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Density-functional theory applied to phase transformations
in transition-metal alloys
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A new theory of cluster expansions has been derived, which allows one, for the first time, to
estimate the energy of a disordered system from first principles. The cluster variables are
derived from a series of density-functional calculations on ordered compounds. The disordering
temperatures calculated with this theory show the correct trends for binary alloys of 4d transi-

tion metals, and are in excellent agreement with the experimental phase diagrams in most cases.

It is by now now well accepted that the density-
functional theory' ' provides an accurate description
of the electronic structure of both smal14 5 and ex-
tended ' systems. In particular, the application of
this theory to metallic alloys' has shown that it is ca-
pable of predicting their formation energies with er-
rors on the order of 0.01 eV/atom. However, most
of the successful descriptions of bonding in extended
systems have been for periodic crystals with a small
number of atoms per unit cell. Despite the success
of the coherent-potential approximation and related
methods in describing electronic densities of states
of nonperiodic solids, its application to the formation
energies of alloys is quite difficult. ' The lack of or-
der in nonperiodic solids, as in solid solutions (chem-
ical disorder), or in amorphous solids (structural dis-
order), makes it difficult to solve the density-
functional equations in a systematic way, even
though one has a strong degree of confidence in its
applicability to such systems.

The point of this paper is to provide an interface
between the first-principles theory for ordered com-
pounds and a description of more general systems.
This is accomplished through the use of the cluster
expansion of Sanchez and de Fontaine. " This ex-
pansion allows not only the possibility of describing
disordered solids, but also the introduction of tem-
perature (through the methods of statistical mechan-
ics) and the subsequent description of phase transfor-
mations. The feasibility of this approach is due to
the computational efficiency of the augmented spher-
ical wave method, ' as well as its accuracy in the
description of chemical trends in metallic alloys.

For a binary alloy consisting of atoms A and Bon a
lattice of fixed symmetry, the total energy can be ex-
pressed as"

E(r) = Xu„(r)g„,

where v„(r) are many-body interaction potentials,
the g„are multisite correlation functions defined on
an nth order cluster, r is a lattice parameter, and the

sum is over all cluster types on a fixed (i.e., coher-
ent) lattice. The correlation functions can be written
as

where crp is a spinlike variable which takes the values
+1 or —1 depending on whether the lattice point p is
occupied by an A or a 8 atom. The sum is over all
nth-order clusters of a given type in the lattice. N„ is
the total number of such clusters.

As an example, we consider the case of a face-
centered cubic lattice. If we assume that only clusters
consisting entirely of nearest neighbors are impor-
tant, then the cluster sum of Eq. (l) truncates at the
fourth order. Therefore, there are five interaction
potentials, v„, n =0, 4, to be determined from the
density-functional calculations. We choose the five
ordered structures of Table I for this determination.

By use of the correlation functions of Table I, the
total-energy curves for the ordered compounds can
be inverted, as follows, to give the interaction poten-
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Correlation functions
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A3B
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AB3

B
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1
1
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0
1
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1

3

0

1 1
1 —1
2

0 1
1 —1
2

—1 1

TABLE I. Cluster correlation functions for five structures
on an fcc lattice. (p represents the structure-independent

term, (1 =xq —x~ is the "point" correlation function, and (2,
$3 and (4 correspond to NN pairs, NN triangles, and NN
tetrahedra, respectively, where NN means nearest neighbor.
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tials
4

u„(r) = X g~' E (r) (3)

where the index m denumerates the structures of
Table I, and E are the total energies determined
from density-functional theory. In the cases we have
considered, it appears that the cluster expansion is

rapidly convergent, i.e., )u4( & [u3[ & [u3[.
A significant difference between the interaction po-

tentials given by Eq. (3), and those normally used"
is that ours are functions of the lattice parameter.
This implies an effective concentration dependence,
whereas v„are usually assumed to be concentration
independent. This is an important distinction, since
if the v„are constant, there is a simple relation
between them and the compound heats of formation.
For example, this quantity for the L 10 structure
would be just AH(L lo) = —4u3/3, as can be seen
from Eq. (1) and Table I, whereas there is a more
complicated relationship involving all of the v„when
they are r dependent. Therefore a constant v2 is al-

ways positive when an ordered compound forms, i.e.,
hH (0, whereas there is no such connection in the
general case. Also, the significance of constant v„ is

that they describe an nth-order dependence of Eon
concentration, i.e., v2 alone would give a parabolic

dependence, v3 introduces a third-order asymmetry,
and v4 is a fourth-order term. This concentration
dependence remains in the present formulation, but
there are additional terms dependent on derivatives
of e„.

There is a connection which can be made between
these interaction potentials and a many-body expan-
sion. For example, for the truncated series con-
sidered here, v4 can be considered to be dependent
on a combination of four-body potentials:

u4 cc (44444 4444AB + 4AABB 44'ABBB + 4 BBBB)

EHD
TD—,type I;

D

(/3. HD —/PHD)
TD — S, type II;

(6a)

(6b)

TD =0, type III . (6c)

These estimates for TD are, of course, quite approxi-
mate. Exact calculations are not available, even for
the simplest case, i.e., v3 =v4-0, which is equivalent
to a three-dimensional Ising model in a nonzero field.
The interaction is ferromagnetic (u3 & 0) for type I,
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where k is Boltzmann's constant. This expression, of
course, represents the entropy of a random distribu-
tion of A and 8 atoms. If partial order is present, a
more accurate equation must be used. A useful and
accurate representation is provided by the Kikuchi ap-
proximation' ' which expresses SD in terms of the
cluster probabilities. It should be noted that Eq. (5)
represents only the entropy of miring. We neglect the
vibrational, electronic, and magnetic contributions to
the entropy.

At a particular concentration x~ =1 —xg, let b,HO

be the heat of formation of the ordered state and

PHD that of the disordered state. LH&, i = O,D
represent the total energies of the respective states
relative to the segregated limit. We distinguish three
basic types of phase diagrams, dependent on the rela-

tive sign of IH0 and PHD, and three subtypes,
dependent on their relative magnitude. These are
shown schematically in Fig. 1 ~

We now estimate the disordering temperature by

where $4444 is a four-body interaction of four A

atoms at the corners of a regular nearest-neighbor
tetrahedron, etc. Similarly, v3 is a combination of
three- and four-body interactions, and so on. (See
Ref. 11 for details. )

For a random distribution of A and Batoms, the
correlation functions reduce to

ORDERING T
{TYPE )I)

O'K

DISORDERING

(TYPE 1)l)

HO&O& ~Hp

ot QHpc QHp&O

p'O'ZHp

or hH p
& LLHp &0

(TO =O)

hn, D (xA xB) (4)

where XI, i =A,B, are the relative concentrations of A

and Batoms. Using the interaction potentials and
the random correlations of Eq. (4), we can now cal-
culate the total energies of the disordered state of a
binary alloy, ' ED(r) = X„~u„(r)$„D. In order to
estimate TD, the disordering temperature, we assume
a mean-field value for the entropy of the disordered
state'4:

SD = —k (xA lnxA +xB lnxB)

FIG. 1. Schematic phase diagrams for the three basic
types. x is the concentration (=x&), T is the absolute tem-
perature, TD is the disordering temperature, and T~ is the
experimental melting point. L denotes the liquid phase, C
means clustering (phase sc„lt'egation), D is for disordering
(solid solutions), and 0 is a region where ordered com-
pounds occur. In order to compare with the experimental
phase diagrams, we distinguish among three subtypes: (a)
where TD ) T~ for most concentrations; (b) where

TD & T~', and (c) where TD && T~. We note that types
I(c), II(c), and III will in most cases be experimentally indis-
tinguishable.
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and antiferromagnetic (v2 & 0) for type II. The spe-
cial case of a type I compound with x~ =x~ = —, is

known quite well from high-temperature expansions"
and Monte Carlo calculations. ' The antiferromag-
netic case is known approximately from Monte Carlo
calculations.

By comparison with the more accurate calculations,
it turns out (see Ref. 21) that the linear approxima-
tion using Eqs. (5) and (6) results in disordering
temperatures which are too low for type I, and too
high for type II (at least, for the nearest-neighbor
pair interaction model). The approximation is slight-
ly more accurate than mean-field theory, and gives
qualitatively correct trends. For example, it gives ap-
proximately the same dependence of TD on the ratio
v4/vq as found in the Monte Carlo calculations of
Ref. 19. The results could probably be improved by
the use of the cluster variation method.

Calculations have been performed for all binary
combinations of the 4d transition metals, i.e., from Y
(Z =39) to Pd (Z =46). The resulting phase dia-
gram types, both theoretical and experimental, are
shown in Fig. 2. We find that the interaction poten-
tials, v„, n =2, 4, are quite small when there is a
small mismatch between d-band centers, e.g. , RuRh,
and is large when the d bands are far apart, e.g. , YPd.
If the d bands are filled, for example, for CuAg (not
shown in Fig. 2), one finds that v3 and v4 are very
small, so that a pair-potential model would be quite
appropriate. However, this is not the case for most
transition-metal alloys, for which the d bands are par-
tially occupied, and directional bonding becomes im-
portant.

As can be seen from Fig. 2, there is a general ten-
dency toward ordering in the center of the series, and
clustering at the extremes. Disordering occurs at the
bottom boundary between them, with a greater ten-
dency toward disorder at the left (small Az). With a
few exceptions, the theory presented here reproduces
these trends. In particular, the theoretical type is the
same as the experimental for 16 of the 28 cases, and
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shows partial disagreement for the other 12. In 5 of
the disagreements, there is considerable doubt as to
accuracy of the experimental data.
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FIG. 2. Plot of phase diagram types for the 4d transition
series, according to the classification of Fig. 1. The horizon-
tal coordinate is 4z, the difference between the atomic
numbers of the constituents, and the vertical coordinate z is
their average. The upper type is that corresponding to the
present calculations. The lower (in parentheses) is the ex-
perimental type as published in Ref. 22. The notation I/II
means that the alloy is type I at the left of the phase diagram
(smaller Z) and type II to the right, etc. (?) indicates in-
complete (or questionable) experimental data. Note that
types I~ II~ and III are experimentally indistinguishable.
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