Selective site excitation of europium-doped monoclinic Gd₂O₃

J. G. Daly^{*} and J. A. Schmidt

Department of Physics, North Dakota State University, Fargo, North Dakota 58105

John B. Gruber

Departments of Physics and Chemistry, Portland State University, Portland, Oregon 97207 (Received 1 December 1982)

Monoclinic crystals of Eu^{3+} :Gd₂O₃ were studied at 80 K with the use of fluorescence spectra to interpret the energy levels. A tunable dye laser was used to selectively excite levels of the ${}^{5}D_{0,1,2}$ manifolds. Three distinct crystallographic sites for Eu^{3+} ions were identified for a majority of the Stark levels of the ${}^{7}F_{0,1,2,3,4}$ and ${}^{5}D_{0,1}$ multiplets. Comparisons of the fluorescence spectra from different sites were used in this energy-level assignment. Several fluorescence-lifetime measurements were also recorded.

INTRODUCTION

Selective site excitation using a dye laser has been employed to aid in energy-level identification of rare-earth ions in crystals. Trivalent europium in monoclinic gadolinium oxide ($Eu^{3+}:Gd_2O_3$) has been investigated. The crystal field experienced by the Eu^{3+} ions manifests itself in three distinct crystallographic sites. Therefore the 2J + 1 splitting of the Russell-Saunder labeling scheme has an apparent

TABLE I. Fluorescence spectra of Eu³⁺:Gd₂O₃ at 80 K from selective site excitation of the three sites of ${}^{5}D_{0}$.

		Site A			Site B			Site C	
Transition	λ(Å)	$E ({\rm cm}^{-1})$	$\Delta E \ (\mathrm{cm}^{-1})$	λ(Å)	$E (\mathrm{cm}^{-1})$	$\Delta E \ (\mathrm{cm}^{-1})$	λ(Å)	$E ({\rm cm}^{-1})$	$\Delta E \ (\mathrm{cm}^{-1})$
$\overline{{}^7F_0 \rightarrow {}^5D_0}$	5785.0	17 281		5822.0	17 171		5824.0	17 165	
${}^{5}D_{0} \rightarrow {}^{7}F_{1}$	5838.0	17 131	150	5911.3	16912	259	5940.5	16 829	336
	5905.0	16931	350	5961.0	16770	401	5948.0	16807	358
	6013.5	16 625	656	5969.0	16749	422	5951.0	16 799	366
${}^{5}D_{0} \rightarrow {}^{7}F_{2}$	6088.0	16421	860	6153.0	16248	923	6143.0	16274	891
• -	6166.5	16212	1069	6158.0	16235	936	6179.0	16 179	986
	6238.0	16027	1254	6235.0	16034	1137	6261.0	15968	1197
	6278.0	15 924	1357	6309.0	15 846	1325			
				6327.5	15 800	1371			
${}^{5}D_{0} \rightarrow {}^{7}F_{3}$	6465.5	15 462	1819	6520.0	15 333	1838	6535.0	15 298	1867
	6477.5	15 433	1848	6537.5	15 292	1879	6548.0	15268	1897
	6489.5	15 405	1876	6542.0	15282	1889	6561.0	15 238	1927
	6537.5	15292	1989	6563.0	15 232	1939	6569.0	15219	1946
	6599.5	15 148	2133	6577.0	15 200	1971			
	6646.5	15041	2240	6617.5	15 107	2064			
${}^{5}D_{0} \rightarrow {}^{7}F_{4}$	6880.0	14 531	2750	6877.0	14 537	2634	6848.0	14 599	2566
	6928.0	14 430	2851	6947.0	14 391	2780	6944.0	14 397	2768
				6952.0	14 381	2790	6969.0	14 346	2819
				6963.0	14 358	2813	7001.5	14 279	2886
				7028.0	14224	2947	7023.0	14 235	2930
	7088.0	14 105	3176	7062.0	14 1 56	3015	7083.0	14 1 15	3050
	7134.0	14013	3268	7076.5	14 127	3044			
	7142.0	13 998	3283	7098.5	14084	3087			

27 5250

FIG. 1. Fluorescence spectra $({}^{5}D_{0} \rightarrow {}^{7}F_{1,2,3,4})$ of Eu³⁺:Gd₂O₃ at 80 K from selective excitation of the three crystallographic sites of ${}^{5}D_{0}$: (a) 17 281, (b) 17 171, and (c) 17 165 cm⁻¹.

threefold degeneracy. The resulting fluorescence spectra from broad-band excitation became too complex for accurate energy-level identification.

Rice and DeShazer¹ first investigated Eu^{3+} :Gd₂O₃ and made tentative ion-site determinations based on the absorption and fluorescence spectra of $Eu^{3+}4f^6$. A recent paper by Dexpert-Ghys *et al.*² reports the spectra of Eu^{3+} :Gd₂O₃ using selective site excitation. Our work³ was done independently but concurrently with the Dexpert-Ghys study and extends their results to include fluorescence from ${}^{5}D_{1}$ and ${}^{5}D_{2}$ levels.

The technique of selective site laser excitation has been demonstrated to successfully identify previously obscure energy levels. All three crystallographic sites of the ${}^{5}D_{0}$ level of Eu³⁺ were excited and the fluorescence spectra were used in ${}^{7}F_{J}$ identification. Seven of the nine levels of the ${}^{5}D_{1}$ multiplet were

	Site B or C ^a							
		Site A				Site B	Site C^{b}	
Transition	λ (Å)	$E ({\rm cm}^{-1})$	$\Delta E \ (\mathrm{cm}^{-1})$	λ(Å)	$E ({\rm cm}^{-1})$	$\Delta E \ (\mathrm{cm}^{-1})$	$\Delta E \ (\mathrm{cm}^{-1})$	
$\overline{{}^7F_0} \rightarrow {}^5D_0$	5785.0	17281		5822.0	17 171			
${}^{5}D_{0} \rightarrow {}^{7}F_{5}$	7418.5	13 476	3805					
0 0	7432.0	13 452	3829	7457.0	13 407	3764	(3758)	
	7461.0	13 398	3883	7462.0	13 398	3773	(3767)	
	7478.0	13 368	3913					
	7483.0	13 350	3931					
	7486.0	13 355	3926					
	7508.5	13 315	3966	7487.0	13 353	3818	(3812)	
	7529.0	13 279	4002	7516.0	13 301	3870	(3864)	
	7584.0	13 182	4099	7525.0	13 285	3886	(3878)	
	7644.0	13078	4203					
	7748.0	12 903	4378					
	7765.0	12 874	4407					
	7815.0	12 792	4489					
$^{5}D_{0} \rightarrow ^{7}F_{6}$	7989.5	12 5 1 3	4768					
-0-0	8003.5	12 491	4790	8151.0	12 265	4906	(4900)	
	8841.0	11 308	5973	8161.0	12 250	4921	(4915)	
	8848.0	11 299	5982	8445.0	11 838	5333	(5327)	
	8871.0	11270	6011				,	
	8879.0	11259	6022					
	8924.0	11 202	6079					
	8936.5	11 187	6094					
	9003.5	11 104	6177					
	9045.0	11053	6228					

TABLE II. Fluorescence spectra of Eu^{3+} :Gd₂O₃ at 80 K from excitation of sites A and B of ⁵D₀. Spectra from excitation of site B and C were indistinguishable.

^aOnly transitions not observed in site-A excitation are listed.

^bParentheses show the ${}^{7}F_{5,6}$ levels possible for the C site.

similarly analyzed. Two stark levels of the ${}^{5}D_{2}$ manifold were excited but the fluorescence spectra became too complicated for accurate interpretation beyond this point. Also the fluorescence lifetimes were measured for transitions from the ${}^{5}D_{0}$ level for two different crystal sites.

EXPERIMENTAL SETUP

The pulsed-laser spectroscopic system used here was assembled specifically to perform selective site excitation of rare-earth crystals. This system was almost totally designed and constructed in our laboratory at North Dakota State University and has been described in detail elsewhere.⁴

A nitrogen-laser-pumped dye laser was chosen as the light source because of its fast energetic pulses

and its wide tunability. The nitrogen laser typically operated at 5 Hz with a 700-kW, 10-nsec pulse at 337.1 nm. The 5-Hz rate allowed energy optimization and allowed the irradiated crystal to almost completely deexcite between pulses. Our organic dye inventory allowed complete tunability from 360 to 680 nm. Dye pulses were typically 30 kW with a duration of 5 nsec [full width at half maximum (FWHM)]. The crystals were mounted in a cryogenic Dewar with a conduction-type cold finger. This work was restricted to liquid-nitrogen temperatures (80 K). The excitation beam was focused vertically through the crystal so as to optically match the fluorescence with the entrance slit of the monochromator. A 0.5-m Bausch and Lomb monochromator was used with a first-order dispersion of 33 Å/mm. A thermoelectrically cooled photomultiplier tube (PMT) (RCA 31034B) was also used. A boxcar integrator of our own design signal-averaged the PMT

FIG. 2. Fluorescence spectra $({}^{5}D_{1} \rightarrow {}^{7}F_{1,2})$ of Eu³⁺:Gd₂O₃ at 80 K from selective excitation of seven of the possible energy levels (and/or sites) of the ${}^{5}D_{1}$ manifold: (a) 18900, (b) 18918, (c) 18934, (d) 18942, (e) 18 979, (f) 19 024, and (g) 19 086 cm $^{-1}$.

output and interfaced with a strip chart recorder to complete our system.

Single crystals were grown using a flame-fusion technique by Johnson⁵ under the supervision of Henderson at the McDonnell Douglas Corporation in Santa Monica, California, in the 1960s. The high temperatures used (>1670 K) ensure an irreversible transition from the cubic form to the monoclinic structure of this crystal (Gd₂O₃:Eu³⁺), a consequence of this growing technique.

FIG. 3. Fluorescence spectra $({}^{5}D_{2} \rightarrow {}^{7}F_{1,2})$ of Eu³⁺:Gd₂O₃ at 80 K from selective excitation of two of the levels of the ${}^{5}D_{2}$ manifold: (a) 21 335 and (b) 21 346 cm^{-1} .

RESULTS

The monoclinic structure of Gd₂O₃ is transparent for wavelengths greater than 300 nm. The crystal serves as a good lattice for the trivalent europium. In dilute concentrations, the Eu^{3+} ion fluoresces strongly. Our crystals of Eu³⁺:Gd₂O₃ had a dopant concentration of 0.5 at. %. The excitation beam was projected along the crystallographic axis but since no polarization studies were undertaken its orientation is irrelevant.

The ${}^{5}D_{0}$ level offers an excellent test for selective site identification. Since J = 0, there is no Stark splitting, but for the monoclinic crystal structure, three levels exist corresponding to the three distinct sites for Eu^{3+} in the Gd_2O_3 lattice. These three sites were identified as 17281, 17171, and 17165 cm⁻¹ and were separately excited $({}^{7}F_{0} \rightarrow {}^{5}D_{0})$ by tuning the dye laser (using Rhodamine 6G). Figure 1 shows the resulting fluorescence. By comparing the three sites for termination at the ${}^{7}F_{1,2,3,4}$ manifolds, the success of this technique is proven by the obvious differences in spectra for excitation of the three sites. Transfer from one site to another is also observable. Table I lists the prominent transitions of Fig. 1, and based on relative intensities assigns energies to the ${}^{7}F_{1,2,3,4}$ multiplets of all three sites. Examination of the ${}^{7}F_{5,6}$ multiplets (involving

٢	-	1	
	-		

TABLE III.	Tentative site assignment	of the ⁵ <i>I</i>	D ₁ manifold	from	$^{7}F_{1}$ and	7F_2	identification	of the	${}^{5}D_{1} \rightarrow {}^{7}$	$F_{1,2}$ flu	ores-
cence spectra.											

Fluorescence transition		Upper	fluorescence	level and ener	gy of lower	level (cm ⁻¹)		
λ(Å)	$E (\rm cm^{-1})$	18 900	18918	18934	18 942	18 979	19024	19086
5268.5	18975							a
5283.5	18921						b	
5313.0	18816					163		
5350.5	18 685				257			
5354.5	18671			260				
5362.0	18 644	254						
5379.0	18 586		333					
5385.0	18 565		353					
5388.0	18 554		363					
5396.0	18 527			407				
5400.0	18 5 1 3			421				
5403.0	18 503	397						
5411.0	18476	423						
5442.0	18 370						654	
5455.5	18 325				654			
5502.5	18 168						856	
5518.0	18 117				862			
5543.5	18034		884					
5546.5	18024				918			
5551.5	18008				932			
5558.5	17 985	915						
5563.5	17 969	931						
5573.5	17937		981					
5617.5	17 796			1138				
5623.5	17 777		1141					
5626.0	17 770	1130						
5641.5	17 721		1197					
5669.0	17 635			1299				
5676.0	17613	1287						
5694.0	17 557			1377				

^aPossible relaxation from ${}^{5}D_{1}$ (19086) to ${}^{5}D_{1}$ (18979), A site to A site, followed by ${}^{5}D_{1} \rightarrow {}^{7}F_{0}$ emission. ^bPossible relaxation from ${}^{5}D_{1}$ (19024) to ${}^{5}D_{1}$ (18918), A site to C site, followed by ${}^{5}D_{1} \rightarrow {}^{7}F_{0}$ emission.

longer wavelengths) was inhibited by our detection apparatus. However, the fluorescence spectra from excitation of two sites of ${}^{5}D_{0}$ (17281 and 17171 cm⁻¹) were recorded. The spectra from excitation of ${}^{5}D_{0}$ at 17165 cm⁻¹ were indistinguishable from that of the 17171-cm⁻¹ level. Table II lists the more distinct transitions representing ${}^{5}D_{0} \rightarrow {}^{7}F_{5,6}$ and makes tentative assignment of the ${}^{7}F_{5,6}$ manifolds.

Of the nine Stark levels of the ${}^{5}D_{1}$ manifold in the three crystallographic sites, seven were selectively excited. Only the fluorescence spectra out to 570 nm were analyzed since at longer wavelengths spectra from the ${}^{5}D_{0}$ levels are present due to ${}^{\overline{5}}D_{1} \rightarrow {}^{5}D_{0}$

relaxation processes. Figure 2 shows the fluorescence from these seven pumping schemes. The arrow in each spectrum shows the excitation wavelength, and comparison of the seven spectra aids in site determination, with association of each spectral line to a transition to the ${}^{7}F_{1,2}$ manifolds. Figure 3 extends the spectra of Figs. 2(a) and 2(b) to complete identification of transitions to the 7F_2 levels. Table III shows the identified transitions and permits site determination of these levels of the ${}^{5}D_{1}$ manifold.

Table IV lists the fluorescence $({}^{5}D_{2} \rightarrow {}^{7}F_{1,2})$ from excitation to two Stark levels of ${}^{5}D_{2}$ at 21 332 and 21 346 cm⁻¹. These two sites correspond to the lowest and the third-lowest Stark levels. Associa-

	2 (Å)	$E(m^{-1})$	21 222	$\Delta E \ (\mathrm{cm}^{-1})$	21 346
ansition	λ (A)	E (CIII)	21 352	21 333	21 340
$S_0 \rightarrow {}^5D_2$	4683.5	21 346			
$F_0 \rightarrow {}^5D_2$	4686.5	21 332			
$D_2 \rightarrow {}^7F_1$	4743.5	21 075	257		
	4749.0	21 0 5 1			
	4757.0	21 016			
	4761.0	20 998		337	
	4764.5	20 983		352	
	4768.0	20 967		368	
	4776. 0	20932	400		
	4781.0	20910	422		
$D_2 \rightarrow {}^7F_2$	4858.5	20 577			
2 2	4878.0	20 4 94			
	4891.0	20 440		895	
	4897.5	20413	919		
	4901.0	20 398	934		
	4913.5	20 346		989	
	4945.0	20217			
	4949.0	20 200	1132		
	4951.0	20 192		1143	
	4956.5	20170			
	4962.0	20147		1188	
	4971.5	20 109			
	4977.0	20 087			
	4989.5	20 036	1296	1248	
	4995.0	20014			
	5005.0	19974			
	4989.5 4995.0 5005.0	20 036 20 014 19 974	1296	1248	

TABLE IV. Fluorescence spectra from selective site excitation of two energy levels of the ${}^{5}D_{2}$ manifold at 21 332 and 21 346 cm⁻¹. See Fig. 3.

tion of the observed transitions with the ${}^{7}F_{1,2}$ levels implies that the lowest level and its neighbor 3.0 cm⁻¹ higher are well represented. However, the complexity of the observed spectra did not permit identification of the 21 346-cm⁻¹ level.

Table V summarizes the results derivable from our data. The three distinct crystallographic sites have been labeled A, B, and C. The ${}^{7}F_{1}$ levels were completely identified. For ${}^{7}F_{2,3,4}$, some levels are missing. It is expected that many levels were not observed because of their near coincidence in wavelength with more intense transitions or in some cases because these transitions were too weak to detect. The data for ${}^{7}F_{5,6}$ was incomplete and therefore not included in this table. The ${}^{5}D_{0}$ and ${}^{5}D_{1}$ manifolds were nearly all identified, but the ${}^{5}D_{2}$ has only two levels labeled.

Several lifetime measurements of fluorescent transitions were made at 80 K. Table VI summarizes these data. From the relative intensities of fluorescence from A- and C-site excitation it can be concluded that the A site is dominant. Calculations of the predicted transition probabilities for the monoclinic lattice have not been performed. Gashurov⁶ has made these determinations for hexagonal (D_{3h}, C_{3h}) and tetragonal (D_{2d}, S_4) sites. Continuation of this work to monoclinic sites will allow comparisons between the predicted and the observed lifetime. Differences between these two values gives insight into the competing nonradiative processes.

		Site	
Manifold	A	В	С
$\overline{F_1}$	150	257	335
	350	401	354
	655	422	366
${}^{7}F_{2}$	860	918	890
	1069	933	985
	1254	1134	1142
	1357	1325	1194
		1374	1248
⁷ <i>F</i> ₃	1819	1838	1867
	1848	1879	1897
	1876	1889	1927
	1989	1939	1946
	2133	1971	
	2240	2064	
⁷ F ₄	2750	2634	2566
	2851	2780	2768
	3176	2790	2819
	3268	2813	2886
	3283	2947	2930
		3015	3050
		3044	
		3087	
⁵ D ₀	172 81	171 71	171 65
⁵ D ₁	189 79	189 00	189 18
	190 24	189 34	
	190 86	189 42	
⁵ D ₂		213 32	213 35

TABLE V. Tentative site assignments of the ${}^{7}F_{1}$, ${}^{7}F_{2}$, ${}^{7}F_{3}$, ${}^{7}F_{4}$, ${}^{5}D_{0}$, ${}^{5}D_{1}$, and ${}^{5}D_{2}$ manifolds as interpreted from selective-site-excited fluorescence spectra.

TABLE VI. Fluorescent lifetimes of Eu^{3+} :Gd₂O₃ at 80 K.

Transition	Wavelength λ (Å)	Fluorescent lifetime t (msec)
$\overline{{}^{5}D_{0} \rightarrow {}^{7}F_{1}(A)}$	6013.5	1.38
${}^{5}D_{0} \rightarrow {}^{7}F_{2}(A)$	6088.0	1.36
${}^{5}D_{0} \rightarrow {}^{7}F_{1}(C)$	5940.5	0.78
${}^{5}D_{0} \rightarrow {}^{7}F_{2}(C)$	6143.0	0.78

CONCLUSIONS

The partial determination of the crystal-field-splitting—induced energy-level scheme of the 5D_J and 7F_J manifolds should provide valuable comparison to theoretical crystal-field-splitting calculations of our colleagues. This technique was shown as a valuable tool in isolation of specific transitions. In crystals where the number of possible transitions becomes immense, with the relaxation and transfer mechanism contributing, this technique becomes invaluable.

To summarize, the investigations conducted on Eu^{3+} :Gd₂O₃ have identified energy levels of the trivalent europium in a monoclinic lattice not previously reported. The site assignment for the monoclinic host lattice constitutes the real success of our technique. Future studies should lend insight into the energy-transfer mechanisms not only from level to level but also from site to site. The reported fluorescent lifetime measurements show that there is a definite difference in transition probabilities from the different sites.

- ¹D. K. Rice and L. G. DeShazer, J. Chem. Phys. <u>52</u>, 172 (1970).
- ²J. Dexpert-Ghys, M. Faucher, and P. Caro, Phys. Rev. B <u>23</u>, 607 (1981).
- ³J. G. Daly, Ph.D. thesis, North Dakota State University,

1980 (unpublished).

- ⁴J. G. Daly, R. Hasting, and J. A. Schmidt, Opt. Eng. <u>21</u>, 837 (1982).
- ⁵D. M. Johnson, J. Chem. Phys. <u>45</u>, 477 (1966).
- ⁶G. Gashurov and O. J. Sovers, J. Chem. Phys. <u>50</u>, 429 (1969).

^{*}Present address: International Laser Systems, Inc., 3404 North Orange Blossom Trail, Orlando, Florida 32804.