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A direct-lattice summation scheme is described which is completely general for one-, two-,
and three-dimensional periodic arrays of point charges. This scheme is based on a proper rear-
rangement of terms within the lattice sum. Rapid convergence is achieved by appropriate can-

cellation of multipolar terms.

Since the first calculation of the electrostatic poten-
tial in a crystal by Madelung! several other methods
have been proposed to perform lattice summations.
The classical methods are those of Ewald? and the
direct-lattice summation techniques given by Evjen?
and Frank.* Another procedure has been developed
by Bertaut.’ All these methods have been reviewed
by Tosi.® Recently, the implications of the classical
methods have been pointed out by Harris,” and the
Fourier-transform method to evaluate the electrostat-
ic potential in crystals was introduced.” If for any
reason (for example, because of the complexity of in-
tegrals in reciprocal space) direct-lattice summation
techniques are desired, no general way of performing
the lattice summation is existent so far.

In this Communication we want to show that it is
possible to formulate a direct-lattice summation
scheme, which is completely general, and which is
applicable to three-dimensional (3D) as well as to 2D
and 1D problems. We also demonstrate how, in
practical calculations, the speed to achieve conver-
gence can be increased. First we introduce some def-
initions and then we discuss the implications of the
classical summation techniques. We then describe
the direct-lattice summation scheme.

The calculation of the electrostatic (Madelung) po-
tential in a crystal involves lattice summations of the

type
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R is a lattice translation vector, and T; and r’; refer
to the location of point charges g¢; and g; in a primi-
tive basis. The Madelung potential V; at an atomic
site i is then given as

j#Ei

with the summation being carried out over all atoms
Jjin the basis. The dimensionless Madelung constant
ag, which is generally referred to a characteristic
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length R (next-neighbor distance, lattice parameter,
etc.), is connected to V; by

- Ry, .
ag==7- lEV,qz , 3)

where n denotes the number of molecules in the unit
cell, and the summation includes all atoms in the
basis.

Because of the conditional convergence of the
series in Eq. (1) the value of ®; will depend upon
grouping the terms and truncating the series, unless a
certain set of basic conditions is imposed. It has
been recognized’-? that in 3D all lattice summation
methods are based on repeating units with vanishing
moments up to the second order. This condition is
fulfilled in the lattice summation methods implicitly,
and we may call it the Ewald condition. In 2D the
Ewald condition requires only vanishing moments up
to the first order,” while in 1D charge-neutral-
repeating units are sufficient to arrive at the unique
Ewald result.” Using such repeating units and sum-
ming over a sufficiently large number of them, we
were able to reproduce reported Ewald results. How-
ever, convergence of this summation is achieved rel-
atively slowly because the Ewald condition does not
imply optimization of convergence. This situation
can be improved if the repeating units are chosen
such that, additional to the Ewald condition, higher-
order moments are zero. This we demonstrate for a
linear chain of equal point charges with alternating
sign (Fig. 1). From inspection of Table I it is obvi-
ous that the lattice sum based on only charge-
neutral-repeating units (BC) converges much more
slowly than the lattice sum based on repeating units
including zero moments up to the second order (SC).

The procedure which was described for a 1D exam-
ple in Fig. 1 can be easily generalized to 2D and 3D,
and to any order of vanishing moments. This leads
to a system of linear equations for the fractional
charges [Fig. 1(b)] within the repeating unit. Thus,
similar to the situation shown in Fig. 1(c), ‘‘bulk’
contributions (BC) and ‘surface” corrections (SC) to
the Madelung potential are obtained. Since in 3D the

5162 ©1983 The American Physical Society



27 ELECTROSTATIC POTENTIALS USING DIRECT-LATTICE . . . 5163

-1 4 -1 04 -1 04 14 -1 -1

a X
- -—
Q, 92 4 93
()] — o+ o
x
-
LU PR PO -1 -1 ELI PR PR
() — - e - - -~ -~ — — — 4o 4+ o 4+ o
“ “ 1 + +1
surface bulk surface
— 4

FIG. 1. (a) Linear chain of point unit charges with alter-
nating sign and lattice parameter a =1. The distance x
denotes the fractional coordinate of a positive charge relative
to its next-neighbor negative charge. (b) Repeating unit
with vanishing charge and vanishing first- and second-order
moments. If the fractional charges q;, ¢,, and g3 are
chosen such that the conditions ¢; +¢, +¢3 +1=0,
—q¢;+q3+x=0, and g, +¢3 +x2=0 are fulfilled, the re-
peating unit has zero moments up to the second order. This
is achieved by using fractional charges ¢, = (x —x2)/2,
g,=—1+x2 and g3 =(—x—x2)/2. (c) One-dimensional
crystal sample which results from the translation of the re-
peating units, defined in (b) according to the lattice transla-
tion R;=la. Inside this crystal sample (“‘bulk’) the se-
quence of charges (—1 +1---—1 +1) corresponds to the ac-
tual situation (a), while at the *‘surfaces’ of this crystal
sample, fractional charges are created, which are necessary
to correct for the vanishing moments. If the summation in
Eq. (1) is performed from /=—N to /=+N the total
surface correction to the Madelung potential is given by
x2/N(N +1).

fractional charges are located on planes, edges, and
corners of the surface of the crystal sample, we term
the corresponding surface corrections according to
their location as planar (PC), edge (EC), and corner
(CC) corrections. Only edge and corner corrections
in 2D and only edge corrections in 1D have to be
considered.

TABLE I. Madelung constant ag for a linear chain of
unit charges with alternating sign and equal distances. If ag
is given in units of the next-neighbor distance, the well-
known result is 2In2=1.386294 ... (Ref. 9). The entries in
the table are as follows: N denotes the limits of the lattice
sum in Eq. (1) from 1 =—Nto 1 =+N. The abbreviations
BC and SC refer to the ‘‘bulk’ contribution and to the
“‘surface” correction as indicated in Fig. 1(c).

N BC SC ap
1 1.333333 0.062 500 1.395833
2 1.366 667 0.020833 1.387 500
4 1.380159 0.006 250 1.386 409
8 1.384 567 0.001736 1.386 303
16 1.385835 0.000460 1.386 295
32 1.386176 0.000118 1.386 294

For actual 3D cases we have constructed repeating
units with vanishing moments up to the fourth order.
The result for NaCl (with primitive nonorthogonal
lattice translation vectors) is shown in Table II. It is
interesting to note that the converged BC value is far
off from the correct Madelung potential, and that PC
and EC values are leading terms, while the CC value
is small but important to achieve fast convergence.
Additional examples for the efficiency of the method
are given in Table III.

In 2D the Ewald condition requires vanishing
zeroth- and first-order moments; however, if
second-and higher-order moments additionally are
zero, convergence is achieved faster. 2D in this con-
text means that the point charges are located exactly
within the x-y plane. If thin films with point charges
outside the x-y plane, and hence with nonvanishing z
components of the second- and higher-order mo-
ments, are considered, an alternative criterion has to
be fulfilled in order to achieve fast convergence for
the Madelung potential. For example, it is possible
to regroup the charges within the x-y plane such that

TABLE II. Madelung constant ag for NaCl. The reported literature value is 3.495130 (Ref. 9,
with ag given in units of the lattice constant. (See text for abbreviations for BC, PC, EC, and

cc)
N,=N,=N; BC PC EC cC ag
2 —0.302957 2.552392 1.279952 —0.022538 3.506 849
4 —0.330722 2.536 540 1.297 848 —0.007318 3.496 348
8 —0.339619 2.532044 1.304889 —0.002083 3.495231
16 —0.342162 2.530796 1.307058 —0.000555 3.495136
32 —0.342843 2.530464 1.307 653 —0.000 143 3.495130
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TABLE III. Madelung constants ag for CsCl, ZnS, BaTiO;, and a-A1,03. The entries in the
table are identical to those in Table II. The reported literature values are a(CsCl) =2.035362 (Ref.
9), a(ZnS) =3.7830 (Ref. 9), a(BaTiO3) =49.510 (Ref. 10), a(a-Al,0;) =24.242 (Ref. 10). For
CsCl and ZnS the Madelung constants are given in units of the lattice parameter, while for BaTiO;
and a-Al)O; the shortest next-neighbor distance has been used as the characteristic length.

System Nl = N2 = N3 BC PC EC CC ap
CsCP? 32 0.464 656 1.570842  —0.000137 0.0 2.035362
ZnSb 32 2.823344 0.632605 0.326986  —0.000009 3.782926
BaTiO3? 16 49.505631 0.0 0.004 241 0.0 49.509 872
a-Al,055¢ 4 29.949 —1.468 —4.257 0.019 24.243

20rthogonal lattice translation vectors.
YNonorthogonal lattice translation vectors.

°The hexagonal unit cell with 6 molecules and 30 atoms has been used as well as the rhombohedral
unit cell with only 2 molecules and 10 atoms to verify that both examples yield the same result.

the electric field gradient at the center of the repeat-
ing unit is zero. An example for this situation is
given in Table IV for a double layer of cubic unit
cells of BaTiQ;.1%-11

As a technical remark it should be mentioned that
the calculational procedure becomes straightforward
if, first, the quantities ®; are evaluated by regroup-
ing the charges on the sublattice i,j, and then by
summing up the contributions from the various sub-
lattices. In addition, convergence is achieved faster if
the atomic positions of the basis atoms are used as
the smallest possible fractional coordinates.

We have introduced in this Communication a
direct-lattice summation scheme which is completely
general for 1D, 2D, and 3D periodic arrays of point
charges, which matches the requirements of the

Ewald conditions, and which has the merit of simple
mathematical formalism. It was shown that the con-
vergence of lattice summations can be accelerated, in
principle, to any desired degree by canceling higher-

order moments as compared to the Ewald conditions.
The direct-lattice summation scheme being proposed
here is of particular interest if reciprocal-lattice tech-
niques are not practical, for example, because of the
complexity of reciprocal-space integrals.
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TABLE IV. Madelung constant ag for a double layer of BaTiO; consisting of TiO, -BaO -TiO, -
BaO -TiO, planes, given in units of the lattice parameter. The entries in the table correspond to
those used in Table II. The reported literature value is ag =134.117 (Ref. 10).

N BC® EC cc ag
1 132.495 653 2.039573 0.0 134.535226
2 133.193326 1.162090 0.0 134.355416
4 133.554375 0.633741 0.0 134.188116
8 133.796 849 0.333525 0.0 134.130373

16 133.947594 0.171525 0.0 134119119

32 134.030400 0.087042 0.0 134.117442

64 134.073364 0.043 853 0.0 134.117217

2 The BC value converges in this specific 2D case to the correct Madelung constant only because
the lattice sum has been carried out in a symmetric way, i.e., contributions from a repeating unit at
position R, have been simultaneously summed up with contributions from a repeating unit at posi-
tion —R;, thus matching the 2D Ewald condition for vanishing first-order moments.
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