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Diffraction of light by a bigrating: Surface polariton resonances and electric field enhancements
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We present a theory of the diffraction of light of arbitrary polarization incident on a doubly

periodic dielectric grating. We use Rayleigh's method together with the vectorial equivalent of
Kirchhoff's integral. The amplitudes of the diffracted spectral orders are calculated for a

sinusoidal bigrating and for a square lattice of hemiellipsoids on a flat surface, for Ag. The

enhancement of the electric field on and near the surface is calculated and is found to reach

values of about 300.

In recent years much interest has been attached to
optical interactions at corrugated surfaces. ' In those
cases where the corrugation is deterministic and
periodic, the overwhelming majority of exact theoret-
ical studies have been for singly periodic gratings
(classical gratings). Here we outline a nonperturba-
tive theory of light diffraction from a doubly periodic
grating (a bigrating) of finite conductivity, and

present results obtained from its numerical im-

plementation.

The diffraction of light from such a bigrating has
been studied theoretically in four recent papers. Der-
rick et al.' employed a coordinate transformation that
maps the corrugated surface into a plane, and solved
the transformed equations by an iterative scheme,
while the other two approaches'4 involve the numer-
ical integration of Maxwell's equations through the
selvedge region. The efficiencies of the diffracted or-
ders were found for crossed pyramidal and sinusoidal

gratings.
The theory presented here is based on Rayleigh's

method, 5 the vectorial equivalent of Kirchhoff's in-

tegral, and the extinction theorem. ' The utility of
this approach in studying optical interactions at rough
surfaces was appreciated first by Marvin. Although
Rayleigh's method is known to be limited in its appli-

cability, ' in the present study well-converged nu-
merical results were obtained for all grating ampli-
tudes within the region of physical interest with very
rapid computation times.

In contrast with the emphasis in the earlier stud-
ies, '~ we are concerned with the reflectivity when in-
cident light couples through the corrugations to sur-
face polaritons, and with the enhancement of the
electric field near the surface under such resonance
conditions. This is of importance in connection with
surface-enhanced Raman scattering. ' The numerical
calculations were carried out for sinusoidal bigratings
and for bigratings formed by a square lattice of hemi-
ellipsoids on a planar surface. The latter profile
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and where ap(Kllpl) equals (pJ'/c' —Kll )' ' for
Kll ( pi/c and t(KII —pi /c ) for Kll & pi/c. Here k
and E& are the wave vector and amplitude of the in-

cident light; kll ——x,ki+xik3 with ki ——(pi/c) sinsi
x cosff and ki = ( pi/c ) sins, sin&i for an angle of in-

cidence 8~, measured from the x3 axis, and an azimu-

seems not to have been studied up to now, and so
provides the first case to be treated exactly, in this

context, of bumps separated from each other by re-

gions of flat surface.
We consider vacuum in the region x3 & f(xll) and

a lossy dielectric, of complex dielectric constant e(tp),
in the region x3 ( g(xll). Here xll =xixi +xix3 and

xi, x2, and x3 are orthogonal unit vectors. The sur-
face profile function g(x II) is doubly periodic:

((XII+ai) = ((xll+ a3) =((XII)

where a i and a2 are noncollinear vectors in the plane

x3 =0.
An exact expression for the electric field 5 (x t)

=E (x ~tp) exp( —ipit), valid in the vacuum above
the selvedge region, x3 & $,„, that satisfies Max-
well's equations and the Bloch condition for the dou-

bly periodic geometry is given by

E (x~pi) =El(k~pl)e'"'"
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thai angle $i, measured from the xi axis. The sum is

over all Gil, the translation vectors of the lattice re-
ciprocal to the lattice defined by the bigrating [e.g. ,
later we shall consider ai =axi and a2=ax2.' then
G~~= (m, n)2e/a for integers m, n] E. ach term in the
sum represents either a diffracted beam (Ki & co/c)
or an evanescent wave (Ei & cu/c). B~~ and Bq deter-
mine the amplitudes of the components of the in-

cident light that are p and s polarized, respectively.
The A~~(K~~oi) and Ai(K~~0i) determine the pand s po-

larization of each diffracted wave.
In the present method only the field in the vacuum

enters the boundary conditions, thus halving the
dimension of the matrix to be inverted. For this pur-

pose we use the vectorial equivalent of Kirchhoff's
integral, whose derivation in Ref. 6 we modify by
choosing the integration volume to be the dielectric
medium, with the observation point x in the vacuum
(and xi & g,„), so that the left-hand side of Eq.
(9.75) of Ref. 6 vanishes (extinction theorem). The
fields in the medium are replaced by the field in the
vacuum E~(x l&o) with use of the boundary condi-
tions at the interface. The boundary condition for
E~(x Iai) obtained in this way is finally

0=- dS' In x[0 XE (x lai)])G, (x;x ice)
4~ ~s

+[n XE (x ice)] x '0 G,(x;x Iro)+ [n E (x lru)] V G,(x;x la&)
Ql

(4)

where n is a unit vector outwardly normal to S, the
interface x3 = ((xi), at each point, and G, is the well

known electromagnetic Green's function for a dielec-
tric medium. Invoking the Rayleigh hypothesis, we
substitute Eq. (1) for E into Eq. (4). After expand-
ing exp[a(( x~~) ] in a Fourier series, we can project
out of this integral boundary condition a doubly in-
finite set of simultaneous, linear, inhomogeneous
equations for the A~~(k~~+6~~) and Aq(kt~+G~~).

We have carried out numerical calculations for two
forms of the surface profile function: (1) sinusoidal,

g(x~~) =(icos(2nxi/a) +/icos(2mxq/a)

and (2) hemiellipsoidal,

I

beams (except right on resonance at fi/a =0.02).
The reflectivity minimum as a function of 8I, at
Ili 24', falls to zero as gi/a is increased up to
gi/a =0.02, while the peak in field enhancement (at
a point above the surface maximum) increases up to
8=222 for @=0and@=283 for fi=Q (Fig. 1 is for

Q = gi). Further increasing (i/a causes the reflectivi-

ty minimum to increase and the 8 peak to decrease:
at $t/a =0.02 the incident light is fully coupled to the
surface polariton; further increasing fi/a only in-

creases the polariton's corrugation-induced radiation
damping and thus diminishes the field at the surface.
For Q = gi =0.02a and 8, =24.03', gwas calculated
throughout the surface region (Ixil ~a/2, —2(0
~x3 ~3( for several values of x2). Its largest

g(xg) =h(1 —x /c )'

for Ix~il & cand ((x~~) =0 for Ixitl & cand lxil,
Ixil & a/2.

The numerical results were convergent to 0.1%
1% for the (specular) reflectivity and 1% 5%

for the total field on the surface (at the surface max-
imum), when G~~ = (m, n )2m/a with —5 ~ m, n ~ 5
were kept.

We used a =8000 A, incident light of a wavelength
h. =5145 A, $,=0, and e= —11+i0.33 for Ag, to
treat the sinusoidal profile with Q =0 up to (2 ——(i
and with gi/a =0.01, 0.02, and 0.03. We calculated
the field enhancement b—=E E /Ei E, near that sur-
face and also the intensities of the diffracted beams.
At IIi =24' the wave (m, n) = (1,0) is a resonantly
excited surface polariton; and (—1, —1), (0,—1),
(—2, 0), (—1,0), (0,0), (—1, 1), and (0,1) are dif-
fracted beams (but only the n =0 orders appear when

Li =0). The beams with n =0 are p polarized; beams
with n &0 are of mixed polarization. The diffracted
energy is nearly all in the (specular) beam (0,0) —its
efficiency is at least 102 times that of the other
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FIG. 1. (Solid curve) reflectivity for the (0,0)-diffracted
order, and (dashed curve) the enhancement of the electric
field E E /E, .E, , at a point above the surface maximum,
both vs angle of incidence 8I, for sinusoidal bigratirys of
three corrugation strengths go/a, on Ag. (a 8000 A,
x =s14s jI,.)
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value, t8-290, was found at x = (a/4, 0, 1.7(i), just
to the right of the surface maximum. A similar cal-
culation for @=0gives a smaller maximum g, and
shows excellent agreement with the results of Gar-
cia, ' who used the formally exact extinction theorem
method for the classical grating (further justifying our
use of Rayleigh's method here).

For the square lattice of hemiellipsoids, with the
same a, )t, e, and Q„we studied the reflectivity and
field enhancement, around resonance, while varying

h, the axis perpendicular to the surface, and c, the
axis in the surface (Figs. 2 and 3). Now, unlike in

previous grating studies, one has bumps separated by
flat regions, with the possibility of independently
varying the bumps' height and separation. For a
fixed c, the reflectivity dip around 81 =24' decreases
continuously as h/a is increased from 0.01 to 0.08,
and does not reach zero and begin increasing as for
the sinusoidal gratings. At c/a =0.15 the reflectivity
is above 90%, with almost no dip even for the larger

h/a; at c/a =0.25 the reflectivity dip drops to 33%
for h/a =0.07, after which the curve is so broadened

I.O

0.8—

0.6—
CJ
Cl

0.4—I
0.2—

0.0

160—

I 20—
t LLI

80—
tLLj

c/

040
o

c/a = 0.45
0.50~g. t

h/o =0.04

I.O
h/a =0.03

0.04

23 24

8; (degrees)

25

0.8—

0.6—
EJ
Ol

v- 0.4—
4P
K

0.2—

0.05—
— 0.06

—0,07

—0.08—

FIG. 3. Reflectivity for the (0,0)-diffracted order and the
enhancement of the electric field, E E /Ei E,", at a point

above the surface maximum, vs angle of incidence 8&, for a

bigrating of hemiellipsoids on a Ag surface, with axes per-

pendicular to the surface fixed, h/a 0.04, and axes in the
surface varying, c/a. (a =8000 A, k. =5145 A.)
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FIG. 2. Reflectivity for the (0,0)-diffracted order and the
enhancement of the electric field, E E"/E, EI, at a point
above the surface maximum, vs angle of incidence 8I, for a
bigrating of hemiellipsoids on an Ag surface, with axes in
the plane fixed, c/a =0.4, and axes perpendicular to the
plane varying, h/a. (a -8000 A, A. =5145 A, .)

as to be almost flat; at c/a =0.40 (Fig. 2) it reaches
3% for h/a =0.08. The peak in the field enhance-
ment [on the surface maximum x = (0, O, h) ], for
fixed c/a, was seen to increase with h/a, reach a
maximum value at h/a =0.04 or 0.05, and then de-

crease. Thus the field enhancement on the surface
peak reaches its maximum value when the surface
peak-to-valley distance, in the plane of incidence, is
0.04a 0.05a for the hemiellipsoids with various c/a
values, just as for the sinusoidal bigrating and sinu-
soidal classical grating. The eventual decline in fie1d

enhancement caused by the surface polariton damp-

ing depends primarily on the height-to-period ratio,
whereas the efficiency of the incident light coupling
to the polariton, as measured by the depth of the re-
flectivity dip, depends strongly also on the fraction of
the surface that is flat (i.e. , on the distance between

bumps). For the hemiellipsoids, even at c/a =0.5,
the largest possible value, 21% of the plane x3 =0
remains flat surface, and so the coupling efficiency
is poorer than with a sinusoidal grating. For the grat-

ing of hemiellipsoids, the increase in radiative damp-
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FIG. 4. Enhancement of the electric field, E E /E& EI,
for light ()t-5145 A) incident at S; 24.06 on a bigrating

of hemiellipsoids on Ag. Calculated in two planes x~ =0 and

x2=a/2 (a =g000 A).

ing with increasing h/a wipes out the polariton faster
than the increase in coupling with h/a can lower the
reflectivity to zero.

For 0, = 24.06' and with h ja - 0.04 and cja = 0.4,
the field enhancement in the surface region, for
x2=0 and x2= a/2, is shown in Fig. 4.

For both the sinusoidal and hemiellipsoid bigrating,
we also studied the effect of varying P; from 0 to
45: the reflectivity minimum moves continuously to
larger 8, values, and increases and then decreases in

depth. This behavior will be presented in more detail

in a future, fuller, paper.
In conclusion, the present method is implemented

quickly [to find the field throughout the surface re-

gion for a fixed x2 with twice as many points (xt tx3)
as in Fig. 4, with a 162 x 162 matrix, required 7 sec
of execution time on the CDC-7600]; it gives conver-
gent results for corrugation strengths of interest (i.e.,
beyond where the field enhancement attains a max-

imum); and it enables us to study bumps on a sur-

face to see how their height and separation affect the
coupling of light to surface polaritons and the atten-
dant field enhancement.
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