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Electrostatic potentials using direct-lattice summations
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A direct-lattice summation scheme is described which is completely general for one-, two-,
and three-dimensional periodic arrays of point charges. This scheme is based on a proper rear-
rangement of terms within the lattice sum. Rapid convergence is achieved by appropriate can-
cellation of multipolar terms.

Since the first calculation of the electrostatic poten-
tial in a crystal by Madelung' several other methods
have been proposed to perform lattice summations.
The classical methods are those of Ewald' and the
direct-lattice summation techniques given by Evjen'
and Frank. 4 Another procedure has been developed
by Bertaut. ' All these methods have been reviewed
by Tosi. Recently, the implications of the classical
methods have been pointed out by Harris, 7 and the
Fourier-transform method to evaluate the electrostat-
ic potential in crystals was introduced. ' If for any
reason (for example, because of the complexity of in-
tegrals in reciprocal space) direct-lattice summation
techniques are desired, no general way of performing
the lattice summation is existent so far.

In this Communication we want to show that it is
possible to formulate a direct-lattice summation
scheme, which is completely general, and which is
applicable to three-dimensional (3D) as well as to 2D
and 1D problems. We also demonstrate how, in

practical calculations, the speed to achieve conver-
gence can be increased. First we introduce some def-
initions and then we discuss the implications of the
classical summation techniques. We then describe
the direct-lattice summation scheme.

The calculation of the electrostatic (Madelung) po-
tential in a crystal involves lattice summations of the
type

I r, —r, l I~o IRI+ r, —r Il

RI is a lattice translation vector, and r I and r J refer
to the location of point charges qI and qJ in a primi-
tive basis. The Madelung potential V& at an atomic
site i is then given as

(2)

with the summation being carried out over all atoms
j in the basis. The dimensionless Madelung constant
az, which is generally referred to a characteristic

length R (next-neighbor distance, lattice parameter,
etc.), is connected to V~ by

&R X Vigt'R
2'

where n denotes the number of molecules in the unit
cell, and the summation includes all atoms in the
basis.

Because of the conditional convergence of the
series in Eq. (1) the value of 4tI will depend upon
grouping the terms and truncating the series, unless a
certain set of basic conditions is imposed. It has
been recognized that in 3D all lattice summation
methods are based on repeating units with vanishing
moments up to the second order. This condition is
fulfilled in the lattice summation methods implicitly,
and we may call it the Ewald condition. In 2D the
Ewald condition requires only vanishing moments up
to the first order, 7 while in 1D charge-neutral-
repeating units are sufficient to arrive at the unique
Ewald result. ' Using such repeating units and sum-
ming over a sufficiently large number of them, we
were able to reproduce reported Ewald results. How-
ever, convergence of this summation is achieved rel-
atively slowly because the Ewald condition does not
imply optimization of convergence. This situation
can be improved if the repeating units are chosen
such that, additional to the Ewald condition, higher-
order moments are zero. This we demonstrate for a
linear chain of equal point charges with alternating
sign (Fig. 1). From inspection of Table 1 it is obvi-
ous that the lattice sum based on only charge-
neutral-repeating units (BC) converges much more
slowly than the lattice sum based on repeating units
including zero moments up to the second order (SC).

The procedure which was described for a 1D exam-
ple in Fig. 1 can be easily generalized to 2D and 3D,
and to any order of vanishing moments. This leads
to a system of linear equations for the fractional
charges [Fig. 1(b)] within the repeating unit. Thus,
similar to the situation shown in Fig. 1(c), "bulk"
contributions (BC) and "surface" corrections (SC) to
the Madelung potential are obtained. Since in 3D the
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q

TABLE I. Madelung constant a~ for a linear chain of
unit charges with alternating sign and equal distances. If nR
is given in units of the next-neighbor distance, the well-

known result is 21n2 =1.386294. . . (Ref. 9). The entries in
the table are as follows: N denotes the limits of the lattice
sum in Eq. (1) from 1 =—N to 1 =+N. The abbreviations
BC and SC refer to the "bulk" contribution and to the
"surface" correction as indicated in Fig. 1(c).

(c)
-1 -1 q, +q,

+1 +1 +1

BC SC

sur face bulk surface

fractional charges are located on planes, edges, and
corners of the surface of the crystal sample, we term
the corresponding surface corrections according to
their location as planar (PC), edge (EC), and corner
(CC) corrections. Only edge and corner corrections
in 2D and only edge corrections in 1D have to be
considered.

FIG. 1. (a) Linear chain of point unit charges with alter-

nating sign and lattice parameter a =1. The distance x
denotes the fractional coordinate of a positive charge relative

to its next-neighbor negative charge. (b) Repeating unit

with vanishing charge and vanishing first- and second-order
moments. If the fractional charges qi, q2, and q3 are

chosen such that the conditions qi +q2+q3+1-0,
—qi+q3+x=0, and qi+q3+x =0 are fulfilled, the re-

peating unit has zero moments up to the second order. This
is achieved by using fractional charges qi - (x -x )/2,
q2- —I +x, and q3- (—x —x )/2. (c) One-dimensional

crystal sample which results from the translation of the re-

peating units, defined in (b) according to the lattice transla-

tion RI = la. Inside this crystal sample ("bulk" ) the se-

quence of charges (—1+1 —1+1)corresponds to the ac-

tual situation (a), while at the "surfaces" of this crystal

sample, fractional charges are created, which are necessary
to correct for the vanishing moments. If the summation in

Eq. (1) is performed from l =—N to I =+N the total
surface correction to the Madelung potential is given by
x'/N(N+1).

1

2
4
8

16
32

1.333 333
1.366 667
1.380159
1.384567
1.385 835
1.386176

0.062 500
0.020 833
0.006250
0.001 736
0.000460
0.000 118

1.395 833
1.387 500
1.386409
1.386303
1.386 295
1.386 294

For actual 3D cases we have constructed repeating
units with vanishing moments up to the fourth order.
The result for NaCI (with primitive nonorthogonal
lattice translation vectors) is shown in Table II. It is

interesting to note that the converged BC value is far
off from the correct Madelung potential, and that PC
and EC values are leading terms, while the CC value

is small but important to achieve fast convergence.
Additional examples for the efficiency of the method
are given in Table III.

In 2D the Ewald condition requires vanishing
zeroth- and first-order moments; however, if
second-and higher-order moments additionally are
zero, convergence is achieved faster. 2D in this con-
text means that the point charges are located exactly
within the x-y plane. If thin films with point charges
outside the x-y plane, and hence with nonvanishing z
components of the second- and higher-order mo-

ments, are considered, an alternative criterion has to
be fulfilled in order to achieve fast convergence for
the Madelung potential. For example, it is possible
to regroup the charges within the x-y plane such that

TABLE II. Madelung constant o.~ for NaCl. The reported literature value is 3.495130 (Ref. 9),
with a~ given in units of the lattice constant. (See text for abbreviations for BC, PC, EC, and

CC.)

Ni =N2=N3 BC PC EC CC

2
4
8

16
32

-O.302 957
—0.330722
—0.339619
M.342 162
—0.342 843

2.552 392
2.536 540
2.532 044
2.530796
2.530464

1.279 952
1.297 848
1.304 889
1.307 058
1.307 653

—0.022 538
—0.007 318
—0.002 083
W.000 555
W.000 143

3.506 849
3.496 348
3.495 231
3.495 136
3.495 130
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TABLE III. Madelung constants a~ for CsC1, ZnS, BaTi03, and a-A1203. The entries in the
table are identical to those in Table II. The reported literature values are a(CsC1) =2.035362 (Ref.
9), e(ZnS) =3.7830 (Ref. 9), a(BaTi03) =49.510 (Ref. 10), n(n-A1203) =24.242 (Ref. 10). For
CsC1 and ZnS the Madelung constants are given in units of the lattice parameter, while for BaTi03
and e-A1203 the shortest next-neighbor distance has been used as the characteristic length.

System N) =N2=N3 BC PC EC CC

CsCV 32 0.464656 1.570842 —0.000137 0.0 2.035 362

ZnSb 32 2.823 344 0.632 605 0.326 986 M.000009 3.782 926

BaTi03'

2
3b~c

16 49.505 631

29.949

0.0

-1.468 —4.257 0.019

0.004 241 0.0 49.509 872

24.243

'Orthogonal lattice translation vectors.
Nonorthogonal lattice translation vectors.

'The hexagonal unit cell with 6 molecules and 30 atoms has been used as well as the rhombohedral
unit cell with only 2 molecules and 10 atoms to verify that both examples yield the same result.

the electric field gradient at the center of the repeat-

ing unit is zero. An example for this situation is

given in Table IV for a double layer of cubic unit
cells of BaTi03.' "

As a technical remark it should be mentioned that
the calculational procedure becomes straightforward

if, first, the quantities C & are evaluated by regroup-
ing the charges on the sublattice i,j, and then by
summing up the contributions from the various sub-

lattices. In addition, convergence is achieved faster if
the atomic positions of the basis atoms are used as
the smallest possible fractional coordinates.

We have introduced in this Communication a
direct-lattice summation scheme which is completely
general for 1D, 2D, and 3D periodic arrays of point
charges, which matches the requirements of the

Ewald conditions, and which has the merit of simple
mathematical formalism. It was shown that the con-
vergence of lattice summations can be accelerated, in

principle, to any desired degree by canceling higher-
order moments as compared to the Ewald conditions.
The direct-lattice summation scheme being proposed
here is of particular interest if reciprocal-lattice tech-
niques are not practical, for example, because of the
complexity of reciprocal-space integrals.
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TABLE IV. Madelung constant eq for a double layer of BaTi03 consisting of Ti02-BaO-Ti02-
BaO-Ti02 planes, given in units of the lattice parameter. The entries in the table correspond to

those used in Table II. The reported literature value is eR =134.117 (Ref. 10).

BC' EC CC

1

2
4
8

16
32
64

132.495 653
133.193326
133.554 375
133.796 849
133.947 594
134.030 400
134.073 364

2.039 573
1.162090
0.633 741
0.333 525
0.171 525
0.087042
0.043 853

0.0
0.0
0.0
0.0
0.0
0.0
0.0

134.535 226
134.355 416
134.188 116
134.130373
134.119119
134.117442
134.117217

' The BC value converges in this specific 2D case to the correct Madelung constant only because
the lattice sum has been carried out in a symmetric way, i.e., contributions from a repeating unit at
position R& have been simultaneously summed up with contributions from a repeating unit at posi-

tion —RI, thus matching the 2D Ewald condition for vanishing first-order moments.
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