distribution with a width of 1 a.u., the zero-point
motion gives about 10% increase to the Knight shift
[calculated from Eq. (7)]. The larger mass of hydro-
gen would lead to a narrower probability distribu-
tion and to a smaller Knight shift. However, the re-
sulting isotope effect would be very small (&10
ppm). Opposite to the magnetic materials, '

where the zero-point motion has a large effect on
the muon hyperftne field, the muon Knight shift in
simple metals seems to be fairly independent of the
width of the muon distribution.

D. Systematics of the muon Knight shift

For a given valency of the host metal the muon
Knight shift shows a systematic behavior as a func-
tion of r, . This is well reproduced by the spherical-
solid model and can be understood as follows. The
core radius of the pseudopotential r, increases sys-
tematically with the Wigner-Seitz radius of the met-
al. For alkali metals, e.g., a good approximation for
all r, 's in Table I is

rc = —1.25+0.75rs .

With this approximation the Knight shift would
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FIG. 5. Muon Knight shift at the octahedral intersti-
tial site in Mg hs a function of the muon displacement
from the center of the octahedral site along the three
main crystallographic directions.
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TABLE I. Parameters used in the calculations.

Metal

CU

Li
Na
K
Rb
Cs
Be
Zn
Cd
Mg
Ca
Sr
Ba
Al
Pb

Lattice structure

fcc
bcc
bcc
bcc
bcc
bcc
fcc'
fcc'
fcc'
fcc'
fcc
fcc
bcc
fcc
fcc

r, (a.u. )

2.67
3.25
3.93
4.86
5.20
5.63
1.88
2.31
2.59
2.65
3.27
3.56
3.69
2.07
2.30

r, (a.u. )

0.81
1.06
1.67
2.14
2.61
2.93
1.06
1.27
1.25
1.39
1.91
2.13
2.55
1.12
1.12

'fcc structure was assumed for hcp metals.

BULK

~~
X X

depend only on r, . This explains the systematic
behavior as a function of r, seen in Figs. 1 and 2.

A similar systematical behavior of the hyperfine
field results also for other impurities and for the
host metal. In Fig. 6 the spin-density enhancement

p, (0) at the center of the interstitial site is shown for
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FIG. 6. Spin-density enhancement as a function of the
electron-density parameter r, for the bulk metal, hydrogen
impurity, and helium impurity. The solid lines are the jel-
lium results. The black dots and the crosses are the re-
sults of the spherical-solid model for tetrahedral intersti-
tial sites in monovalent bcc metals (dots) and for octahe-
dral interstitial sites in divalent fcc metals (crosses).

Na ~&F ) (e V I atom)

FIG. 7. Calculated hyperfine field at the muon site per
host atom, H hr(8' 3)/[n'(r„) n'(r„)]/0, —as a func-
tion of the density of states (per atom) at the Fermi level.
The metals from left to right are Cu, Li, Na, K, Rb, Cs
(black dots), Be, Zn, Cd, Mg, Ca, Sr, Ba (crosses), Al (tri-

angle), and Pb (square). The dashed line shows the ap-
proximate linear relationship. For bcc metals the muon
site is the tetrahedral and for other metals the octahedral
interstitial site.
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FIG. 8. Muon Knight shift at lattice vacancies as a function of the electron-density parameter of the host metal. The
results of the spherical-solid model are shown as black dots and crosses. The solid and dashed lines show the results of the
jellium model for monovalent (Z =1)and divalent (Z =2) metals, respectively.

the bulk metal without impurity, for a positive
muon, and for a helium atom. Results are shown
for the tetrahedral interstitial site of all monovalent
bcc metals and for the octahedral site of divalent fcc
metals. In all cases the spin enhancement depends
systematically on r„but the departure from the jelli-
um result is qualitatively different for different im-
purities. For muon (or hydrogen) the spherical-solid
model gives smaller Knight shifts than the jellium
model, whereas for helium the result is the opposite.
The response of the impurity Knight shift to the
spherical-solid potential depends sensitively on the
electronic structure of the impurity. In the fer-
romagnetic materials, where the lattice potential is
spin dependent, this leads to the well-known sys-
tematical dependence of the impurity hyperfine field

on the atomic number of the impurity. ' '

Recently, Schenck has found experimentally a
linear relationship between the logarithm of the
muon hyperfine field per atom and the molar elec-
tronic specific heat In sim.ple metals the electronic
specific heat can be related to the density of states at
the Fermi level. In Fig. 7 we show the calculated
hyperfine field per atom as a function of the density
of states of the homogeneous electron gas. The log-
arithm of the hyperfine field is indeed apparently a
linear function of the (atomic) density of states.
However, this is a specific feature of the hyperfine
field at the muon site. From the results shown in
Fig. 6 it is obvious that this kind of relationship
does not exist for the hyperfine field in the bulk
metal or at other impurities.
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E. Muon Knight shift at lattice vacancies

The muon Knight shift at the center of a lattice
vacancy was calculated both in the jellium model
and in the spherical-solid model. The results for al-
kali metals and divalent fcc metals are shown in Fig.
8. Inside the vacancy the muon Knight shift in all
simple metals is several hundred ppm larger than in
the interstitial site. As already pointed out earlier'
this difference should be clearly measurable if a con-
siderable amount of muons would be trapped by va-
cancies. So far no Knight-shift measurements for
muons at lattice vacancies have been done, but the
depolarization measurements in quenched alumini-
um have given evidence of muon trapping in vacan-
cies in aluminium. The theoretical prediction for
the muon Knight shift in an aluminium vacancy is
467 ppm in the spherical-solid model and 248 ppm
in the jellium model.

IV. CONCLUSIONS

In simple metals the impurities are very effective-
ly screened by the conduction electrons and the total
electron-density profile of the screening cloud, creat-
ed by the strong 1/r potential, is affected very little
by the periodic lattice potential. The spin-density
enhancement, on the other hand, is caused by the
much weaker exchange-correlation potential. Thus

in calculating the spin density around the impurity
the correct variation of the electrostatic lattice po-
tential is essential and has to be included. The
spherical average of simple pseudopotentials gives a
good local approximation for the true lattice poten-
tial, and the resulting muon Knight shifts are in
good agreement with the experimental results. The
spherical-solid model also explains the observed sys-
tematics that for a given valency of the host metal
the muon Knight shift is a smooth function of the
electron density of the host. A similar systematics is
predicted for other impurities in simple metals.

The effects of the lattice relaxation around the
muon and the muon zero-point motion have been es-
timated to be only about 10 ppm or smaller. This
also suggests a very small isotope effect between the
muon and hydrogen Knight shifts in simple metals.
The Knight shifts for muons trapped at lattice va-
cancies are predicted to be much larger than those
for the interstitial muons, suggesting that the
Knight-shift measurements can be used for studying
muon trapping by defects.
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