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Quantized Hall conductance and edge states: Two-dimensional strips
with a periodic potential
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We have investigated the energy levels of an electron in a periodic potential and a magnetic
field, confined to a two-dimensional strip of infinite length but finite width, for two sets of
boundary conditions. The bulk formula giving the quantized Hall conductance is explained in
terms of a special gauge-invariance property of the edge states. This Communication clarifies
the role of the geometry in the derivations of the quantized Hall effect.

To this day, the quantization of the Hall conduc-
tance oy of a two-dimensional electron gas in a mag-
netic field, when the Fermi level lies in an energy gap
of extended states, has been explained with fair suc-
cess along two different lines of argument. The
analysis of Laughlin! and Halperin? makes use of an
annular geometry and of considerations of gauge in-
variance to arrive at the formula
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where @ is a solenoid magnetic flux confined to the
interior of the hole in the annulus and AN is the
number of electrons transferred from one edge to the
other when @ varies by increments of ®y= hc/e, the
flux quantum. The specific integer value for oy (in
units of e%/h) within a given gap is not predicted by
this formula.

The other line of argument, developed in particular
by the Japanese school,® Stfeda,* and Thouless
et al.,’ is a bulk analysis starting from Kubo linear-
response theory. Thus, in the presence of a periodic
potential, the spectrum of Landau levels displays an
amazing complexity,® but the value of the quantized
Hall conductance obeys the simple formula

n
TH=eCu 2
where nis the electronic density and H the applied
magnetic field. Equation (2) applies, in particular, to
an infinite periodic system, without impurities, when
the Fermi level lies within a gap in the energy spec-
trum.

The purpose of this Communication is to clarify
the role of the geometry (ring, strip, or bulk) and to
reveal the gauge-invariance principle hidden in for-
mula (2), by an analysis of the properties of edge
states. For this purpose, we study the spectrum of
Landau levels in two-dimensional regular strips which
are infinite in extent in one direction and finite in the
other, and we discuss the modifications which occur
when the width is increased. For simplicity, no disor-

2

dered potential or electron interactions are introduced
in the analysis.

In a tight-binding formulation, our strips can be
viewed as two-dimensional regular arrays of sites with
N sites per row, parallel to the x axis, and unlimited
in the y direction. For symmetry reasons, the origin
of the x axis is taken at the middle of the strip and
the vector potential is chosen as 4, = Hx, correspond-
ing to a uniform perpendicular field H. The eigen-
value equation® for the tight-binding wave functions
¢ reads

ep(xy) +y(x +ay) +y(x—a,y)
+e"r(")w(x,y +a) +e+'r(“)lll(x,y —a)=0 ,
3

at a bulk site (not located on the edges); a is the lat-
tice spacing and I'(x) = (27/®,) Hax is related to the
circulation of the vector potential along a lattice bond
pointing in the y direction; the energy eigenvalue € is
taken dimensionless. For a site located on the right
(left) edge, an equation similar to (3) holds with the
second (third) term missing. This defines the natural
boundary conditions in the tight-binding problem.

In a different context,’~® our strips can be regarded
as networks of superconducting wires with nodes at
the lattice sites. To obtain the critical superconducting
field, one has to solve the linearized Ginzburg-
Landau equations which, in the bulk, are identical to
(3) if one interprets  as the superconducting order
parameter and if e is defined as —4 cos(a/¢), where
£ is the coherence length. On the right (left) edge,
not only is the second (third) term missing in (3)
but, in contrast with the preceding formulation, €
must simultaneously be transformed into 3€/4, be-
cause an edge node has three neighbors instead of
four. This is the boundary condition coming natural-
ly from the Kirchhoff continuity equations at the
nodes, in the superconducting network problem.

Thus both systems have the same thermodynamic
limit, when N — . The comparison of these two
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different kinds of boundary conditions, which turn
out to be ‘“‘repulsive’’ in the tight-binding problem
and ‘‘attractive’ in the network problem, provides
useful hints to distinguish the universal from the
peculiar properties of the edge states.

Before presenting our results, we make some intro-
ductory remarks. Because of the translation periodi-
city in the y direction, the eigenvalues and eigenfunc-
tions can be indexed by a momentum k, —7 <k
=+

Var(xy) =e*k0la)y (x,0) . 4)

Since x takes N values (N sites per row), one is left
with the diagonalization of a N X N matrix which has
N eigenvalues €,(k, ¢) where a=0,1,...,(N—-1)
and ¢ = Ha?/®, is the reduced magnetic flux, i.e.,
the flux per lattice cell divided by the flux quantum.
It is easily checked that

(i) e~k @) =e(+k o) ,
(ii) ea(k,d+1) =€, k ) ,
ea(k,%+¢)=ea(k,%—¢), for N odd ,
(iii) e (k ¢ +2) =€k ¢) ,
ek, 1+¢)=¢€,(k1—¢), for N even .

These symmetry properties allow one to restrict at-
tention to the domain 0 <k <#,0<¢=<1. Ina
(k, ¢, €) representation space, the spectrum consists
of N energy surfaces which are well ordered, one
above the other, beause they do not cross each other.
As N increases, the number of energy sheets in-
creases and each of them becomes more and more
wrinkled according to some patterns that are analyzed
below.

Two aspects of these energy sheets deserve special
attention. One is the number of crossing points with
a line (e, ¢) parallel to the k axis and the corre-
sponding values of the tangent slope 9k/d¢|, at
these points, because this governs the Hall conduc-
tance, as given by Eq. (6) below. The second is the
projection of these energy sheets along the k axis, be-
cause this gives the spectrum as a function of mag-
netic field, to be compared with the bulk spectrum.®
This comparison has a double interest: It provides a
genesis of the bulk discontinuous spectrum in a
manner which preserves at all stages (width N) the
continuity of the eigenvalues as a function of field,
and it reveals the role and the position of the edge
states.

Analytic computation of the eigenvalues and eigen-
functions becomes rapidly unmanageable when N in-
creases (N >4). We have made extensive numerical
investigations from which we extract here a few illus-
trative pictures.

Figure 1 shows an overview of the highest eigen-
value sheet as a function of k and ¢, for N =7 and

FIG. 1. Overview of the uppermost eigenvalue energy
sheet, for strips of width N =7 and tight-binding boundary
conditions (see text). The energy e is plotted as a function
of the magnetic flux ¢ and of the momentum k The two
steep flat slopes, labeled 4 and B, joined by a fold centered
at k=0, correspond to edge states.

tight-binding boundary conditions. For the same
width (N =7) and wire network boundary condi-
tions, Fig. 2 shows a section of the spectrum at k =0.
Figure 3 shows three curves given by

€e+4=8p¢, p=2,4,6 , )

and successive foldings on the edges € = +4 of the
zero-field spectrum. Equation (5) is analogous in
form to the variation of Landau levels in free space.
The folded curves of Fig. 3 constitute a skeleton of
Fig. 2 through a succession of anticrossings. (The

+4
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0 1 ¢
FIG. 2. For N =17 and wire network boundary conditions

(see text), a section of the spectrum at momentum k =0.
The energy e is plotted as a function of the magnetic flux ¢.
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FIG. 3. Same coordinates as in Fig. 2. Sketch of the
three folded curves given by € +4=8p¢, p =2 (dashed
line), p =4 (dot-dashed line), p =6 (full line). The foldings
occur at e= 4. These three curves provide a skeleton of
Fig. 2, through a succession of level anticrossings.

skeptical reader is invited to use a piece of tran-
sparent paper to superpose the curves of Fig. 3 on
Fig. 2). For N =9, another curve [corresponding to
p =8 in (5)] introduces into the spectrum a further
oscillating component with frequency 4 in ¢, and so
forth for increasing N. Strips with even N have half-
odd integer frequencies [p=1,3,5, ... in (5)]. All
these frequencies can be recognized in the asymptotic
spectrum® by keeping track of the gaps as a function
of ¢.

Figure 4 shows the complete spectrum for N =13
and tight-binding boundary conditions. In compar-
ison with the asymptotic spectrum,® the most notable
difference is that the gaps are now pseudogaps filled
with edge states. These states ensure the continuity
of the eigenvalues as a function of ¢. Further obser-
vation shows that in the largest gaps, which have
period 2 in ¢, there is only one pair of Fermi mo-
menta (+k, — k), solutions of the equation
€(k, ¢) =€ for given flux ¢ and Fermi level €7. In
the next gaps (period 1 in @), there are two pairs of
solutions. Generally, we have found numerically that
(i) there are p pairs of solutions in the gaps which
have period 2/p in ¢, (ii) these solutions correspond
to eigenstates localized on the edges, (iii) the integer
p is precisely equal to the modulus of the integer
value of oy (expressed in units of e?/h).

Each pair of edge states contributes equally and ad-
ditively to the density of the states in the gap and to
the value of oy, as given by (2), in the asymptotic
limit N —oo. This finding, which generalizes a result

0 1

FIG. 4. Spectrum for a strip of width N =13 and tight-
binding boundary conditions. Same coordinates as in Fig. 2
and 3. The numerical mesh is A¢=5 x10~2 and Ak =57
x1072,

of Halperin? for electrons without a periodic poten-
tial, holds for either of the boundary conditions
presented above. The principal difference between
the two sets of boundary conditions is that, for the
superconducting case, there are edge states with ener-
gies below the lowest bulk level and above the
highest, while for the tight-binding conditions, all the
edge states lie in gaps between the bulk bands.

For spinless noninteracting electrons, the electronic
density is given by the integrated density of states
below the Fermi energy €. The Stfeda*Widom!°
formula (2), supplemented by Wannier’s!! result on
the linear variation of the integrated density of states
below any gap, allows then for a simple determina-
tion of the Hall integer, in agreement with the
derivation of Thouless,’® for any gap of the asymptotic
spectrum. We discuss now the interpretation of this
formula in terms of edge states.

For a strip geometry, the electronic density is a
linear function of the Fermi momenta k(i =1, ...p).
Then the right-hand side of Eq. (2) can be expressed,
for a finite system, by

an _ e 1 i 0k;

e =

9H  h a(N—-1) & 3¢ 2"

F

de
. o

where the summation is over all pairs of Fermi mo-
menta. Naturally, the sign of the contribution from a
state at the Fermi level comes out to depend on the
direction of its group velocity v, ~ d¢/dk.
Observation shows that the edge states in the larg-
est gaps (with period 2 in ¢) originate from the
highest bare Landau levels [p =N —1 in (5)]. Their
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energy tends to be a piecewise function of the com-
posite variable (k +7(N —1)¢) and, furthermore, a
linear function of this variable, in accordance with
(5), valid for k ~0. These edge states give rise to
the steep flat slopes around the deep troughs observ-
able in Fig. 1. Such a functional form,

e(k,¢p)=e(k—m(N-1)¢) , @)
implies

Ok | _ _

6¢L m(N—-1) . €))

Using Egs. (2) and (6), one thus obtains for large N
the quantized Hall conduction formula, that o is an
integer multiple of e?/A. Then, it remains to provide
the physical reason for the functional form (7).

The explanation is basically again gauge invariance.
For a state localized on the right edge (say),

k-
k—m(N-1)¢=k ﬁcAa , )

where A is the constant vector potential seen by the
localized eigenstate. Thus, for a state localized on
one edge of the strip, the magnetic flux through the
strip is equivalent to a Bohm-Aharonov field, like the
solenoid flux in the Laughlin-Halperin geomertry.
Therefore the quantization of o, as given by for-
mulas (2), (6), and (8), directly originates from the
transverse localization of the edge states. The more
localized they are, the more accurate the quantization
is. A look at Fig. 1 shows that for most eigenstates,
which are bulk states, (7) does not hold at all. Thus

the quantized Hall conductance obtains when the
Fermi level is in a gap of the bulk bands, and only
edge states occur at the Fermi level. Besides their in-
terest for Hall conductance, formulas (2) and (6)
provide a test for localization of the Landau levels at
a given energy.

In higher gaps (gaps with smaller period in ¢),
there are edge states coming from lower bare Landau
levels [p < N—1in (5)] and the quantization is
more slowly reached as N increases. A quantitative
analysis for periodic and disordered potentials will be
given in a forthcoming publication where some of the
statements presented here will be substantiated.

In conclusion, we have shown that formula (2),
which is very efficient for computing the quantized
Hall conductance in the gaps of a noninteracting elec-
tron gas, can be simply understood in terms of the
properties of edge states, without requiring the intro-
duction of a ring geometry. Furthermore, this ex-
pression has been shown to provide a sensitive test of
the localized character of the Landau levels at any
Fermi energy.
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